Minimizing Coupling of Power Supply Noise Between Digital and RF Circuit Blocks in Mixed Signal Systems

Size: px
Start display at page:

Download "Minimizing Coupling of Power Supply Noise Between Digital and RF Circuit Blocks in Mixed Signal Systems"

Transcription

1 Minimizing Coupling of Power Supply Noise Between Digital and RF Circuit Blocks in Mixed Signal Systems Satyanarayana Telikepalli, Madhavan Swaminathan, David Keezer Department of Electrical & Computer Engineering Georgia Institute of Technology 266 Ferst Dr., Atlanta, GA, USA Abstract Isolation of supply noise between disparate circuit blocks is crucial. When powered by the same voltage supply, the switching noise created at the supply node of the digital devices can couple into the power path of the RF circuitry and cause significant performance degradation. Electromagnetic bandgap (EBG) structures, ferrite beads, and split planes are all commonly used to mitigate this problem, but each have drawbacks which can be detrimental to signal and power integrity. Furthermore, previous works in [1] and [2] have shown that by utilizing a power transmission line (PTL) in place of a power plane, one can significantly reduce the effect of switching noise in high speed digital I/Os by preventing the occurrence of return path discontinuities. The method proposed here extends the concept of the PTL to mitigate the effect of supply noise coupling between a set of digital I/O buffers and an RF low noise amplifier (LNA). In this work, the approach is to place a notch with a bandstop frequency corresponding to center frequency of the LNA in the power supply path of the LNA. Therefore, any frequency content of the switching noise close to operating frequency of the LNA is prevented from entering into its supply node. A board-level test vehicle was built to demonstrate this concept with off-the-shelf components. Through theory, simulation, and lab measurements, is has been shown that utilizing this method can reduce the amount of the switching noise that couples into the output of the LNA by 84%. Keywords simultaneous switching noise; noise isolation; electromagnetic band gap; power transmission line I. INTRODUCTION In complex mixed signal systems, the isolation of supply noise between disparate circuit blocks is very critical. Due to the varying voltage swings of different circuit blocks as well as each circuit s sensitivity to power supply noise, it is crucial to isolate digital and RF devices. Digital devices can have relatively large voltage swings as compared to RF signals. For example, the output voltage swing for Low Voltage Differential Signaling (LVDS) and Positive Emitter Coupled Logic (PECL) devices is 400mV and 800mV, respectively. Integrated RF devices, however, can have very small voltages (< -20dBm or approximately 25mV for a 50Ω system). When powered by the same source voltage, the supply noise created at the power supply node of the digital devices can couple into the RF circuitry. If, for example, the digital devices are powered by a 2.5V supply, the conventional design methodology is to design the power distribution network (PDN) such that the maximum supply noise is within 5 to 10% of the supply voltage. Therefore, the maximum tolerated noise magnitude can be upwards of 125 to 250mV. If even 10% of this noise is coupled into the supply node of a low noise amplifier, then 25mV of noise voltage can be injected into the LNA. Consequently, a large amount of switching noise that is injected into the supply rail by the digital circuitry can couple into sensitive RF devices and cause significant performance degradation in the form of reduced gain and linearity, and can even produce a false signal at the output. A common method for mitigating noise coupling is to use an electromagnetic bandgap (EBG) structure. EBGs are repeating etched metal patterns on the power or ground plane that can be optimized to give a specific frequency response. EBG structures can be very effective in noise isolation, commonly achieving over 30dB of isolation. However, these structures can cause signal degradation, due to the presence of many split planes and via transitions, as discussed in [3] and [4]. Consequently, a method is proposed here that aims to mitigate this problem. The objective of this method is to power both digital and RF devices with a single power source while preventing switching noise from coupling from the digital path into the RF signal path. II. PROPOSED METHOD In this proposed configuration, by adding a in the power supply path of the LNA, it is possible to reduce the amount of noise that is coupled between the two circuit blocks. This configuration is shown in detail in Figure 1. Figure 1. Mixed signal noise isolation Suppose the digital buffers are operating at a certain data rate, f d. The LNA has a desired center frequency of f LNA. If the lower-order harmonics of the simultaneous switching noise (SSN) generated by the buffers happen to fall close to or exactly at f LNA, then the noise will be coupled into the LNA and will be expressed at the output. A notch is designed to have a bandstop frequency at f LNA, and is used as the SSN. With the SSN is connected between the PDN and the LNA circuitry, any power supply noise generated by the digital circuit will be attenuated before coupling into the LNA. The power delivery network used for this circuit is a power transmission line. The power transmission line concept is described in detail in [1] and [2]. If the PTL is placed on the same layer are the signal traces, then the signal network and the PDN will share the same ground reference, such that a /14/$ IEEE Electronic Components & Technology Conference

2 continuous current loop is established and therefore removes return path discontinuity (RPD) effects[1][2]. III. SIMULATIONS Simulations were performed to demonstrate this idea in Agilent Advanced Design Systems (ADS). The LNA used in the simulation is a simple common-gate configuration operating at a center frequency of 2.4GHz with V DD = 2.5V [5]. At the operating frequency, the gain of the amplifier is approximately 11.95dB. A. Case 1: Digital buffers are OFF, RF LNA is ON This is the control case, in which no input signal is applied to the digital buffers and there is a -50dBm signal at the input to the LNA. As expected, there is a -41dBm signal at the desired frequency at the output of the LNA due to the ~10dB gain. Figure 4. Frequency spectrum of LNA output Figure 2. RF LNA used in simulations A 10Ω power transmission line is used to serve as the PDN and four 2.5V CMOS buffers are operating with a 1.2Gbps PRBS-8 input. Figure 3 shows the power spectrum of the noise generated at the V DD node of the buffers. B. Case 2: Digital buffers are ON, RF LNA is OFF; no SSN Figure 5a and Figure 5b show the noise voltage at the supply node of the buffers and the LNA, respectively. In this case, even without an input signal to the LNA, there is an output signal at the desired frequency band, as shown in Figure 5c. This is due to the switching noise from the digital circuits that is coupling into the supply node of the LNA. Figure 3. Spectrum of noise due to SSN Most of the switching noise generated by the digital buffers will be at the switching frequency, 1.2GHz. However, there will also be noise generated at the 1 st harmonic, 2.4GHz. This corresponds to the operating frequency of the LNA, so any coupling between the two devices will cause noise to show up at the output of the LNA. In this simulation, the SSN is a 3 rd order transmission line stub that is optimized to give a stop-band response at 2.4GHz [6] with very high insertion loss. This will prevent noise from the 1 st harmonic of the SSN to couple into the RF output. The circuit is simulated under various conditions, which are summarized below. Identify applicable sponsor/s here. If no sponsors, delete this text box (sponsors). 2288

