Cold dark matter: The hunt for the axion

Size: px
Start display at page:

Download "Cold dark matter: The hunt for the axion"

Transcription

1 SQUIDs: Then and Now SQUIDs: Then SQUIDs: Now The diversity of SQUIDs Ultralow field magnetic resonance imaging Cold dark matter: The hunt for the axion History Day Superconductivity Centennial Conference Den Haag The Netherlands September 21, 2011 Support: DOE Basic Energy Sciences DOE High Energy Physics National Institutes of Health BBN Technologies 1 of 45

2 SQUIDs Then 2 of 45

3 Brian Josephson Explains Tunneling Courtesy Brian Josephson 3 of 45

4 Flux Quantization = n 0 = n (n = 0, ±1, ±2,...) J Half-centennial! where 2x h/2e Tm is the flux quantum Vibrating s/c tube in a coil Torque on a s/c tube Deaver and Fairbank 1961 Doll and Näbauer of 45

5 Josephson Tunneling I Insulating barrier Superconductor 1 Superconductor 2 I Sn-SnOx-Pb SO 1.5 K ~ 20 Å V I = I 0 sin = 1 2 d /dt = 2eV/ħ G = 2 V/ G Josephson 1962 Half-Centennial Next Year! Anderson and Rowell of 45

6 Birth of the Superconducting Quantum Interference Device (SQUID) I V Sn-SnOx-Sn junctions Critical current versus applied magnetic field for two different junction spacings Rapid oscillations due to interference, slow oscillations due to diffraction Essential physics analogous to two-slit interference in optics Jaklevic, Lambe, Silver and Mercereau of 45

7 Sir Brian Pippard Serves Tea to Lady Bragg Autumn 1964: Brian suggests that t a SQUID would make an exquisitely sensitive voltmeter Courtesy Cavendish Laboratory 7 of 45

8 The SLUG (Superconducting Low-Inductance Undulatory Galvanometer) Nb wire and solder I Niobium I B I Copper Vo oltage V SnPb solder 5 mm Current I B in niobium wire I B JC February of 45

9 The SLUG as a Voltmeter Niobium 1 Voltage noise 10 fvhz -1/2 Copper V Solder 5 mm 9 of 45

10 John Wires up a SLUG Courtesy Gordon Donaldson 10 of 45

11 Other SQUID Designs Niobium structures Zimmerman and Silver of 45

12 Adjustable Niobium SQUID Nb wire and foil 0.03 Nb wire Nb foil mylar Beasley and Webb of 45

13 Nb-NbOx-PbInNbOx junctions Shadow masks Thin-Film Cylindrical SQUID 5 mm tesla Hz -1/2 (10 fthz -1/2 ) Goubau, Ketchen, JC of 45

14 SQUIDs Now 14 of 45

15 Nb-AlOx-Nb Tunnel Junctions Trilayer process Deposit Nb film as base electrode Deposit Al film Grow AlOx layer thermally in O 2 Deposit Nb film as counter electrode ect Standard d process for all low-t c electronics Rowell et al of 45

16 Thin-Film, Square Washer DC SQUID Wafer scale process Photolithographic patterning 500 m 20 m SQUID with input coil Josephson junctions Ketchen, Jaycox (1981) 16 of 45

17 Flux Noise in the SQUID V V o S (f) ( Φ 2 Hz -1 0 ) White noise 2 x Hz -1/ Frequency (Hz) 17 of 45

18 Superconducting Flux Transformer: Magnetometer B Closed superconducting circuit Magnetic field noise ~ THz -1/2 J SQUID Room temperature electronics 18 of 45

19 tesla Magnetic Fields 1 Conventional MRI Earth s field Urban noise Car at 50 m Human heart Fetal heart 1 femtotesla Human brain response SQUID magnetometer 19 of 45

20 The Diversity of SQUIDs 20 of 45

21 Quantum Design "Evercool" 21 of 45

22 High-T c SQUIDs Prospecting for Mineral Deposits Courtesy Cathy Foley, CSIRO 22 of 45

23 Gravity Probe-B Tests of General Relativity Geodetic effect curved space-time due to the presence of the Earth Lense-Thirring effect dragging of the local space-time frame due to rotation Courtesy Stanford University and NASA 23 of 45

