At the conclusion of this unit you should be able to accomplish the following with a 70% accuracy

Size: px
Start display at page:

Download "At the conclusion of this unit you should be able to accomplish the following with a 70% accuracy"

Transcription

1 7 Multiview Drawing OBJECTIVES At the conclusion of this unit you should be able to accomplish the following with a 70% accuracy 1. explain the importance of mulitview drawing as a communication tool far designers 2. explain the concept of multiview drawing through the use of the transparent box method 3. explain the concept of projection plans 4. use parallel projectors to develop mechanical drawings 5. use the three principle planes orthographic projection to develop mechanical drawing 5.1 frontal 5.2 horizontal 5.3 profile 6. use the six different view of a multiview drawing to develop mechanical drawing

2 Chapter 6 Multiview Drawing front 6.2 top 6.3 right side 6.4 left side 6.5 back 6.6 bottom 7. use three-view drawing to describe the physical shape of an abject 7.1 front 7.2 top 7.3 right wide 8. select the appropriate view(s) to describe the physical appearance of an object with the last amount of hidden lines 8.1 number of views 8.2 selecting of front view 9. apply the concept of paint numbering to the development of mulitview drawings 10. identify the type of plane and line in multiview drawings 11. apply the use of standard lines to multiview drawings 12. apply the rules of line conventions to multiview drawings 13. use standard techniques governing intersecting and overlapping lines in multiview drawing 14. center a multi view drawing 15. develop a three view drawing (given an isometric of an object or idea) based on line quality, correct scale, positioning, centering, and overall neatness of the drawing

3 3 Applied Geometry for Engineering Design General Information Many times pictorial drawings cannot give a full description of an object. Important details on a back, side or bottom surface may be hidden. A product cannot be manufactured without a completely detailed description of it. Because pictorial drawings usually cannot completely describe objects, the multiview drawing system is used to describe them. Multiview (mechanical drawing) is a system of representing three dimensional objects through the arrangement of separate two-dimensional views. These views are arranged in a standard manner, and the system used to construct them is called orthographic projection. If dimensions and specifications are noted on the multiview drawing, it is referred to as a working or detail drawing. The Transparent Box One way to explain and remember orthographic projection is through the use of a transparent box. The six sides of the transparent box are all two dimensional. Each side will provide two dimensions (width, height, or depth) of the three dimensional box. The front and back sides of the box provide the dimensions of width and height. The two sides of the box provide the dimensions of height and depth. And the top and bottom sides of the box provide the dimensions of width and depth. Now rename the front and back, sides, and the top and bottom of the box and call them projection planes. The front and back sides of the box will now be called and located on what is called the frontal projection plane. The two sides of the transparent box will now be renamed and located on what is called the profile plane. The top and bottom sides of the transparent box will now be called and located on what is called the horizontal plane. In each case the planes will contain the same two dimensions as the sides of the box which they replaced (see Figure 7.1). Now imagine that an object is placed within the transparent box. As you look into the box from the front you will see the front of the object through the side of the transparent box. If you were to draw the outline of the object on the side of the box it would be the same as projecting the outline of the object onto the frontal plane. This would give you the width and height of the object on the two dimensional frontal plane. This could be done to the back side of the box by projecting it onto the frontal plane of the transparent box. Each side of the box could be projected in a similar manner. The sides of the object would be traced (or projected) onto the sides (profile projection plane) of the transparent box

4 Chapter 6 Multiview Drawing 4 Figure 7.1 The orthographic transparent box.

5 5 Applied Geometry for Engineering Design and they would give you the dimensions of height and depth of the object. Finally, the top and bottom sides of the object could be traced (or projected) onto the top and bottom sides (horizontal plane) of the box and they would give you the dimensions of width and depth of the object (see Figure 7. 1). Now if the box is torn open and each side (or projection plane) is positioned on a flat surface, the different sides of the abject will describe all three dimensions of the object through separate two dimensional views. This is the basic concept of orthographic projection (sea Figure 7.1). Projection Planes There are three principle planes in orthographic projection: the frontal, profile and horizontal. Each projection plane of an object contains two views of the object. The frontal projection plane describes an object as it would appear if it were viewed from the front or from the back. Thus if a view of an object is from the front or back it is projected on the frontal plane. If a top or bottom view of an object is given then these views are located on the horizontal planes. And if a right or left side view of an object is given then these views are projected onto the profile projection plane. Any view located on a principle plane is called a principle view. Each principle view of an object will show two dimensions of the object (see Figure 7.2). Figure 7.2 The principle planes of orthographic projection.

6 Chapter 6 Multiview Drawing 6 Parallel Projection Each view of an object will be projected, with parallel projectors onto one of the principle projection planes. Parallel projection is the term given to the imaginary lines which are projected at ninety degrees from one side of an object and locate points on the imaginary projection plane. These points locate the outline of the object on the projection plane (see Figure 7.3). Figure 7.3 Parallel projectors. The Frontal Plane The front and back views of an object are projected onto the frontal plane; they are described by the dimensions of width and height (see figure 7.4). Figure 7.4 The frontal plane.

7 7 Applied Geometry for Engineering Design The Horizontal Plane The top and bottom views of an object are projected onto the horizontal plane. They are perpendicular to the frontal plane and are described by the dimensions of width and depth (see Figure 7.5). Figure 7.5 The horizontal plane. The Profile Plane The right and left-side views of an object are projected onto the profile plane. They are perpendicular to both the frontal and horizontal planes, and are described by the dimensions of height and depth (see Figure 7. 6). Figure 7.6 The horizontal plane.

8 Chapter 6 Multiview Drawing 8 The Six View Drawing The maximum number of views which can be located on the principle planes of an object is six. If you imagine an object located in the transparent box, there will be two views on the frontal plane, two views on the horizontal plane, and two views on the profile plane. When the transparent box is unfolded the top view will appear over the front view, the bottom view under the front view, the right-side view to the right of the front view, the left-side view to the left of the front view, and the back view to the left of the left-wide view. It is important that the views are located in this manner and that the projections from all views align both vertically and horizontally with the front view. This allows the dimensions of height, width, and depth to be shown commonly among the views, thus eliminating the need to repeat dimensions. This view arrangement is the standard arrangement used throughout much of the western world (see Figure 7. 7). This system of projection is ref erred to as 3rd angle projection. The system used in many European countries is called 1st angle projection and the arrangement of views may differ somewhat from the system presented here. Figure 7.7 The view drawing.