3 Figure 5. (c) Supply noise on digital size supply noise on RF side (c) LNA output spectrum at 2.4 GHz C. Case 3: Digital buffers are ON, RF LNA is OFF with SSN In this case, the transmission line notch placed in the supply path of the LNA. The has a very high insertion loss at 2.4GHz, and consequently any supply noise generated by the digital circuitry at the bandstop frequency is highly attenuated and does not propagate to the output of the LNA, as shown in Figure 6c. Notice that the peak-to-peak supply noise that is generated by the digital circuits is approximately the same with and without the presence of the notch (Figure 5a and Figure 6a, respectively). Consequently, the only helps provide isolation between the two circuits, and does not contribute more noise. In addition, although the supply noise from other frequencies may couple into the LNA, these signals can generally be ed out further down the receiver chain in a real system. Figure 6. Supply noise on digital size supply noise on RF side (c) LNA output spectrum D. Case 4:Digital buffers are ON, RF LNA is ON; no SSN In this case, both the digital and RF sections are operating simultaneously. Consequently, there is significant noise at the supply node of the LNA and the in-band noise is being coupled into the output of the LNA, as shown by the larger than expected output in Figure 7c. (c) 2289

4 (c) Figure 7. Supply noise on digital size supply noise on RF side (c) LNA output spectrum E. Case 5: Digtial buffers are ON, RF LNA is ON; with SSN When Case 4 is repeated with the presence of the SSN, the noise at the output of the LNA is significantly reduced and the output spectrum of the LNA is nearly identical to that of Case 1, which is desired. Figure 8. Supply noise on digital size supply noise on RF side (c) LNA output spectrum These simulation results show the effectiveness of this strategy. By carefully designing the power delivery network and the SSN, it is possible to isolate the power supply noise between digital and RF circuit blocks in mixed signal systems. In order to further demonstrate this concept, several test vehicles were designed and measured. IV. TEST VEHICLE DESIGN Test vehicles were designed and fabricated to demonstrate the effectiveness of this noise isolation strategy, shown in Figure 9 below. The test vehicles utilize an unterminated 25Ω power transmission line as the PDN. (c) Figure 9. Noise isolation test vehicles with unterminated PTL The low noise amplifier used in all the test vehicles is an off-the-shelf component from Skyworks with a frequency range from GHz and a bias voltage of 2.5V. The operating frequency of the LNA was chosen to be 1.80GHz. Four digital PECL buffers with a supply voltage of 2.5V and 50Ω loads comprise the digital section. The SSN was designed using the transmission line stub matching technique as described in [6] and has a Chebyshev band-stop response with a center frequency of 1.8GHz. The was designed and simulated using a 3D electromagnetic solver, and the physical layout is shown in Figure 10. By collapsing the stubs into a serpentine pattern, the overall area of the was reduced for easier layout onto the PCB. 2290

5 When the -21dBm input is applied to the LNA, and the digital drivers are disabled, the output of the LNA for each test vehicle is shown in Figure 12. One can see that with and without the in the PDN, the output waveforms are very similar, with a peak of approximately -41dBV and -43dBV, respectively. This shows that the presence of the filer does not adversely affect the performance of the LNA. Figure 10. Microstrip line stub layout Figure 11 shows the frequency response of the SSN. Due to imperfections in the PCB material, the resulting bandstop frequency occurs at approximately 1.88 GHz. 0 Insertion Loss (S 12 ) -5 S 12 (db) X: Y: frequency (GHz) Figure 11. Noise isolation test vehicles with unterminated PTL In addition, an identical test vehicle was made in which the transmission line stubs of the were removed, resulting in a straight 25Ω transmission line connecting the supply voltage to the LNA circuitry. Without the stubs, the standard transmission line does not exhibit a bandstop response and does not isolate noise between the digital and RF sections of the board. Other than this change, this test vehicle is identical to Figure 9. V. PTL NOISE ISOLATION MEASUREMENTS The noise isolation test vehicles were tested for the four cases presented previously. For both test vehicles, the input data for the digital buffers was provided by a separate FPGA board which was programmed to provide a 4-bit pseudorandom bit sequence (PRBS-8). An Agilent E8257D signal generator was used to provide a -15dBm input signal for the LNA at 1.88GHz. A 6dB power splitter is used to split the RF signal so that one signal can be used as the trigger source for the oscilloscope to properly view the waveform. Therefore, the amplitude of the signal applied to the input of the LNA is - 21dBm. Figure 12. LNA output without LNA output with SSN Figure 13 shows the frequency spectrum of the output of the LNA when there is no RF input signal but the digital buffers are switching at 610MHz. At this data rate, the switching behavior of the drivers generates a harmonic at 1.83GHz, which is within the bandstop of the SSN. Without the SSN, the peak in the spectrum at 1.83GHz has a magnitude of approximately -64dBV. When the is present, the peak is at -80dBV. Consequently, the presence of the reduces the amount of switching noise that is coupled to the output of the LNA by 16dB. Since the LNA is terminated with a 50Ω load, this translates to an 84% decrease in the noise voltage that is produced at the output terminal of the LNA. 2291

6 Figure 13. LNA output without LNA output with SSN and lab measurements, is has been shown that utilizing this method can reduce the amount of the switching noise that couples into the output of the LNA by 84%. REFERENCES [1] A. Ege Engin and M. Swaminathan, "Power transmission lines: A new interconnect design to eliminate simultaneous switching noise," in Electronic Components and Technology Conference, ECTC th, 2008, pp [2] S. Telikepalli, M. Swaminathan, and D. Keezer, "Minimizing simultaneous switching noise at reduced power with constant-voltage power transmission lines for high-speed signaling," in Quality Electronic Design (ISQED), th International Symposium on, 2013, pp [3] Q. Jie, O. M. Ramahi, and V. Granatstein, "Novel Planar Electromagnetic Bandgap Structures for Mitigation of Switching Noise and EMI Reduction in High-Speed Circuits," Electromagnetic Compatibility, IEEE Transactions on, vol. 49, pp , [4] A. C. Scogna, A. Orlandi, and V. Ricciuti, "Signal and Power Integrity Performances of Striplines in Presence of 2D EBG planes," in Signal Propagation on Interconnects, SPI th IEEE Workshop on, 2008, pp [5] M. Egels, J. Gaubert, P. Pannier, and S. Bourdel, "Design method for fully integrated CMOS RF LNA," Electronics Letters, vol. 40, pp , [6] D. M. Pozar, Microwave Engineering, 4 ed.: Wiley, CONCLUSION The proposed method presented here extends the concept of the power transmission line to mitigate the effect of supply noise coupling between digital and RF circuit blocks. The devices under test are a set of digital buffers and an RF low noise amplifier. If both the digital and RF blocks of a mixed signal design are operating simultaneously and powered by the same source, and a lower-order harmonic of the digital switching noise falls within the operating bandwidth of the LNA, then the switching noise can affect the LNA output. Once present, this noise is very difficult to remove since it is within the operating bandwidth of the LNA. In this work, a method is proposed in which a notch with a bandstop frequency at f LNA is placed in the power supply path of the LNA. Therefore, any frequency content of the switching noise close to f LNA is blocked from entering into the supply node of the LNA. A board-level test vehicle was built to demonstrate this concept with off-the-shelf components, with the digital drivers operating at 610Mbps and the LNA having a center frequency at 1.83GHz. Through theory, simulation, 2292