24 MiniGRAIL: Gravitational Wave Antenna Lid Leiden Ui Universityit Spherical gravitational wave detector Temperature: 20 mk Diameter: 650 mm Resonance frequency: 3160 Hz Motion coupled to a transducer that amplifies the motion, and couples flux into a dc SQUID Quantum limited strain sensitivity: dl/l ~ of 45

25 SPT: South Pole Telescope Antarctica 9,500 feet 10 meter dish 960 Transition Edges Sensors with multiplexed SQUID readout SPT will survey 4,000 square degrees of sky in the next two years, and is expected to find large numbers of galaxy clusters. The Bullet Cluster 25 of 45

26 CardioMag Imaging System for Magnetocardiography 26 of 45

27 300-Channel SQUID Systems for Magnetoencephalography (MEG) 27 of 45

28 Ultralow Field Magnetic Resonance Imaging 28 of 45

29 High-Field Magnetic Resonance Imaging Magnetic field B 0 = 1.5 T Proton NMR frequency 0 64 MHz What if we were to lower the magnetic field and NMR frequency by a factor of 10 4? Courtesy GE, Inc. 29 of 45

30 ULF MRI Coil Geometry B x compensation coil Low noise cryostat containing SQUID Gradient coils B 0 coil (measurement field) B 1 coil (excitation field) B p coil (prepolarization field) B 0 = 132 T 0 = 5600 Hz Gradient fields define voxels in space in the same way as in high-field MRI 30 of 45

31 Three-Dimensional In Vivo Images of the Arm 20 mm 31 of 45

32 T 1 -Weighted Contrast Imaging If two different types of tissue have the same proton density, a conventional MRI pulse sequence may not distinguish them. T 1 depends strongly on the environment, and can be used to differentiate tissues types using a T 1 -contrast pulse sequence. T 1 contrast can be much higher in low fields than in high fields. 32 of 45

33 Measurements on Ex Vivo Prostate Tissue Malignant prostate removed surgically at UCSF hospital. Pathologist cuts two small tissue samples, one healthy and one cancerous (Blind: we do not know which is which). Samples rushed to Berkeley in a biohazard bag placed on ice. T 1 s measured: T 1A > T 1B Specimens are returned to UCSF where the pathologist characterizes a thin slice of each specimen. 33 of 45

34 Contrast (T 1A T 1B )/T 1A vs. % Difference in Tumor Content for each Specimen Pair (T 1A T 1B B)/T 1A δ = 35 patients (% tumor) B (% tumor) A T 1 (100% normal) = (1.43 ± 0.10) T 1 (100% tumor) Sufficient for in vivo T 1 -wighted contrast imaging 34 of 45

35 T 1-Map of Prostate Slice Dark lines indicate histology, which is performed on a thin slice. T 1 map is averaged over the entire thickness. Map clearly shows T 1 contrast Tissue identified through histological mapping Tissue is healthy unless labeled otherwise X + Y: Gleason score of tumors; 5 is the most advanced BPH: Benign Prostatic ti Hyperplasia GPS: Gland Poor Stroma 35 of 45

36 Outlook Microtesla MRI has the advantage of significantly higher T 1 contrast than high-field MRI. Other kinds of cancer: Do other types of tumors show T 1 contrast similar to that of prostate tumors? New funding to study ex vivo breast cancer National Institutes of Health provided funding to build a prototype system for in vivo imaging of prostate cancer. Next step: in vivo imaging g 36 of 45

37 Cold Dark Matter: The Hunt for the Axion 37 of 45

38 Cosmic Microwave Background: The Cosmic Rosetta Stone Neutrinos 0.6% Baryons (ordinary matter) 4.6% Dark Energy (DE) 73% Cold Dark Matter (CDM) 22% Thus 95% of the universe is unknown! 38 of 45

39 Cold Dark Matter A candidate particle is the axion, proposed in 1978 to explain the absence of a measurable electric dipole moment on the neutron Predicted mass: m a 1 ev 1meV(024- ( GHz) 39 of 45

40 Resonant Conversion of Axions into Photons Pierre Sikivie (1983) Primakoff Conversion HEMT* Amplifier Magnet Power Expected Signal ~ 10 6 Cavity Frequency *High Electron Mobility Transistor Need to scan frequency 40 of 45