9 9 Applied Geometry for Engineering Design The Three view Drawing Although through the use of orthographic projection six views can be used to describe an object, most objects are commonly described through the use of the top, front, and right-side views. Many objects can be accurately described with three views since additional views will usually only duplicate information already supplied in one of the principle views ( see Figure 7. 8). Figure 7.8 The three view drawing. Many times an object can be described more accurately by using the front, top, And left-side views. If a left-hand view will describe an object more clearly then the left-side view should be used (see Figure 7.9). Figure 7.9 Use of the left-side view.

10 Chapter 6 Multiview Drawing 10 Some objects may require either more or fewer than three views to properly describe them. If this is true than use the number of views needed to properly describe the object. One and Two View Drawing Many objects can be described through the use of one or two view drawings. If two views completely describe an object than only use two views to describe the object. Cylindrical parts and parts with uniform thicknesses can be described by one view. However, the one view drawing must contain a note which describes the missing view or gives the thickness of the object (see Figure 7.10). Figure 7.10 The one and two view drawings. View Selection The criteria for selection of views in multiview drawing is based on the view which fully describes the object with the fewest number of hidden lines or shows the outside contour of the object in the most descriptive manner. This view will be used as the front view. All other views are than projected from the front view. In Figure 7.11 "A" would be used as the front view because it describes the outside contour of the object (see Figure 7.11).

11 11 Applied Geometry for Engineering Design Figure 7.11 Selection of the front view an object. The front, top, and side views are considered the standard views of many objects. A chair; for example, has a front, top, and side view which can be recognized by everyone. Thus the views describing the chair should properly correspond to the commonly recognized views of the chair (see Figure 7. 12). Figure 7.12 View selection of a chair. Point Numbering If you are having trouble interpreting a multiview drawing of an object a method of numbering points on the object may be helpful in the visualization of it. Figure

12 Chapter 6 Multiview Drawing is an example of point numbering. Each point is labeled on the isometric drawing. These points are then transferred to the multiview drawing. The points which are closest to you (5 & 6 on the front view of Figure 7. 13) will be labeled on the outside of the multiview drawing. The paints which are farthest away from you (7 & 8 on the front view of Figure 7. 13) will be labeled on the inside of the multiview drawing (see Figure 7. 13). Figure 7.13 Point Numbering. Lines and Planes In multiview drawing a line can appear as a point, true length, or foreshortened. A plane can appear as an edge, true size, or foreshortened (see Figure 7.14). Figure 7.14 Lines and planes in multiview drawing.

13 13 Applied Geometry for Engineering Design Standard Lines As mentioned in chapter two, different types of lines with varying line weights will represent various components of an object in multiview drawing. Depending on the paper, different leads are used to produce standard lines. Except for guidelines and construction lines which are drawn very light, all other lines are drawn black. Standard lines are Distinguished by their varying widths and configurations. Designers must know the difference between the standard lines and how to apply them to multiview drawings (see Figure 7. 15) Object Lines Object lines are the most important lines on a multiview drawing. They represent the actual outline of an object. Object lines like all other lines except for construction lines and guidelines should be drawn to appear as black as ink. Their width (.5mm) should be consistent throughout the drawing (see Figure 7.15). Figure 7.15 Standard lines or the alphabet of lines. Hidden Lines Hidden lines as their name implies represent surfaces which cannot be seen in a view of an object but must be shown to represent the object completely. Hidden

14 Chapter 6 Multiview Drawing 14 lines are drawn as short black dashes (118", 3mm) with a small break (1/16", 2mm) lef t between the dashes. Like object lines their width is.5mm (see Figure 7.15). Center lines Center lines are used to locate the center paints for circles and to describe axes of symmetry. They are drawn as alternate long ( 3/4", 19mm to 1 1/2", 38mm) and short (1/8", 3mm) dashes. The space between the dashes should be 1/16" (2mm). When the center paint of a circle is described by center lines the short dashes are intersected. The line weight of center lines is 0.3mm (See Figure 7.15). Although object, hidden, and center lines are the most commonly used type of lines, you should be able to recognize and draw all the other standard lines. These are drawn as they should appear on a drawing in Figure Line conventions Line conventions are the rules which govern overlapping and intersecting lines in multiview drawing. If two lines are located in the same position on a multiview drawing, object lines will take precedence overall other lines. Hidden lines will take precedence over all other lines, followed by center lines if the lines in the same location (see Figure 7.16). Figure 7.16 Line conventions in multiview drawing.

15 15 Applied Geometry for Engineering Design Intersecting lines It is common for lines to overlap and intersect each other in multiview drawings. When this occurs the overlapping and intersecting lines are drawn in a standard manner which is understood by all designers (see figure 7.17). Figure 7.17 Intersecting and overlapping lines techniques. Centering a Multiview Drawing There are many ways to center a multiview drawing. Depending on the number of dimensions and notes needed to explain an object more space may be needed between the views of the drawing. The method explained here will leave equal distance between the front and side views horizontally and the front and top views vertically in a multiview drawing. To center the front and side views of a multiview drawing: 1) determine the horizontal drawing space between the border lines, 2) add the width from the

16 Chapter 6 Multiview Drawing 16 front view to the depth of the side view, 3) subtract the combined distance of the front and side views as determined in step two from the drawing area between borders from step one, 4) divide t his number by three, 5) locate this distance in from either t he left or right hand border line. Use the same procedure to locate the bottom line of the front view or the top line of the top view. The intersection of vertical and horizontal centering lines will be the beginning point of construction for the multiview drawing (see Figure 7.18). Figure 7.18 Centering a multiview drawing. Summary A thorough understanding of orthographic projection and how to apply multiview drawing is essential to designers. Through the use of multiview drawing almost any object idea can be presented. But without the knowledge of how to properly use multiview drawings, the effectiveness of an idea or the description of an object may not be complete or expressed properly.