Implementation of Power Transmission Lines to Field Programmable Gate Array ICs for Managing Signal and Power Integrity

Implementation of Power Transmission Lines to Field Programmable Gate Array ICs for Managing Signal and Power Integrity Implementation of Power Transmission Lines to Field Programmable Gate Array ICs for Managing Signal and Power Integrity Sang Kyu Kim, Satyanarayana Telikepalli, Sung Joo Park, Madhavan Swaminathan and

More information

Characterization of Alternate Power Distribution Methods for 3D Integration

Characterization of Alternate Power Distribution Methods for 3D Integration Characterization of Alternate Power Distribution Methods for 3D Integration David C. Zhang, Madhavan Swaminathan, David Keezer and Satyanarayana Telikepalli School of Electrical and Computer Engineering,

More information

Design Fundamentals by A. Ciccomancini Scogna, PhD Suppression of Simultaneous Switching Noise in Power and Ground Plane Pairs

Design Fundamentals by A. Ciccomancini Scogna, PhD Suppression of Simultaneous Switching Noise in Power and Ground Plane Pairs Design Fundamentals by A. Ciccomancini Scogna, PhD Suppression of Simultaneous Switching Noise in Power and Ground Plane Pairs Photographer: Janpietruszka Agency: Dreamstime.com 36 Conformity JUNE 2007

More information

Low Jitter, Low Emission Timing Solutions For High Speed Digital Systems. A Design Methodology

Low Jitter, Low Emission Timing Solutions For High Speed Digital Systems. A Design Methodology Low Jitter, Low Emission Timing Solutions For High Speed Digital Systems A Design Methodology The Challenges of High Speed Digital Clock Design In high speed applications, the faster the signal moves through

More information

Effect of Power Distribution Network Design on RF circuit performance for 900MHz RFID Reader

Effect of Power Distribution Network Design on RF circuit performance for 900MHz RFID Reader Effect of Power Distribution Network Design on RF circuit performance for 900MHz RFID Reader Youngwon Kim, Chunghyun Ryu, Jongbae Park, and Joungho Kim Terahertz Interconnection and Package Laboratory,

More information

Signal Integrity Design of TSV-Based 3D IC

Signal Integrity Design of TSV-Based 3D IC Signal Integrity Design of TSV-Based 3D IC October 24, 21 Joungho Kim at KAIST joungho@ee.kaist.ac.kr http://tera.kaist.ac.kr 1 Contents 1) Driving Forces of TSV based 3D IC 2) Signal Integrity Issues

More information

Transmission-Line-Based, Shared-Media On-Chip. Interconnects for Multi-Core Processors

Transmission-Line-Based, Shared-Media On-Chip. Interconnects for Multi-Core Processors Design for MOSIS Educational Program (Research) Transmission-Line-Based, Shared-Media On-Chip Interconnects for Multi-Core Processors Prepared by: Professor Hui Wu, Jianyun Hu, Berkehan Ciftcioglu, Jie

More information

Engineering the Power Delivery Network

Engineering the Power Delivery Network C HAPTER 1 Engineering the Power Delivery Network 1.1 What Is the Power Delivery Network (PDN) and Why Should I Care? The power delivery network consists of all the interconnects in the power supply path

More information

DDR4 memory interface: Solving PCB design challenges

DDR4 memory interface: Solving PCB design challenges DDR4 memory interface: Solving PCB design challenges Chang Fei Yee - July 23, 2014 Introduction DDR SDRAM technology has reached its 4th generation. The DDR4 SDRAM interface achieves a maximum data rate

More information

Microcircuit Electrical Issues

Microcircuit Electrical Issues Microcircuit Electrical Issues Distortion The frequency at which transmitted power has dropped to 50 percent of the injected power is called the "3 db" point and is used to define the bandwidth of the

More information

Keysight Technologies Signal Integrity Tips and Techniques Using TDR, VNA and Modeling

Keysight Technologies Signal Integrity Tips and Techniques Using TDR, VNA and Modeling Keysight Technologies Signal Integrity Tips and Techniques Using, VNA and Modeling Article Reprint This article first appeared in the March 216 edition of Microwave Journal. Reprinted with kind permission

More information

CORRELATION OF PDN IMPEDANCE WITH JITTER AND VOLTAGE MARGIN IN HIGH SPEED CHANNELS

CORRELATION OF PDN IMPEDANCE WITH JITTER AND VOLTAGE MARGIN IN HIGH SPEED CHANNELS CORRELATION OF PDN IMPEDANCE WITH JITTER AND VOLTAGE MARGIN IN HIGH SPEED CHANNELS A Thesis Presented to The Academic Faculty By Vishal Laddha In Partial Fulfillment of the Requirements for the Degree

More information

L AND S BAND TUNABLE FILTERS PROVIDE DRAMATIC IMPROVEMENTS IN TELEMETRY SYSTEMS

L AND S BAND TUNABLE FILTERS PROVIDE DRAMATIC IMPROVEMENTS IN TELEMETRY SYSTEMS L AND S BAND TUNABLE FILTERS PROVIDE DRAMATIC IMPROVEMENTS IN TELEMETRY SYSTEMS Item Type text; Proceedings Authors Wurth, Timothy J.; Rodzinak, Jason Publisher International Foundation for Telemetering

More information

CHAPTER 4 ULTRA WIDE BAND LOW NOISE AMPLIFIER DESIGN

CHAPTER 4 ULTRA WIDE BAND LOW NOISE AMPLIFIER DESIGN 93 CHAPTER 4 ULTRA WIDE BAND LOW NOISE AMPLIFIER DESIGN 4.1 INTRODUCTION Ultra Wide Band (UWB) system is capable of transmitting data over a wide spectrum of frequency bands with low power and high data