41 Axion Detector at Lawrence Livermore National Laboratory Cooled to 1.5K 7 tesla magnet Scan Time Using a HEMT amplifier, time to scan the frequency range from 0.24 to 0.48 GHz: 270 years 41 of 45

42 Noise Temperatures of Two SQUID Amplifiers HEMT T N 2 K 702 MHz 684 MHz T QL = 33mK In the classical limit theory predicts T N T In the quantum limit: T QL = hf/k B Closest approach to quantum limit: At 799 MHz T N = 47 ± 5 mk T QL =38mK 42 of 45

43 Scan Time Using a HEMT amplifier, time to scan the frequency range from 0.24 to 0.48 GHz 270 years. The HEMT has been replaced with a SQUID amplifier. With the system cooled to 50 mk with a dilution refrigerator, time to scan the frequency range from 0.24 to 0.48 GHz 100 days. A SQUID amplifier was successfully operated on the axion detector at 1.5 K to demonstrate proof-of-principle. Given the success of this trial run, the Department of Energy has funded the installation of a dilution refrigerator to cool the cavity and SQUID to 50 mk. This will enable an effective search for the axion over the energy range 1 10 ev. 43 of 45

44 Epilogue SQUIDs are amazingly diverse, with applications in physics, chemistry, biology, medicine, materials science, geophysics, cosmology, quantum information,.. SQUIDs are remarkably broadband: 10 4 Hz (geophysics) to 10 9 Hz (axion detectors). The resolution of SQUID amplifiers is essentially limited by Heisenberg ss Uncertainty Principle. Microtesla MRI, the axion search, and a host of other applications, exist only because of the extraordinarily low noise of the SQUID which in itself seems to be a very tiny part of the whole system. 44 of 45

45 ULFMRI Thank You! Sarah Busch Erwin Hahn Michael Hatridge Nathan Kelso SeungKyun Lee Robert McDermott Michael Mössle Michael Mück Whit Myers Fredrik Öisjöen Alex Pines Dan Slichter Paul SanGiorgio Bennie ten Haken Andreas Trabesinger Travis Wong Koos Zevenhoven High Precision Devices Axion Detector S.J. Asztalos G. Carosi C. Hagmann D. Kinion, K. van Bibber M. Hotz L.J. Rosenberg G. Rybka, J. Hoskins J. Hwang P. Sikivie D. B. Tanner, R. Bradley 45 of 45

Quantum Limited SQUID Amplifiers for Cavity Experiments

Quantum Limited SQUID Amplifiers for Cavity Experiments Quantum Limited SQUID Amplifiers for Cavity Experiments Axion Dark Matter experiment (ADMX) Theory of SQUID Amplifiers The Microstrip SQUID Amplifier ADMX Revisited Higher Frequency SQUID Amplifiers Parametric

More information

SQUID - Superconducting QUantum Interference Device. Introduction History Operation Applications

SQUID - Superconducting QUantum Interference Device. Introduction History Operation Applications SQUID - Superconducting QUantum Interference Device Introduction History Operation Applications Introduction Very sensitive magnetometer Superconducting quantum interference device based on quantum effects

More information

The Original SQUID. Arnold H. Silver. Josephson Symposium Applied Superconductivity Conference Portland, OR October 9, 2012

The Original SQUID. Arnold H. Silver. Josephson Symposium Applied Superconductivity Conference Portland, OR October 9, 2012 The Original SQUID Arnold H. Silver Josephson Symposium Applied Superconductivity Conference Portland, OR October 9, 2012 Two Part Presentation Phase One: 1963 1964 Jaklevic, Lambe, Mercereau, Silver Microwave

More information

AC magnetic measurements etc

AC magnetic measurements etc physics 590 ruslan prozorov AC magnetic measurements etc lock-in amplifier lock-in summary with integrator integrate out phase-sensitive detector (PSD) AC magnetic susceptibility typical AC susceptometer