17 17 Applied Geometry for Engineering Design Technical terns 1. Frontal plane - the projection plane onto which the front and back views of an object are projected and describes the height and width of the object. 2. Horizontal plane - the projection plane onto which the top and bottom views of an object are projected and describes the width and depth of the object. 3. Line conventions - rules which exist concerning overlapping and intersecting lines in multiview drawing. 4. Multiview drawing - a system of representing three dimensional objects through the arrangement of separate two dimensional views of the object. 5. Orthographic projection - the representation of an object with the use of various two dimensional views which are projected onto a projection plane with the use of parallel projectors. 6. Parallel projectors - imaginary lines which are drawn perpendicular to an object and locate a view of the object onto a projection plane. 7. Perpendicular a line or plane which is located 90 degrees to another line or plane. 8. Profile plane - the projection plane onto which the right and left-side views of an object are projected and describes the height and depth of the object. 9. Projection - the concept of projecting or drawing one surface of an object onto a plane. 10. Projection plane - an imaginary plane or surface onto which a view of an object is drawn. 11. Six view drawing - an orthographic projection of an object which describes the object with the use of the front, top, right-side, left-side, back, and bottom views. 12. Standard lines - lines which are universal to the field of mechanical drawing, and represent various surfaces of objects.

18 Chapter 6 Multiview Drawing Three view drawing - an orthographic projection of an object which typically describes the object with the use of a front, top, and side view. 14. Working drawing - a mechanical drawing which contains dimensions and specification notes.

19 19 Applied Geometry for Engineering Design Assignment 5.1 DIRECTIONS: Place the letter from the surface of the object in the multiview drawing onto the corresponding circle on the isometric drawing. The assignment grade will be based upon the correct identification of the surfaces on the isometric drawing (objectives 3, 4, 5, 6, a, 10, & 11). DIRECTIONS: Place the letter from the surface of the object in the isometric drawing onto the carrespand1ng circle on the multiview drawing. The assignment grade will be based upon the correct identification of the surfaces on multiview drawing (objectives 3, 4, 5, 6, 8, 10, & 11).

20 Chapter 6 Multiview Drawing 20 Assignment 5.2 DIRECTIONS: Sketch in the missing lines needed to complete the three-view drawings. The assignment grate will be based upon correct completion of the multiview drawings (objectives 6, B, 10, & 11).

21 21 Applied Geometry for Engineering Design Assignment 5.3 DIRECTIONS: Sketch the correct amount of views needed to completely describe the given objects. The assignment grade will be based upon correct view selection, proper projection techniques, use of standard lines, line conventions and rules governing intersecting and overlapping lines (objectives 5, 6, 7, 9, 10, 11, 12, 13, & 14).

22 Chapter 6 Multiview Drawing 22 Assignment 5.4 DIRECTIONS: Select a scale and draw the following three view drawings by completing the missing view. The assignment grade will be based upon proper. Multiview drawing techniques, line quality, centering and overall neatness (objectives 6, 8, 10, 11, 12, 13, & 14).

ORTHOGRAPHIC PROJECTION

ORTHOGRAPHIC PROJECTION ORTHOGRAPHIC PROJECTION C H A P T E R S I X OBJECTIVES 1. Recognize and the symbol for third-angle projection. 2. List the six principal views of projection. 3. Understand which views show depth in a drawing

More information

ORTHOGRAPHIC PROJECTIONS. Ms. Sicola

ORTHOGRAPHIC PROJECTIONS. Ms. Sicola ORTHOGRAPHIC PROJECTIONS Ms. Sicola Objectives List the six principal views of projection Sketch the top, front and right-side views of an object with normal, inclined, and oblique surfaces Objectives

More information

CLASS views from detail on a grid paper. (use appropriate line types to show features) - Optional views. Turn in for grading on class 6 (06/04)

CLASS views from detail on a grid paper. (use appropriate line types to show features) - Optional views. Turn in for grading on class 6 (06/04) CLASS 4 Review: - Projections - Orthographic projections Lab: - 3 views from detail on a grid paper. (use appropriate line types to show features) - Optional views. Turn in for grading on class 6 (06/04)

More information

Multiview Drawing. Definition: Graphical representation of a 3- dimensional object on one plane (sheet of paper) using two or more views.

Multiview Drawing. Definition: Graphical representation of a 3- dimensional object on one plane (sheet of paper) using two or more views. Multiview Drawing Definition: Graphical representation of a 3- dimensional object on one plane (sheet of paper) using two or more views. Multiview Drawing Another name for multiview drawing is orthographic

More information

Multiviews and Auxiliary Views

Multiviews and Auxiliary Views Multiviews and Auxiliary Views Multiviews and Auxiliary Views Objectives Explain orthographic and multiview projection. Identifying the six principal views. Apply standard line practices to multiviews

More information

PROJECTIONS PARALLEL CONICAL PROJECTIONS PROJECTIONS OBLIQUE ORTHOGRAPHIC PROJECTIONS PROJECTIONS

PROJECTIONS PARALLEL CONICAL PROJECTIONS PROJECTIONS OBLIQUE ORTHOGRAPHIC PROJECTIONS PROJECTIONS PROJECTIONS CONICAL PROJECTIONS PARALLEL PROJECTIONS OBLIQUE PROJECTIONS ORTHOGRAPHIC PROJECTIONS ISOMETRIC MULTI-VIEW an object; The Description of Forms Behind every drawing of an object is space relationship

More information

ME 111: Engineering Drawing

ME 111: Engineering Drawing ME 111: Engineering Drawing Lecture 5 12-08-2011 Orthographic projection and Projection of Points Indian Institute of Technology Guwahati Guwahati 781039 1 Orthographic Projection A parallel projection

More information

ENGINEERING GRAPHICS ESSENTIALS

ENGINEERING GRAPHICS ESSENTIALS ENGINEERING GRAPHICS ESSENTIALS with AutoCAD 2012 Instruction Introduction to AutoCAD Engineering Graphics Principles Hand Sketching Text and Independent Learning CD Independent Learning CD: A Comprehensive

More information

ENGINEERING GRAPHICS ESSENTIALS

ENGINEERING GRAPHICS ESSENTIALS ENGINEERING GRAPHICS ESSENTIALS Text and Digital Learning KIRSTIE PLANTENBERG FIFTH EDITION SDC P U B L I C AT I O N S Better Textbooks. Lower Prices. www.sdcpublications.com ACCESS CODE UNIQUE CODE INSIDE