More information

A 6 : 1 UNEQUAL WILKINSON POWER DIVIDER WITH EBG CPW

A 6 : 1 UNEQUAL WILKINSON POWER DIVIDER WITH EBG CPW Progress In Electromagnetics Research Letters, Vol. 8, 151 159, 2009 A 6 : 1 UNEQUAL WILKINSON POWER DIVIDER WITH EBG CPW C.-P. Chang, C.-C. Su, S.-H. Hung, and Y.-H. Wang Institute of Microelectronics,

More information

Chapter 16 PCB Layout and Stackup

Chapter 16 PCB Layout and Stackup Chapter 16 PCB Layout and Stackup Electromagnetic Compatibility Engineering by Henry W. Ott Foreword The PCB represents the physical implementation of the schematic. The proper design and layout of a printed

More information

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver Arvin R. Shahani, Derek K. Shaeffer, Thomas H. Lee Stanford University, Stanford, CA At submicron channel lengths, CMOS is

More information

A 5-Gb/s 156-mW Transceiver with FFE/Analog Equalizer in 90-nm CMOS Technology Wang Xinghua a, Wang Zhengchen b, Gui Xiaoyan c,

A 5-Gb/s 156-mW Transceiver with FFE/Analog Equalizer in 90-nm CMOS Technology Wang Xinghua a, Wang Zhengchen b, Gui Xiaoyan c, 4th International Conference on Computer, Mechatronics, Control and Electronic Engineering (ICCMCEE 2015) A 5-Gb/s 156-mW Transceiver with FFE/Analog Equalizer in 90-nm CMOS Technology Wang Xinghua a,

More information

Test & Calibration Benefits from a New Precision RF/Microwave Calibrator

Test & Calibration Benefits from a New Precision RF/Microwave Calibrator Test & Calibration Benefits from a New Precision RF/Microwave Calibrator Topics: RF & Microwave calibration signal requirements Design philosophy and architecture of the new RF Calibrator. Spectrum analyzer

More information

800Mbps LVDS/LVPECL-to-LVDS 2 x 2 Crosspoint Switch

800Mbps LVDS/LVPECL-to-LVDS 2 x 2 Crosspoint Switch 19-2003; Rev 0; 4/01 General Description The 2 x 2 crosspoint switch is designed for applications requiring high speed, low power, and lownoise signal distribution. This device includes two LVDS/LVPECL

More information

Transmit Power Extension Power Combiners/Splitters Figure 1 Figure 2

Transmit Power Extension Power Combiners/Splitters Figure 1 Figure 2 May 2010 Increasing the Maximum Transmit Power Rating of a Power Amplifier Using a Power Combining Technique By Tom Valencia and Stephane Wloczysiak, Skyworks Solutions, Inc. Abstract Today s broadband

More information

Optimization of Wafer Level Test Hardware using Signal Integrity Simulation

Optimization of Wafer Level Test Hardware using Signal Integrity Simulation June 7-10, 2009 San Diego, CA Optimization of Wafer Level Test Hardware using Signal Integrity Simulation Jason Mroczkowski Ryan Satrom Agenda Industry Drivers Wafer Scale Test Interface Simulation Simulation

More information

Miniaturized Wilkinson Power Divider with nth Harmonic Suppression using Front Coupled Tapered CMRC

Miniaturized Wilkinson Power Divider with nth Harmonic Suppression using Front Coupled Tapered CMRC ACES JOURNAL, VOL. 28, NO. 3, MARCH 213 221 Miniaturized Wilkinson Power Divider with nth Harmonic Suppression using Front Coupled Tapered CMRC Mohsen Hayati 1,2, Saeed Roshani 1,3, and Sobhan Roshani

More information

A Folded SIR Cross Coupled WLAN Dual-Band Filter

A Folded SIR Cross Coupled WLAN Dual-Band Filter Progress In Electromagnetics Research Letters, Vol. 45, 115 119, 2014 A Folded SIR Cross Coupled WLAN Dual-Band Filter Zi Jian Su *, Xi Chen, Long Li, Bian Wu, and Chang-Hong Liang Abstract A compact cross-coupled

More information

ASHARED power supply is commonly used for digital and. Virtual Ground Fence for GHz Power Filtering on Printed Circuit Boards

ASHARED power supply is commonly used for digital and. Virtual Ground Fence for GHz Power Filtering on Printed Circuit Boards IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 55, NO. 6, DECEMBER 2013 1277 Virtual Ground Fence for GHz Power Filtering on Printed Circuit Boards A. Ege Engin, Member, IEEE, and Jesse Bowman

More information

Design and Implementation of an Ultra-high Speed Data Acquisition System for HRRATI

Design and Implementation of an Ultra-high Speed Data Acquisition System for HRRATI Design and Implementation of an Ultra-high Speed Data Acquisition System for HRRATI Bi Xin bixin@sia.cn Du Jinsong jsdu@sia.cn Fan Wei fanwei@sia.cn Abstract - Data Acquisition System (DAS) is a fundamental

More information

How to anticipate Signal Integrity Issues: Improve my Channel Simulation by using Electromagnetic based model

How to anticipate Signal Integrity Issues: Improve my Channel Simulation by using Electromagnetic based model How to anticipate Signal Integrity Issues: Improve my Channel Simulation by using Electromagnetic based model HSD Strategic Intent Provide the industry s premier HSD EDA software. Integration of premier

More information

Electromagnetic Bandgap Design for Power Distribution Network Noise Isolation in the Glass Interposer

Electromagnetic Bandgap Design for Power Distribution Network Noise Isolation in the Glass Interposer 2016 IEEE 66th Electronic Components and Technology Conference Electromagnetic Bandgap Design for Power Distribution Network Noise Isolation in the Glass Interposer Youngwoo Kim, Jinwook Song, Subin Kim

More information

SIZE REDUCTION AND HARMONIC SUPPRESSION OF RAT-RACE HYBRID COUPLER USING DEFECTED MICROSTRIP STRUCTURE

SIZE REDUCTION AND HARMONIC SUPPRESSION OF RAT-RACE HYBRID COUPLER USING DEFECTED MICROSTRIP STRUCTURE Progress In Electromagnetics Research Letters, Vol. 26, 87 96, 211 SIZE REDUCTION AND HARMONIC SUPPRESSION OF RAT-RACE HYBRID COUPLER USING DEFECTED MICROSTRIP STRUCTURE M. Kazerooni * and M. Aghalari

More information

Taking the Mystery out of Signal Integrity

Taking the Mystery out of Signal Integrity Slide - 1 Jan 2002 Taking the Mystery out of Signal Integrity Dr. Eric Bogatin, CTO, GigaTest Labs Signal Integrity Engineering and Training 134 S. Wolfe Rd Sunnyvale, CA 94086 408-524-2700 www.gigatest.com