More information

SQUID Amplifiers for Axion Search Experiments

SQUID Amplifiers for Axion Search Experiments SQUID Amplifiers for Axion Search Experiments Andrei Matlashov A, Woohyun Chang A, Vyacheslav Zakosarenko C,D, Matthias Schmelz C, Ronny Stolz C, Yannis Semertzidis A,B A IBS/CAPP, B KAIST, C IPHT, D Supracon

More information

Superconducting quantum interference device (SQUID) and its application in science and engineering. A presentation Submitted by

Superconducting quantum interference device (SQUID) and its application in science and engineering. A presentation Submitted by Superconducting quantum interference device (SQUID) and its application in science and engineering. A presentation Submitted by S.Srikamal Jaganraj Department of Physics, University of Alaska, Fairbanks,

More information

Nuclear Instruments and Methods in Physics Research A

Nuclear Instruments and Methods in Physics Research A Nuclear Instruments and Methods in Physics Research A 656 (11) 39 Contents lists available at ScienceDirect Nuclear Instruments and Methods in Physics Research A journal homepage: www.elsevier.com/locate/nima

More information

arxiv: v1 [physics.ins-det] 21 May 2011

arxiv: v1 [physics.ins-det] 21 May 2011 Design and performance of the ADMX SQUID-based microwave receiver S.J. Asztalos, G. Carosi, C. Hagmann, D. Kinion and K. van Bibber a,2, M. Hotz, L. J Rosenberg, G. Rybka, A. Wagner b, J. Hoskins, C. Martin,

More information

SQUID Basics. Dietmar Drung Physikalisch-Technische Bundesanstalt (PTB) Berlin, Germany

SQUID Basics. Dietmar Drung Physikalisch-Technische Bundesanstalt (PTB) Berlin, Germany SQUID Basics Dietmar Drung Physikalisch-Technische Bundesanstalt (PTB) Berlin, Germany Outline: - Introduction - Low-Tc versus high-tc technology - SQUID fundamentals and performance - Readout electronics

More information

The Extreme Axion Experiment (X3) S. Al Kenany, University of California, Berkeley

The Extreme Axion Experiment (X3) S. Al Kenany, University of California, Berkeley The Extreme Axion Experiment (X3) S. Al Kenany, University of California, Berkeley Kyoto University, Division of Physics and Astronomy, July 26, 2016 Outline (Very) brief basics on the axion The microwave

More information

Trigger Algorithms for the SuperCDMS Dark Matter Search

Trigger Algorithms for the SuperCDMS Dark Matter Search Trigger Algorithms for the SuperCDMS Dark Matter Search Xuji Zhao Advisor: David Toback Texas A&M University Masters Defense Aug 11, 2015 1 Outline Introduction: dark matter and the CDMS experiment Triggering

More information

Status of the ADMX-HF Dark Matter Axion Search

Status of the ADMX-HF Dark Matter Axion Search University of California E-mail: simanovskaia@berkeley.edu Axions are a leading dark matter candidate, and may be detected by their resonant conversion to a monochromatic RF signal in a tunable microwave

More information

The superconducting microcalorimeters array for the X IFU instrument on board of Athena Luciano Gottardi

The superconducting microcalorimeters array for the X IFU instrument on board of Athena Luciano Gottardi The superconducting microcalorimeters array for the X IFU instrument on board of Athena Luciano Gottardi 13th Pisa meeting on advanced detectors Isola d'elba, Italy, May 24 30, 2015 Advance Telescope for

More information

Introduction to SQUIDs and their applications. ESAS Summer School Jari Penttilä Aivon Oy, Espoo, Finland

Introduction to SQUIDs and their applications. ESAS Summer School Jari Penttilä Aivon Oy, Espoo, Finland 1 Introduction to SQUIDs and their applications ESAS Summer School 17.6.2011 Jari Penttilä, Espoo, Finland 2 Outline Flux quantization and Josephson junction Theoretical DC SQUID Practical DC SQUID Fabrication

More information

Magnetic and Electromagnetic Microsystems. 4. Example: magnetic read/write head

Magnetic and Electromagnetic Microsystems. 4. Example: magnetic read/write head Magnetic and Electromagnetic Microsystems 1. Magnetic Sensors 2. Magnetic Actuators 3. Electromagnetic Sensors 4. Example: magnetic read/write head (C) Andrei Sazonov 2005, 2006 1 Magnetic microsystems