More information

Engineering Graphics Essentials with AutoCAD 2015 Instruction

Engineering Graphics Essentials with AutoCAD 2015 Instruction Kirstie Plantenberg Engineering Graphics Essentials with AutoCAD 2015 Instruction Text and Video Instruction Multimedia Disc SDC P U B L I C AT I O N S Better Textbooks. Lower Prices. www.sdcpublications.com

More information

UNIT 5a STANDARD ORTHOGRAPHIC VIEW DRAWINGS

UNIT 5a STANDARD ORTHOGRAPHIC VIEW DRAWINGS UNIT 5a STANDARD ORTHOGRAPHIC VIEW DRAWINGS 5.1 Introduction Orthographic views are 2D images of a 3D object obtained by viewing it from different orthogonal directions. Six principal views are possible

More information

ORTHOGRAPHIC PROJECTION

ORTHOGRAPHIC PROJECTION ORTHOGRAPHIC PROJECTION INTRODUCTION Any object has three dimensions, that is, length, width and thickness. A projection is defined as a representation of an object on a two dimensional plane. The projections

More information

Interpretation of Drawings. An Introduction to the Basic Concepts of Creating Technical Drawings

Interpretation of Drawings. An Introduction to the Basic Concepts of Creating Technical Drawings Interpretation of Drawings An Introduction to the Basic Concepts of Creating Technical Drawings Introduction In the design process drawings are the main way in which information about an object or product

More information

Add labels to the sides...

Add labels to the sides... Orthographic Drawings Orthographic Projection A projection on a plane, using lines perpendicular to the plane Graphic communications has many forms. Orthographics is one such form. It was developed as

More information

Copyrighted Material. Copyrighted Material. Copyrighted. Copyrighted. Material

Copyrighted Material. Copyrighted Material. Copyrighted. Copyrighted. Material Engineering Graphics ORTHOGRAPHIC PROJECTION People who work with drawings develop the ability to look at lines on paper or on a computer screen and "see" the shapes of the objects the lines represent.

More information

DMT113 Engineering Drawing. Chapter 3 Stretch System

DMT113 Engineering Drawing. Chapter 3 Stretch System DMT113 Engineering Drawing Chapter 3 Stretch System Contents Theory & Multiview Planes 6 Principle Views Multiview Sketching Technique & Perspective First & Third Angle Multiview Representations Theory

More information

Multiview Projection

Multiview Projection DFTG-1305 Technical Drafting Prof. Francis Ha Session 4 Multiview Projection (or Orthographic Projection) Reading: Geisecke s textbook: 14 th Ed. Chapter 5 p.162 15 th Ed. Chapter 6 p.232 Update: 17-0510

More information

Multi-View Drawing Review

Multi-View Drawing Review Multi-View Drawing Review Sacramento City College EDT 300/ENGR 306 EDT 300 / ENGR 306 - Chapter 5 1 Objectives Identify and select the various views of an object. Determine the number of views needed to

More information

Describing an Angle Bracket

Describing an Angle Bracket Basics of Drafting Describing an Angle Bracket Orthographic Projection Orthographic drawings represent three dimensional objects in three separate views arranged in a standard manner. Orthographic Views

More information

DFTG-1305 Technical Drafting Prof. Francis Ha

DFTG-1305 Technical Drafting Prof. Francis Ha DFTG-1305 Technical Drafting Prof. Francis Ha Session 4 Orthographic Projection (or Multiview Projection) Reading: Geisecke s textbook: 14 th Ed. Chapter 5 p.162 15 th Ed. Chapter 6 p.232 Update: 18-0205

More information

Student Name: Teacher: Date: District: Rowan. Assessment: 9_12 T and I IC61 - Drafting I Test 1. Description: Unit C - Sketching - Test 2.

Student Name: Teacher: Date: District: Rowan. Assessment: 9_12 T and I IC61 - Drafting I Test 1. Description: Unit C - Sketching - Test 2. Student Name: Teacher: Date: District: Rowan Assessment: 9_12 T and I IC61 - Drafting I Test 1 Description: Unit C - Sketching - Test 2 Form: 501 1. The most often used combination of views includes the:

More information

MULTIPLE CHOICE QUESTIONS - CHAPTER 6

MULTIPLE CHOICE QUESTIONS - CHAPTER 6 MULTIPLE CHOICE QUESTIONS - CHAPTER 6 1. The selection of the front view in executing a multiview drawing of an object is dependent upon the following factors: a. size and shape of the object and their

More information

Graphical Communication

Graphical Communication Chapter 9 Graphical Communication mmm Becoming a fully competent engineer is a long yet rewarding process that requires the acquisition of many diverse skills and a wide body of knowledge. Learning most

More information

Orthographic Projection

Orthographic Projection ENG3000 Orthographic Projection 1 Session Objectives To understand the basic principles of orthographic projection To be able to construct orthographic views of simple objects To visualize 3 D objects

More information

11/12/2015 CHAPTER 7. Axonometric Drawings (cont.) Axonometric Drawings (cont.) Isometric Projections (cont.) 1) Axonometric Drawings

11/12/2015 CHAPTER 7. Axonometric Drawings (cont.) Axonometric Drawings (cont.) Isometric Projections (cont.) 1) Axonometric Drawings CHAPTER 7 1) Axonometric Drawings 1) Introduction Isometric & Oblique Projection Axonometric projection is a parallel projection technique used to create a pictorial drawing of an object by rotating the

More information

Beginning Engineering Graphics 3 rd Week Lecture Notes Instructor: Edward N. Locke Topic: The Coordinate System, Types of Drawings and Orthographic

Beginning Engineering Graphics 3 rd Week Lecture Notes Instructor: Edward N. Locke Topic: The Coordinate System, Types of Drawings and Orthographic Beginning Engineering Graphics 3 rd Week Lecture Notes Instructor: Edward N. Locke Topic: The Coordinate System, Types of Drawings and Orthographic 1 st Subject: The Cartesian Coordinate System The Cartesian

More information

Engineering Graphics, Class 8 Orthographic Projection. Mohammad I. Kilani. Mechanical Engineering Department University of Jordan