More information

/14/$ IEEE 470

/14/$ IEEE 470 Analysis of Power Distribution Network in Glass, Silicon Interposer and PCB Youngwoo Kim, Kiyeong Kim Jonghyun Cho, and Joungho Kim Department of Electrical Engineering, KAIST Daejeon, South Korea youngwoo@kaist.ac.kr

More information

Simulation of a Bandstop Filter with Two Open Stubs and Asymmetrical Double Spurlines

Simulation of a Bandstop Filter with Two Open Stubs and Asymmetrical Double Spurlines Simulation of a Bandstop Filter with Two Open Stubs and Asymmetrical Double Spurlines S. Yang Assistant professor, Department of EE and CS, Alabama A & M University, Huntsville, Alabama, USA ABSTRACT:

More information

Measurements 2: Network Analysis

Measurements 2: Network Analysis Measurements 2: Network Analysis Fritz Caspers CAS, Aarhus, June 2010 Contents Scalar network analysis Vector network analysis Early concepts Modern instrumentation Calibration methods Time domain (synthetic

More information

New Microstrip-to-CPS Transition for Millimeter-wave Application

New Microstrip-to-CPS Transition for Millimeter-wave Application New Microstrip-to-CPS Transition for Millimeter-wave Application Kyu Hwan Han 1,, Benjamin Lacroix, John Papapolymerou and Madhavan Swaminathan 1, 1 Interconnect and Packaging Center (IPC), SRC Center

More information

A NOVEL COUPLING METHOD TO DESIGN A MI- CROSTRIP BANDPASS FILER WITH A WIDE REJEC- TION BAND

A NOVEL COUPLING METHOD TO DESIGN A MI- CROSTRIP BANDPASS FILER WITH A WIDE REJEC- TION BAND Progress In Electromagnetics Research C, Vol. 14, 45 52, 2010 A NOVEL COUPLING METHOD TO DESIGN A MI- CROSTRIP BANDPASS FILER WITH A WIDE REJEC- TION BAND R.-Y. Yang, J.-S. Lin, and H.-S. Li Department

More information

Frequently Asked EMC Questions (and Answers)

Frequently Asked EMC Questions (and Answers) Frequently Asked EMC Questions (and Answers) Elya B. Joffe President Elect IEEE EMC Society e-mail: eb.joffe@ieee.org December 2, 2006 1 I think I know what the problem is 2 Top 10 EMC Questions 10, 9

More information

Data Sheet. Description. Features. Transmitter. Applications. Receiver. Package

Data Sheet. Description. Features. Transmitter. Applications. Receiver. Package AFBR-59F1Z 125MBd Compact 650 nm Transceiver for Data Communication over Polymer Optical Fiber (POF) cables with a bare fiber locking system Data Sheet Description The Avago Technologies AFBR-59F1Z transceiver

More information

1.25Gbps/2.5Gbps, +3V to +5.5V, Low-Noise Transimpedance Preamplifiers for LANs

1.25Gbps/2.5Gbps, +3V to +5.5V, Low-Noise Transimpedance Preamplifiers for LANs 19-4796; Rev 1; 6/00 EVALUATION KIT AVAILABLE 1.25Gbps/2.5Gbps, +3V to +5.5V, Low-Noise General Description The is a transimpedance preamplifier for 1.25Gbps local area network (LAN) fiber optic receivers.

More information

LVDS Owner s Manual. A General Design Guide for National s Low Voltage Differential Signaling (LVDS) Products. Moving Info with LVDS

LVDS Owner s Manual. A General Design Guide for National s Low Voltage Differential Signaling (LVDS) Products. Moving Info with LVDS LVDS Owner s Manual A General Design Guide for National s Low Voltage Differential Signaling (LVDS) Products Moving Info with LVDS Revision 2.0 January 2000 LVDS Evaluation Boards Chapter 6 6.0.0 LVDS

More information

Electrical Characteristics Analysis and Comparison between Through Silicon Via(TSV) and Through Glass Via(TGV)

Electrical Characteristics Analysis and Comparison between Through Silicon Via(TSV) and Through Glass Via(TGV) Electrical Characteristics Analysis and Comparison between Through Silicon Via(TSV) and Through Glass Via(TGV) Jihye Kim, Insu Hwang, Youngwoo Kim, Heegon Kim and Joungho Kim Department of Electrical Engineering

More information

AN increasing number of video and communication applications

AN increasing number of video and communication applications 1470 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 32, NO. 9, SEPTEMBER 1997 A Low-Power, High-Speed, Current-Feedback Op-Amp with a Novel Class AB High Current Output Stage Jim Bales Abstract A complementary

More information

LVDS Flow Through Evaluation Boards. LVDS47/48EVK Revision 1.0

LVDS Flow Through Evaluation Boards. LVDS47/48EVK Revision 1.0 LVDS Flow Through Evaluation Boards LVDS47/48EVK Revision 1.0 January 2000 6.0.0 LVDS Flow Through Evaluation Boards 6.1.0 The Flow Through LVDS Evaluation Board The Flow Through LVDS Evaluation Board

More information

A 1-W GaAs Class-E Power Amplifier with an FBAR Filter Embedded in the Output Network

A 1-W GaAs Class-E Power Amplifier with an FBAR Filter Embedded in the Output Network A 1-W GaAs Class-E Power Amplifier with an FBAR Filter Embedded in the Output Network Kyle Holzer and Jeffrey S. Walling University of Utah PERFIC Lab, Salt Lake City, UT 84112, USA Abstract Integration

More information

Chapter 6. Case Study: 2.4-GHz Direct Conversion Receiver. 6.1 Receiver Front-End Design

Chapter 6. Case Study: 2.4-GHz Direct Conversion Receiver. 6.1 Receiver Front-End Design Chapter 6 Case Study: 2.4-GHz Direct Conversion Receiver The chapter presents a 0.25-µm CMOS receiver front-end designed for 2.4-GHz direct conversion RF transceiver and demonstrates the necessity and

More information

Research Article A Parallel-Strip Balun for Wideband Frequency Doubler

Research Article A Parallel-Strip Balun for Wideband Frequency Doubler Microwave Science and Technology Volume 213, Article ID 8929, 4 pages http://dx.doi.org/1.11/213/8929 Research Article A Parallel-Strip Balun for Wideband Frequency Doubler Leung Chiu and Quan Xue Department

More information

Are Power Planes Necessary for High Speed Signaling?