Engineering Graphics, Class 8 Orthographic Projection. Mohammad I. Kilani. Mechanical Engineering Department University of Jordan Engineering Graphics, Class 8 Orthographic Projection Mohammad I. Kilani Mechanical Engineering Department University of Jordan Multi view drawings Multi view drawings provide accurate shape descriptions

More information

Technological Design Mr. Wadowski. Orthographic & Isometric Drawing Lesson

Technological Design Mr. Wadowski. Orthographic & Isometric Drawing Lesson Technological Design Mr. Wadowski Orthographic & Isometric Drawing Lesson TOPICS Working Drawings, Isometric Drawings & Orthographic Drawings Glass box concept Multiview projection Orthographic projection

More information

Lecture #4 MULTIVIEW PROJECTION RES 112E COMPUTER AIDED TECHNICAL DRAWING ITU

Lecture #4 MULTIVIEW PROJECTION RES 112E COMPUTER AIDED TECHNICAL DRAWING ITU Lecture #4 MULTIVIEW PROJECTION This week You will learn multi-view projection. The steps to follow are: Projections (ISO-E & ISO-A) Multi-view drawings Views (Basic,Auxiliary, Detailed etc.) Sketching

More information

Glass Box Projection. Gives you 6 sides to view of an object. 10/2/14 2

Glass Box Projection. Gives you 6 sides to view of an object. 10/2/14 2 2D Drawings Glass Box Projection Gives you 6 sides to view of an object. 10/2/14 2 We can simplify this for some objects to 3 views Glass Box Approach Glass Box Approach Glass Box Approach Glass Box Approach

More information

I B.TECH- I SEMESTER DEPARTMENT OF MECHANICAL ENGINEERING ENGINEERING DRAWING

I B.TECH- I SEMESTER DEPARTMENT OF MECHANICAL ENGINEERING ENGINEERING DRAWING I B.TECH- I SEMESTER DEPARTMENT OF MECHANICAL ENGINEERING ENGINEERING DRAWING ENGINEERING DRAWING UNIT-V DEFINITIONS: Axonometric Trimetric Dimetric Isometric It is a parallel technique used to create

More information

CE 100 Civil Engineering Drawing Sessional (Lab Manual)

CE 100 Civil Engineering Drawing Sessional (Lab Manual) CE 100 Civil Engineering Drawing Sessional (Lab Manual) Department of Civil Engineering Ahsanullah University of Science and Technology November, 2017 1 Preface This course is designed to provide civil

More information

Sketching in SciTech. What you need to know for graphic communication

Sketching in SciTech. What you need to know for graphic communication Sketching in SciTech What you need to know for graphic communication Sketching in your Logbook Use pencil Take up the WHOLE PAGE Label things 1. Proportion Each part of the sketch is the right size,

More information

Orthographic Projection

Orthographic Projection Orthographic Projection Why Orthographic Projection is used in technical drawing Orthographic projection is a method of producing a number of separate two-dimensional inter-related views, which are mutually

More information

Engineering Working Drawings Basics

Engineering Working Drawings Basics Engineering Working Drawings Basics Engineering graphics is an effective way of communicating technical ideas and it is an essential tool in engineering design where most of the design process is graphically

More information

Exploring 3D in Flash

Exploring 3D in Flash 1 Exploring 3D in Flash We live in a three-dimensional world. Objects and spaces have width, height, and depth. Various specialized immersive technologies such as special helmets, gloves, and 3D monitors

More information

Orthographic Drawing (Architectural Board Drafting)

Orthographic Drawing (Architectural Board Drafting) Design and Drafting Description In this activity, the teacher will introduce orthographic projection, in which a multi-view drawing shows how the sides of an object are related to each another. Students

More information

Bridge Course On Engineering Drawing for Mechanical Engineers

Bridge Course On Engineering Drawing for Mechanical Engineers G. PULLAIAH COLLEGE OF ENGINEERING AND TECHNOLOGY Accredited by NAAC with A Grade of UGC, Approved by AICTE, New Delhi Permanently Affiliated to JNTUA, Ananthapuramu (Recognized by UGC under 2(f) and 12(B)

More information

Chapter 5 Pictorial sketching

Chapter 5 Pictorial sketching Chapter 5 Pictorial sketching Contents Freehand sketching techniques Pictorial projections - Axonometric - Oblique Isometric projection vs isometric sketch Isometric sketch from an orthographic views Isometric

More information

ME1105 Engineering Drawing & Design

ME1105 Engineering Drawing & Design City University London Term 1 Assessment 2008/2009 School of Engineering and Mathematical Sciences ME1105 Engineering Drawing & Design Student Name:.., Group: Examination duration: Reading time: This paper

More information

technical drawing

technical drawing technical drawing school of art, design and architecture nust spring 2011 http://www.youtube.com/watch?v=q6mk9hpxwvo http://www.youtube.com/watch?v=bnu2gb7w4qs Objective abstraction - axonometric view

More information

Activity 2.4 Multi-view Sketching

Activity 2.4 Multi-view Sketching Activity 2.4 Multi-view Sketching Introduction It s a very common occurrence to see a product advertisement and think, I thought of an idea for something like that just a few months ago. People spend a

More information

Principles and Practice

Principles and Practice Principles and Practice An Integrated Approach to Engineering Graphics and AutoCAD 2011 Randy H. Shih Oregon Institute of Technology SDC PUBLICATIONS www.sdcpublications.com Schroff Development Corporation

More information

ME 113 Computer Aided Engineering Drawing

ME 113 Computer Aided Engineering Drawing ME 113 Computer Aided Engineering Drawing Orthographic Projection - Visualizing Solids and Multiview Drawings Asst.Prof.Dr.Turgut AKYÜREK Çankaya University, Ankara Visualizing Solids and Multiview Drawings

More information

ENGINEERING GRAPHICS 1E9

ENGINEERING GRAPHICS 1E9 Lecture 3 Monday, 15 December 2014 1 ENGINEERING GRAPHICS 1E9 Lecture 3: Isometric Projections Lecture 3 Monday, 15 December 2014 2 What is ISOMETRIC? It is a method of producing pictorial view of an object

More information

Auxiliary view KCEC1101

Auxiliary view KCEC1101 Auxiliary view KCEC1101 Introduction There are times when one of the six principal views will not completely describe an object. This is especially true when there are inclined or oblique planes or features

More information

Civil Engineering Drawing

Civil Engineering Drawing Civil Engineering Drawing Third Angle Projection In third angle projection, front view is always drawn at the bottom, top view just above the front view, and end view, is drawn on that side of the front

More information

Orthographic Projection 1

Orthographic Projection 1 Orthographic Projection 1 What Is Orthographic Projection? Basically it is a way a representing a 3D object on a piece of paper. This means we make the object becomes 2D. The difference between Orthographic

More information

GL5: Visualisation and reading drawings

GL5: Visualisation and reading drawings 436-105 Engineering Communications GL5:1 GL5: Visualisation and reading drawings Being able to both: represent a 3D object in multiview drawings interpret a multiview drawing to visualise a 3D object is

More information

Chapter 8. Technical Drawings

Chapter 8. Technical Drawings Chapter 8 Technical Drawing Technical Drawings Multiview drawings Also called three-view drawings Simple objects take three views Front, top, one side Title block Identifies who did the design Gives date,

More information

Perspective Notes 8 th Grade Art

Perspective Notes 8 th Grade Art Perspective Notes 8 th Grade Art Perspective Perspective is the representation of three-dimensional objects on a flat twodimensional surface. In perspective drawing, objects are made to recede in space

More information

Perspective Sketching

Perspective Sketching Perspective Sketching Perspective Drawings A perspective drawing offers the most realistic three-dimensional view of all the pictorial methods, because it portrays the object in a manner that is most similar

More information

ENGINEERING DRAWING. 1. Set squares are used to draw different angles. What is the angel a formed by the 45⁰ set square? Give a brief answer.

ENGINEERING DRAWING. 1. Set squares are used to draw different angles. What is the angel a formed by the 45⁰ set square? Give a brief answer. ENGINEERING DRAWING 1. Set squares are used to draw different angles. What is the angel a formed by the 45⁰ set square? Give a brief answer. 2. Which is the correct method of hatching a plane surface?

More information

Chapter 5 SECTIONS OF SOLIDS 5.1 INTRODUCTION

Chapter 5 SECTIONS OF SOLIDS 5.1 INTRODUCTION Chapter 5 SECTIONS OF SOLIDS 5.1 INTRODUCTION We have studied about the orthographic projections in which a 3 dimensional object is detailed in 2-dimension. These objects are simple. In engineering most

More information

ENGINEERING GRAPHICS 1.0 Introduction Engineering Graphics Drawing as an art Artist Graphic design Engineering graphics engineering drawing

ENGINEERING GRAPHICS 1.0 Introduction Engineering Graphics Drawing as an art Artist Graphic design Engineering graphics engineering drawing ENGINEERING GRAPHICS 1.0 Introduction Engineering is the profession in which the knowledge of mathematics and science gained by study, experience and practice is applied with good judgment to develop a

More information

Drawing Types & Construction Drawings

Drawing Types & Construction Drawings Drawing Types & Construction Drawings Building projects require several types of specialised drawings. This collection of drawings, known as a project set, includes: Location Plan Site Plan Floor Plan

More information

AutoCAD Tutor 2011 Support Docs

AutoCAD Tutor 2011 Support Docs AutoCAD Tutor 2011 Support Docs CHAPTER 1 CUSTOMIZING THE QUICK ACCESS TOOLBAR One of the advantages of the Quick Access Toolbar is the ability to display the AutoCAD commands that you frequently use.

More information

ENGINEERING DRAWING SKKK 1021 ISOMETRIC DRAWING. Agus Arsad, Azizul Azri Bin Mustaffa 10/2/2012 1

ENGINEERING DRAWING SKKK 1021 ISOMETRIC DRAWING. Agus Arsad, Azizul Azri Bin Mustaffa 10/2/2012 1 ENGINEERING DRAWING SKKK 1021 ISOMETRIC DRAWING Agus Arsad, Azizul Azri Bin Mustaffa 10/2/2012 1 LEARNING OUTCOMES ISOMETRIC DRAWING It is expected that students will be able to: Understand the significance

More information

1. When sketching long, narrow objects in OBLIQUE, distortion can be lessened by placing the long dimension along:

1. When sketching long, narrow objects in OBLIQUE, distortion can be lessened by placing the long dimension along: Draft Student Name: Teacher: District: Date: Wake County Test: 9_12 T and I IC61 - Drafting I Test 2 Description: 3.03 Apply 3D sketching Form: 501 1. When sketching long, narrow objects in OBLIQUE, distortion

More information

2009 Academic Challenge

2009 Academic Challenge 2009 Academic Challenge ENGINEERING GRAPHICS TEST SECTIONAL This Test Consists of 50 Questions Engineering Graphics Test Production Team Ryan Brown, Illinois State University Author/Team Leader Kevin Devine,

More information

CHAPTER 01 PRESENTATION OF TECHNICAL DRAWING. Prepared by: Sio Sreymean

CHAPTER 01 PRESENTATION OF TECHNICAL DRAWING. Prepared by: Sio Sreymean CHAPTER 01 PRESENTATION OF TECHNICAL DRAWING Prepared by: Sio Sreymean 2015-2016 Why do we need to study this subject? Effectiveness of Graphics Language 1. Try to write a description of this object. 2.