Are Power Planes Necessary for High Speed Signaling? DesignCon 2012 Are Power Planes Necessary for High Speed Signaling? Suzanne L. Huh, Intel Corporation [suzanne.l.huh@intel.com] Madhavan Swaminathan, Georgia Institute of Technology [madhavan.swaminathan@ece.gatech.edu]

More information

High Speed Design Issues and Jitter Estimation Techniques. Jai Narayan Tripathi

High Speed Design Issues and Jitter Estimation Techniques. Jai Narayan Tripathi High Speed Design Issues and Jitter Estimation Techniques Jai Narayan Tripathi (jainarayan.tripathi@st.com) Outline Part 1 High-speed Design Issues Signal Integrity Power Integrity Jitter Power Delivery

More information

ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.8

ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.8 ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.8 10.8 10Gb/s Limiting Amplifier and Laser/Modulator Driver in 0.18µm CMOS Technology Sherif Galal, Behzad Razavi Electrical Engineering

More information

PVD5870R. IQ Demodulator/ Modulator IQ Demodulator/ Modulator

PVD5870R. IQ Demodulator/ Modulator IQ Demodulator/ Modulator PVD5870R IQ Demodulator/ Modulator IQ Demodulator/ Modulator The PVD5870R is a direct conversion quadrature demodulator designed for communication systems requiring The PVD5870R is a direct conversion

More information

Technical Article A DIRECT QUADRATURE MODULATOR IC FOR 0.9 TO 2.5 GHZ WIRELESS SYSTEMS

Technical Article A DIRECT QUADRATURE MODULATOR IC FOR 0.9 TO 2.5 GHZ WIRELESS SYSTEMS Introduction As wireless system designs have moved from carrier frequencies at approximately 9 MHz to wider bandwidth applications like Personal Communication System (PCS) phones at 1.8 GHz and wireless

More information

MP W Mono Class D Low-EMI High- Efficiency Audio Amplifier. Application Note

MP W Mono Class D Low-EMI High- Efficiency Audio Amplifier. Application Note The Future of Analog IC Technology AN29 MP172-2.7W Mono Class D Low-EMI High-Efficiency Audio Amplifier MP172 2.7W Mono Class D Low-EMI High- Efficiency Audio Amplifier Application Note Prepared by Jinyan

More information

Compact Microstrip Dual-Band Quadrature Hybrid Coupler for Mobile Bands

Compact Microstrip Dual-Band Quadrature Hybrid Coupler for Mobile Bands Compact Microstrip Dual-Band Quadrature Hybrid Coupler for Mobile Bands Vamsi Krishna Velidi, Mrinal Kanti Mandal, Subrata Sanyal, and Amitabha Bhattacharya Department of Electronics and Electrical Communications

More information

Enhanced Couplings in Broadband Planar Filters with Defected Ground Structures

Enhanced Couplings in Broadband Planar Filters with Defected Ground Structures ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 10, Number 2, 2007, 199 212 Enhanced Couplings in Broadband Planar Filters with Defected Ground Structures N. MILITARU 1, M.G. BANCIU 2, G.

More information

The water-bed and the leaky bucket

The water-bed and the leaky bucket The water-bed and the leaky bucket Tim Williams Elmac Services Wareham, UK timw@elmac.co.uk Abstract The common situation of EMC mitigation measures having the opposite effect from what was intended, is

More information

Design of UWB Bandpass Filter with WLAN Band Rejection by DMS in Stub Loaded Microstrip Highpass Filter

Design of UWB Bandpass Filter with WLAN Band Rejection by DMS in Stub Loaded Microstrip Highpass Filter Design of UWB Bandpass Filter with WLAN Band Rejection by DMS in Stub Loaded Microstrip Highpass Filter Pratik Mondal 1, Hiranmoy Dey *2, Arabinda Roy 3, Susanta Kumar Parui 4 Department of Electronics

More information

Relationship Between Signal Integrity and EMC

Relationship Between Signal Integrity and EMC Relationship Between Signal Integrity and EMC Presented by Hasnain Syed Solectron USA, Inc. RTP, North Carolina Email: HasnainSyed@solectron.com 06/05/2007 Hasnain Syed 1 What is Signal Integrity (SI)?

More information

Common myths, fallacies and misconceptions in Electromagnetic Compatibility and their correction.

Common myths, fallacies and misconceptions in Electromagnetic Compatibility and their correction. Common myths, fallacies and misconceptions in Electromagnetic Compatibility and their correction. D. A. Weston EMC Consulting Inc 22-3-2010 These are some of the commonly held beliefs about EMC which are

More information

HARMONIC SUPPRESSION OF PARALLEL COUPLED MICROSTRIP LINE BANDPASS FILTER USING CSRR

HARMONIC SUPPRESSION OF PARALLEL COUPLED MICROSTRIP LINE BANDPASS FILTER USING CSRR Progress In Electromagnetics Research Letters, Vol. 7, 193 201, 2009 HARMONIC SUPPRESSION OF PARALLEL COUPLED MICROSTRIP LINE BANDPASS FILTER USING CSRR S. S. Karthikeyan and R. S. Kshetrimayum Department

More information

CMOS is Different: PCB Design for Both Low Noise and Low EMI

CMOS is Different: PCB Design for Both Low Noise and Low EMI CMOS is Different: PCB Design for Both Low Noise and Low EMI Author : Earl McCune 09/17/2013 Earl McCune, RF Communications Consulting ABSTRACT Achieving low power supply noise does not automatically assure

More information

Low-power 2.5 Gbps VCSEL driver in 0.5 µm CMOS technology

Low-power 2.5 Gbps VCSEL driver in 0.5 µm CMOS technology Low-power 2.5 Gbps VCSEL driver in 0.5 µm CMOS technology Bindu Madhavan and A. F. J. Levi Department of Electrical Engineering University of Southern California Los Angeles, California 90089-1111 Indexing

More information

Characterization and modelling of EMI susceptibility in integrated circuits at high frequency

Characterization and modelling of EMI susceptibility in integrated circuits at high frequency Characterization and modelling of EMI susceptibility in integrated circuits at high frequency Ignacio Gil* and Raúl Fernández-García Department of Electronic Engineering UPC. Barcelona Tech Colom 1, 08222

More information

HV739 ±100V 3.0A Ultrasound Pulser Demo Board

HV739 ±100V 3.0A Ultrasound Pulser Demo Board HV79 ±00V.0A Ultrasound Pulser Demo Board HV79DB Introduction The HV79 is a monolithic single channel, high-speed, high voltage, ultrasound transmitter pulser. This integrated, high performance circuit

More information

PART. Maxim Integrated Products 1

PART. Maxim Integrated Products 1 19-1999; Rev 4; 7/04 3.2Gbps Adaptive Equalizer General Description The is a +3.3V adaptive cable equalizer designed for coaxial and twin-axial cable point-to-point communications applications. The equalizer