More information

Understanding Projection Systems

Understanding Projection Systems Understanding Projection Systems A Point: A point has no dimensions, a theoretical location that has neither length, width nor height. A point shows an exact location in space. It is important to understand

More information

Assignment 12 CAD Mechanical Part 2

Assignment 12 CAD Mechanical Part 2 Assignment 12 CAD Mechanical Part 2 Objectives In this assignment you will learn to apply the hidden lines, isometric snap, and ellipses commands along with commands previously learned.. General Hidden

More information

ISOMETRIC PROJECTION. Contents. Isometric Scale. Construction of Isometric Scale. Methods to draw isometric projections/isometric views

ISOMETRIC PROJECTION. Contents. Isometric Scale. Construction of Isometric Scale. Methods to draw isometric projections/isometric views ISOMETRIC PROJECTION Contents Introduction Principle of Isometric Projection Isometric Scale Construction of Isometric Scale Isometric View (Isometric Drawings) Methods to draw isometric projections/isometric

More information

Module 1H: Creating an Ellipse-Based Cylindrical Sheet-metal Lateral Piece

Module 1H: Creating an Ellipse-Based Cylindrical Sheet-metal Lateral Piece Inventor (10) Module 1H: 1H- 1 Module 1H: Creating an Ellipse-Based Cylindrical Sheet-metal Lateral Piece In this Module, we will learn how to create an ellipse-based cylindrical sheetmetal lateral piece

More information

Pictorial Drawings. DFTG-1305 Technical Drafting Prepared by Francis Ha, Instructor

Pictorial Drawings. DFTG-1305 Technical Drafting Prepared by Francis Ha, Instructor DFTG-1305 Technical Drafting Prepared by Francis Ha, Instructor Pictorial Drawings Geisecke s textbook for reference: 14 th Ed. Ch. 15: p. 601 Ch. 16: p. 620 15 th Ed. Ch. 14: p. 518 Ch. 15: p. 552 Update:

More information

Activity Multiview Sketches

Activity Multiview Sketches Activity 1.2.4 Multiview Sketches Introduction It s a very common occurrence to see a product advertisement and think, I thought of an idea for something like that just a few months ago. People spend a

More information

Activity Multiview Sketches

Activity Multiview Sketches Activity 1.2.4 Multiview Sketches Purpose It s a very common occurrence to see a product advertisement and think, I thought of an idea for something like that just a few months ago. People spend a lot

More information

Dimensioning. Dimensions: Are required on detail drawings. Provide the shape, size and location description: ASME Dimensioning Standards

Dimensioning. Dimensions: Are required on detail drawings. Provide the shape, size and location description: ASME Dimensioning Standards Dimensioning Dimensions: Are required on detail drawings. Provide the shape, size and location description: - Size dimensions - Location dimensions - Notes Local notes (specific notes) General notes ASME

More information

CAD Mechanical Design I

CAD Mechanical Design I EXAM INFORMATION Items 58 Points 85 Prerequisites NONE Course Length ONE SEMESTER Career Cluster ARCHITECTURE AND CONSTRUCTION MANUFACTURING SCIENCE, TECHNOLOGY, ENGINEERING AND MATHEMATICS Performance

More information

COPYRIGHTED MATERIAL. Contours and Form DEFINITION

COPYRIGHTED MATERIAL. Contours and Form DEFINITION 1 DEFINITION A clear understanding of what a contour represents is fundamental to the grading process. Technically defined, a contour is an imaginary line that connects all points of equal elevation above

More information

Technology Education Grades Drafting I

Technology Education Grades Drafting I Technology Education Grades 9-12 Drafting I 46 Grade Level: 9, 10, 11, 12 Technology Education, Grades 9-12 Drafting I Prerequisite: None Drafting I is an elective course which provides students the opportunity

More information

Engineering Drawing Lecture 5 PROJECTION THEORY

Engineering Drawing Lecture 5 PROJECTION THEORY University of Palestine College of Engineering & Urban Planning First Level Engineering Drawing Lecture 5 PROJECTION THEORY Lecturer: Eng. Eman Al.Swaity Eng.Heba hamad PART 1 PROJECTION METHOD TOPICS

More information

Chapter 5 Pictorial Projection

Chapter 5 Pictorial Projection Chapter 5 Pictorial Projection Objectives After completing this chapter, the students will be able to Create freehand sketches using the correct sketching techniques. Explainthe difference between axonometric

More information

Lecture 6 ( ): Theory of Multi-view Orthographic Projections

Lecture 6 ( ): Theory of Multi-view Orthographic Projections Lecture 6 (06.08.12): Theory of Multi-view Orthographic Projections Dr. Sharad Gokhale Civil Engineering Department, IIT Guwahati 208, M-Block, Academic Complex Email: sharadbg@iitg.ernet.in Telephone

More information

Isometric Drawings. Figure A 1

Isometric Drawings. Figure A 1 A Isometric Drawings ISOMETRIC BASICS Isometric drawings are a means of drawing an object in picture form for better clarifying the object s appearance. These types of drawings resemble a picture of an

More information

2. Line composed of closely and evenly spaced short dashes in a drawing represents

2. Line composed of closely and evenly spaced short dashes in a drawing represents 1. Hidden lines are drawn as (a) dashed narrow lines (b) dashed wide lines (c) long-dashed dotted wide line (d) long-dashed double dotted wide line Ans: (a) 2. Line composed of closely and evenly spaced

More information

ENGR 1182 Exam 1 First Mid Term Exam Study Guide and Practice Problems

ENGR 1182 Exam 1 First Mid Term Exam Study Guide and Practice Problems Spring Semester 2016 ENGR 1182 Exam 1 First Mid Term Exam Study Guide and Practice Problems Disclaimer Problems in this study guide resemble problems relating mainly to the pertinent homework assignments.

More information

(As per New Revised Syllabus of Anna University) Department of Mechanical Engineering. SATHYABAMA UNIVERSITY Jeppiaar Nagar, Chennai

(As per New Revised Syllabus of Anna University) Department of Mechanical Engineering. SATHYABAMA UNIVERSITY Jeppiaar Nagar, Chennai (1*,1((5,1* *5$3+,&6 (As per New Revised Syllabus of Anna University) Dr. S.RAMACHANDRAN, M.E., Ph.D. Professor & Head K. PANDIAN, M.E., E.V.V.RAMANAMURTHY, M.Tech., R. DEVARAJ, M.E., Associate Professors

More information

60 Most Important Engineering Drawing Questions

60 Most Important Engineering Drawing Questions 1. If a client of yours is having difficulty visualizing a design, what type of drawing would be the easiest to understand? A. axonometric B. three-view orthographic C. one-view orthographic D. bimetric

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction Contents Engineering drawing Drawing standards Drawing sheet Scale Lettering Line types Engineering Drawing Contents Engineering Drawing Effectiveness of Graphic Language 1. Try

More information

Engineering Graphics- Basics.