More information

Output Filtering & Electromagnetic Noise Reduction

Output Filtering & Electromagnetic Noise Reduction Output Filtering & Electromagnetic Noise Reduction Application Note Assignment 14 November 2014 Stanley Karas Abstract The motivation of this application note is to both review what is meant by electromagnetic

More information

How Long is Too Long? A Via Stub Electrical Performance Study

How Long is Too Long? A Via Stub Electrical Performance Study How Long is Too Long? A Via Stub Electrical Performance Study Michael Rowlands, Endicott Interconnect Michael.rowlands@eitny.com, 607.755.5143 Jianzhuang Huang, Endicott Interconnect 1 Abstract As signal

More information

ECE 497 JS Lecture - 22 Timing & Signaling

ECE 497 JS Lecture - 22 Timing & Signaling ECE 497 JS Lecture - 22 Timing & Signaling Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 Announcements - Signaling Techniques (4/27) - Signaling

More information

An UHF Wireless Power Harvesting System Analysis and Design

An UHF Wireless Power Harvesting System Analysis and Design Int. J. Emerg. Sci., 1(4), 625-634, December 2011 ISSN: 2222-4254 IJES An UHF Wireless Power Harvesting System Analysis and Design Nuno Amaro, Stanimir Valtchev Departamento Engenharia Electrotécnica,

More information

QUASI-ELLIPTIC MICROSTRIP BANDSTOP FILTER USING TAP COUPLED OPEN-LOOP RESONATORS

QUASI-ELLIPTIC MICROSTRIP BANDSTOP FILTER USING TAP COUPLED OPEN-LOOP RESONATORS Progress In Electromagnetics Research C, Vol. 35, 1 11, 2013 QUASI-ELLIPTIC MICROSTRIP BANDSTOP FILTER USING TAP COUPLED OPEN-LOOP RESONATORS Kenneth S. K. Yeo * and Punna Vijaykumar School of Architecture,

More information

LM MHz Video Amplifier System

LM MHz Video Amplifier System LM1202 230 MHz Video Amplifier System General Description The LM1202 is a very high frequency video amplifier system intended for use in high resolution monochrome or RGB color monitor applications In

More information

A Varactor-tunable Filter with Constant Bandwidth and Loss Compensation

A Varactor-tunable Filter with Constant Bandwidth and Loss Compensation A Varactor-tunable Filter with Constant Bandwidth and Loss Compensation April 6, 2... Page 1 of 19 April 2007 Issue: Technical Feature A Varactor-tunable Filter with Constant Bandwidth and Loss Compensation

More information

Analysis of RF transceivers used in automotive

Analysis of RF transceivers used in automotive Scientific Bulletin of Politehnica University Timisoara TRANSACTIONS on ELECTRONICS and COMMUNICATIONS Volume 60(74), Issue, 0 Analysis of RF transceivers used in automotive Camelia Loredana Ţeicu Abstract

More information

Predicting and Controlling Common Mode Noise from High Speed Differential Signals

Predicting and Controlling Common Mode Noise from High Speed Differential Signals Predicting and Controlling Common Mode Noise from High Speed Differential Signals Bruce Archambeault, Ph.D. IEEE Fellow, inarte Certified Master EMC Design Engineer, Missouri University of Science & Technology

More information

Features and Technical Specifications

Features and Technical Specifications Features and Technical Specifications PRODU C T SUM M AR Y The HL9404 is a signal splitter and combiner that offers industry-best amplitude and phase match over a bandwidth of 500 khz to 40 GHz (-3 db).

More information

LVTTL/LVCMOS DATA INPUT 100Ω SHIELDED TWISTED CABLE OR MICROSTRIP PC BOARD TRACES. Maxim Integrated Products 1

LVTTL/LVCMOS DATA INPUT 100Ω SHIELDED TWISTED CABLE OR MICROSTRIP PC BOARD TRACES. Maxim Integrated Products 1 19-1991; Rev ; 4/1 EVALUATION KIT AVAILABLE General Description The quad low-voltage differential signaling (LVDS) line driver is ideal for applications requiring high data rates, low power, and low noise.

More information

/$ IEEE

/$ IEEE IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 12, DECEMBER 2006 4209 A Systematic Design to Suppress Wideband Ground Bounce Noise in High-Speed Circuits by Electromagnetic-Bandgap-Enhanced

More information

Design and Fabrication of Transmission line based Wideband band pass filter

Design and Fabrication of Transmission line based Wideband band pass filter Available online at www.sciencedirect.com Procedia Engineering 30 (2012 ) 646 653 International Conference on Communication Technology and System Design 2011 Design and Fabrication of Transmission line

More information

X. Wu Department of Information and Electronic Engineering Zhejiang University Hangzhou , China

X. Wu Department of Information and Electronic Engineering Zhejiang University Hangzhou , China Progress In Electromagnetics Research Letters, Vol. 17, 181 189, 21 A MINIATURIZED BRANCH-LINE COUPLER WITH WIDEBAND HARMONICS SUPPRESSION B. Li Ministerial Key Laboratory of JGMT Nanjing University of

More information

Bandpass-Response Power Divider with High Isolation

Bandpass-Response Power Divider with High Isolation Progress In Electromagnetics Research Letters, Vol. 46, 43 48, 2014 Bandpass-Response Power Divider with High Isolation Long Xiao *, Hao Peng, and Tao Yang Abstract A novel wideband multilayer power divider

More information

Signal Technologies 1

Signal Technologies 1 Signal Technologies 1 Gunning Transceiver Logic (GTL) - evolution Evolved from BTL, the backplane transceiver logic, which in turn evolved from ECL (emitter-coupled logic) Setup of an open collector bus

More information

Design and Simulation Study of Active Balun Circuits for WiMAX Applications

Design and Simulation Study of Active Balun Circuits for WiMAX Applications Design and Simulation Study of Circuits for WiMAX Applications Frederick Ray I. Gomez 1,2,*, John Richard E. Hizon 2 and Maria Theresa G. De Leon 2 1 New Product Introduction Department, Back-End Manufacturing

More information

On the Development of Tunable Microwave Devices for Frequency Agile Applications

On the Development of Tunable Microwave Devices for Frequency Agile Applications PIERS ONLINE, VOL. 4, NO. 7, 28 726 On the Development of Tunable Microwave Devices for Frequency Agile Applications Jia-Sheng Hong and Young-Hoon Chun Department of Electrical, Electronic and Computer

More information

Broadband Substrate to Substrate Interconnection

Broadband Substrate to Substrate Interconnection Progress In Electromagnetics Research C, Vol. 59, 143 147, 2015 Broadband Substrate to Substrate Interconnection Bo Zhou *, Chonghu Cheng, Xingzhi Wang, Zixuan Wang, and Shanwen Hu Abstract A broadband

More information

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2012

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2012 ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2012 Lecture 5: Termination, TX Driver, & Multiplexer Circuits Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements

More information

THE TREND toward implementing systems with low

THE TREND toward implementing systems with low 724 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 30, NO. 7, JULY 1995 Design of a 100-MHz 10-mW 3-V Sample-and-Hold Amplifier in Digital Bipolar Technology Behzad Razavi, Member, IEEE Abstract This paper

More information

Interference Rejection

Interference Rejection American Journal of Engineering Research (AJER) 2014 American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-03, Issue-10, pp-160-168 www.ajer.org Research Paper Open

More information

EUA2011A. Low EMI, Ultra-Low Distortion, 2.5-W Mono Filterless Class-D Audio Power Amplifier DESCRIPTION FEATURES APPLICATIONS

EUA2011A. Low EMI, Ultra-Low Distortion, 2.5-W Mono Filterless Class-D Audio Power Amplifier DESCRIPTION FEATURES APPLICATIONS Low EMI, Ultra-Low Distortion, 2.5-W Mono Filterless Class-D Audio Power Amplifier DESCRIPTION The EUA2011A is a high efficiency, 2.5W mono class-d audio power amplifier. A new developed filterless PWM

More information

High Voltage Charge Pumps Deliver Low EMI

High Voltage Charge Pumps Deliver Low EMI High Voltage Charge Pumps Deliver Low EMI By Tony Armstrong Director of Product Marketing Power Products Linear Technology Corporation (tarmstrong@linear.com) Background Switching regulators are a popular

More information

Industry s First 0.8µV RMS Noise LDO Has 79dB Power Supply Rejection Ratio at 1MHz Amit Patel

Industry s First 0.8µV RMS Noise LDO Has 79dB Power Supply Rejection Ratio at 1MHz Amit Patel April 15 Volume 25 Number 1 I N T H I S I S S U E patent-pending boost-buck ED driver topology 8 I 2 C programmable supervisors with EEPROM 12 Industry s First 0.8µV RMS Noise DO Has 79dB Power Supply

More information

EMI. Chris Herrick. Applications Engineer

EMI. Chris Herrick. Applications Engineer Fundamentals of EMI Chris Herrick Ansoft Applications Engineer Three Basic Elements of EMC Conduction Coupling process EMI source Emission Space & Field Conductive Capacitive Inductive Radiative Low, Middle

More information

Single-Ended to Differential Converter for Multiple-Stage Single-Ended Ring Oscillators

Single-Ended to Differential Converter for Multiple-Stage Single-Ended Ring Oscillators IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 1, JANUARY 2003 141 Single-Ended to Differential Converter for Multiple-Stage Single-Ended Ring Oscillators Yuping Toh, Member, IEEE, and John A. McNeill,

More information

PERFORMANCE AND ANALYSIS OF DIFFERENTIAL MODE NOISE SEPERATION FOR POWER SUPPLIES

PERFORMANCE AND ANALYSIS OF DIFFERENTIAL MODE NOISE SEPERATION FOR POWER SUPPLIES PERFORMANCE AND ANALYSIS OF DIFFERENTIAL MODE NOISE SEPERATION FOR POWER SUPPLIES 1 G.THIAGU, 2 Dr.R.DHANASEKARAN 1 Research Scholar, Sathayabama University, Chennai 2 Professor & Director-Research, Syed

More information

MICTOR. High-Speed Stacking Connector

MICTOR. High-Speed Stacking Connector MICTOR High-Speed Stacking Connector Electrical Performance Report for the 0.260" (6.6-mm) Stack Height Connector.......... Connector With Typical Footprint................... Connector in a System Report

More information

AFBR-59F2Z Data Sheet Description Features Applications Transmitter Receiver Package

AFBR-59F2Z Data Sheet Description Features Applications Transmitter Receiver Package AFBR-59F2Z 2MBd Compact 6nm Transceiver for Data communication over Polymer Optical Fiber (POF) cables with a bare fiber locking system Data Sheet Description The Avago Technologies AFBR-59F2Z transceiver

More information

Lecture 15: Introduction to Mixers

Lecture 15: Introduction to Mixers EECS 142 Lecture 15: Introduction to Mixers Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California, Berkeley EECS 142 Lecture

More information

Design and Matching of a 60-GHz Printed Antenna

Design and Matching of a 60-GHz Printed Antenna Application Example Design and Matching of a 60-GHz Printed Antenna Using NI AWR Software and AWR Connected for Optenni Figure 1: Patch antenna performance. Impedance matching of high-frequency components

More information

Investigation of the Double-Y Balun for Feeding Pulsed Antennas

Investigation of the Double-Y Balun for Feeding Pulsed Antennas Proceedings of the SPIE, Vol. 5089, April 2003 Investigation of the Double-Y Balun for Feeding Pulsed Antennas Jaikrishna B. Venkatesan a and Waymond R. Scott, Jr. b Georgia Institute of Technology Atlanta,

More information

Compact Microstrip UWB Power Divider with Dual Notched Bands Using Dual-Mode Resonator

Compact Microstrip UWB Power Divider with Dual Notched Bands Using Dual-Mode Resonator Progress In Electromagnetics Research Letters, Vol. 75, 39 45, 218 Compact Microstrip UWB Power Divider with Dual Notched Bands Using Dual-Mode Resonator Lihua Wu 1, Shanqing Wang 2,LuetaoLi 3, and Chengpei

More information

LVTTL/CMOS DATA INPUT 100Ω SHIELDED TWISTED CABLE OR MICROSTRIP PC BOARD TRACES. Maxim Integrated Products 1

LVTTL/CMOS DATA INPUT 100Ω SHIELDED TWISTED CABLE OR MICROSTRIP PC BOARD TRACES. Maxim Integrated Products 1 19-1927; Rev ; 2/1 Quad LVDS Line Driver with General Description The quad low-voltage differential signaling (LVDS) differential line driver is ideal for applications requiring high data rates, low power,

More information

BIRD 74 - recap. April 7, Minor revisions Jan. 22, 2009

BIRD 74 - recap. April 7, Minor revisions Jan. 22, 2009 BIRD 74 - recap April 7, 2003 Minor revisions Jan. 22, 2009 Please direct comments, questions to the author listed below: Guy de Burgh, EM Integrity mail to: gdeburgh@nc.rr.com (919) 457-6050 Copyright

More information