Engineering Graphics- Basics. Engineering Graphics- Basics DRAWINGS: ( A Graphical Representation) The Fact about: If compared with Verbal or Written Description, Drawings offer far better idea about the Shape, Size & Appearance of

More information

A Concise Introduction to Engineering Graphics

A Concise Introduction to Engineering Graphics Concise Introduction to Engineering Graphics ourth Edition Including Worksheet Series imothy J. Sexton, Professor Department of Industrial echnology Ohio University ONUS ook on CD: ECHNICL GRPHICS Meyers,

More information

Chapter 1 Overview of an Engineering Drawing

Chapter 1 Overview of an Engineering Drawing Chapter 1 Overview of an Engineering Drawing TOPICS Graphics language Engineering drawing Projection methods Orthographic projection Drawing standards TOPICS Traditional Drawing Tools Lettering Freehand

More information

Drawing Standards & Conventions for IDD

Drawing Standards & Conventions for IDD Drawing Standards & Conventions for IDD This document consists of a set of standards that have been developed to maintain a consistency in Interior Decoration and Design students work. The standards are

More information

Learning Objectives. Understand the vocabulary related to Isometric Sketching Be able to create Isometric Sketches using the Box method.

Learning Objectives. Understand the vocabulary related to Isometric Sketching Be able to create Isometric Sketches using the Box method. Isometric Sketching Learning Objectives Understand the vocabulary related to Isometric Sketching Be able to create Isometric Sketches using the Box method. Isometric Pictorial Isometric means equal measure.

More information

7/9/2009. Offset Tool. Offset Tool. Offsetting - Erasing the Original Object. Chapter 8 Construction Tools and Multiview Drawings

7/9/2009. Offset Tool. Offset Tool. Offsetting - Erasing the Original Object. Chapter 8 Construction Tools and Multiview Drawings Chapter 8 Construction Tools and Multiview Drawings Use the OFFSET tool to draw parallel lines and curves. Mark points on objects at equal lengths using the DIVIDE tool. Set designated increments on an

More information

Fundamentals of Drafting - Orthographic Projection with Hidden Details

Fundamentals of Drafting - Orthographic Projection with Hidden Details Fundamentals of Drafting - Orthographic Projection with Hidden Details Objectives: 1. To extend the principle of orthographic projection for hidden details. 2. To illustrate the representation of hidden

More information

Module 2: Radial-Line Sheet-Metal 3D Modeling and 2D Pattern Development: Right Cone (Regular, Frustum, and Truncated)

Module 2: Radial-Line Sheet-Metal 3D Modeling and 2D Pattern Development: Right Cone (Regular, Frustum, and Truncated) Inventor (5) Module 2: 2-1 Module 2: Radial-Line Sheet-Metal 3D Modeling and 2D Pattern Development: Right Cone (Regular, Frustum, and Truncated) In this tutorial, we will learn how to build a 3D model

More information

Fundamentals for building Drawing

Fundamentals for building Drawing Fundamentals for building Drawing What is Drawing Introduction Knowledge of preparing and understanding drawing will prove to be an invaluable aid while performing their jobs effectively, efficiently.

More information

(Ans:d) a. A0 b. A1 c. A2 d. A3. (Ans:b) (Ans:a) (Ans:d) (Ans:d)

(Ans:d) a. A0 b. A1 c. A2 d. A3. (Ans:b) (Ans:a) (Ans:d) (Ans:d) Multiple Choice Questions (MCQ) on Engineering Drawing (Instruments) The mini drafter serves the purpose of everything except a. Scales b. Set square c. Protractor d. Compass (Ans:d) During operation,

More information

Drafting: Orthographic and Isometric Drawings

Drafting: Orthographic and Isometric Drawings Youth Explore Trades Skills Description Students will learn to develop and interpret plumbing drawings typically found in construction. There are two parts to this lesson: Part 1: Orthographic drawings

More information

SDC PUBLICATIONS. Schroff Development Corporation

SDC PUBLICATIONS. Schroff Development Corporation SDC PUBLICATIONS Schroff Development Corporation www.schroff.com www.schroff-europe.com SECTIONING In chapter 3 you will learn how to create various types of sectional views. Sectional views allow you

More information

Chapter 4 ORTHOGRAPHIC PROJECTION

Chapter 4 ORTHOGRAPHIC PROJECTION Chapter 4 ORTHOGRAPHIC PROJECTION 4.1 INTRODUCTION We, the human beings are gifted with power to think. The thoughts are to be shared. You will appreciate that different ways and means are available to

More information

TECHNICAL DESIGN I (540)

TECHNICAL DESIGN I (540) DESCRIPTION The first assessment in a series, Technical Design I prepares students to develop technical knowledge and skills required to plan and prepare scale pictorial interpretations of engineering

More information

Generics AGEN Assessment Tool. 005 Drawings 001 Basic Drawings. q Competent q Not Yet Competent. Signed: Learner Name: Date: Telephone No.

Generics AGEN Assessment Tool. 005 Drawings 001 Basic Drawings. q Competent q Not Yet Competent. Signed: Learner Name: Date: Telephone No. Generics AGEN 005 001 005 Drawings 001 Basic Drawings Assessment Tool Learner Name: Signed: Telephone No.: Date: Maximal total marks Marks: Obtained marks Total obtained marks in percentage % Learner Is:

More information

Top Down Assembly Modeling Release Wildfire 2.0

Top Down Assembly Modeling Release Wildfire 2.0 Top Down Assembly Modeling Release Wildfire 2.0 Note: Comprehensive Modeling Assignment This is a 30 point assignment as such takes the place of the final exam. Four Plate Mold Base, Inner Two Plates Begin

More information

Brief Introduction to Engineering Graphics The use of drawings to convey information. Sketching freehand straight edge

Brief Introduction to Engineering Graphics The use of drawings to convey information. Sketching freehand straight edge Brief Introduction to Engineering Graphics The use of drawings to convey information. Sketching freehand straight edge CAD drawings 2D drafting 3D model to 2D drawings 1 Different Graphical Representation

More information

2016 Academic Challenge

2016 Academic Challenge 2016 Academic Challenge ENGINEERING GRAPHICS TEST REGIONAL This Test Consists of 40 Questions Engineering Graphics Test Production Team Ryan K. Brown, Illinois State University Author/Team Leader Mark

More information