More information

Quantum Sensors Programme at Cambridge

Quantum Sensors Programme at Cambridge Quantum Sensors Programme at Cambridge Stafford Withington Quantum Sensors Group, University Cambridge Physics of extreme measurement, tackling demanding problems in ultra-low-noise measurement for fundamental

More information

EVOLUTION OF THE CRYOGENIC EDDY CURRENT MICROPROBE

EVOLUTION OF THE CRYOGENIC EDDY CURRENT MICROPROBE EVOLUTION OF THE CRYOGENIC EDDY CURRENT MICROPROBE J.L. Fisher, S.N. Rowland, J.S. Stolte, and Keith S. Pickens Southwest Research Institute 6220 Culebra Road San Antonio, TX 78228-0510 INTRODUCTION In

More information

Two-stage SQUID systems and transducers development for MiniGRAIL

Two-stage SQUID systems and transducers development for MiniGRAIL INSTITUTE OF PHYSICS PUBLISHING Class. Quantum Grav. 21 (2004) S1191 S1196 CLASSICAL AND QUANTUM GRAVITY PII: S0264-9381(04)69116-7 Two-stage SQUID systems and transducers development for MiniGRAIL L Gottardi

More information

Why superconducting electronics?

Why superconducting electronics? Why superconducting electronics? Extremely non-linear IV&RT characteristics The Josephson effects I=I c sin, =2eV/h Low noise Low loss 2e Low dissipation - Less weight I = I High resolution c sin d = 2eV

More information

Measurement of SQUID noise levels for SuperCDMS SNOLAB detectors

Measurement of SQUID noise levels for SuperCDMS SNOLAB detectors Measurement of SQUID noise levels for SuperCDMS SNOLAB detectors Maxwell Lee SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, MS29 SLAC-TN-15-051 Abstract SuperCDMS SNOLAB is a second generation

More information

Searching for Dark Matter Axions with ADMX-HF

Searching for Dark Matter Axions with ADMX-HF Searching for Dark Matter Axions with ADMX-HF (The Axion Dark Matter experiment High Frequency) Ben Brubaker Yale University February 18, 2016 UCLA Ben Brubaker (Yale) ADMX-HF UCLA Dark Matter 2016 1 /

More information

Pulse Tube Interference in Cryogenic Sensor Resonant Circuits

Pulse Tube Interference in Cryogenic Sensor Resonant Circuits SLAC-TN-15-048 Pulse Tube Interference in Cryogenic Sensor Resonant Circuits Tyler Lam SLAC National Accelerator Laboratory August 2015 SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo

More information

Multi-channel SQUID-based Ultra-Low Field Magnetic Resonance Imaging in Unshielded Environment

Multi-channel SQUID-based Ultra-Low Field Magnetic Resonance Imaging in Unshielded Environment Multi-channel SQUID-based Ultra-Low Field Magnetic Resonance Imaging in Unshielded Environment Andrei Matlashov, Per Magnelind, Shaun Newman, Henrik Sandin, Algis Urbaitis, Petr Volegov, Michelle Espy

More information

Application of Breakthrough

Application of Breakthrough Application of Breakthrough Sensor Technology to Medical Diagnostic Equipment 21 August 2011 Levon P. Thorose PSI CEO Precision Instrumentation Inc. (PSI) levonpthorose@hotmail.com Content Breakthrough

More information

rf SQUID Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706

rf SQUID Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706 (revised 3/9/07) rf SQUID Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706 Abstract The Superconducting QUantum Interference Device (SQUID) is the most sensitive detector

More information

CULTASK, The Coldest Axion Experiment at CAPP/IBS/KAIST in Korea

CULTASK, The Coldest Axion Experiment at CAPP/IBS/KAIST in Korea , The Coldest Axion Experiment at CAPP/IBS/KAIST in Korea Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Republic of Korea E-mail: gnuhcw@ibs.re.kr The axion, a hypothetical

More information

Superconducting Gravity Gradiometers (SGGs)

Superconducting Gravity Gradiometers (SGGs) Superconducting Gravity Gradiometers (SGGs) Three models of SGGs with increasing complexity and sensitivity have been developed at Maryland [Chan et al., 1987; Moody et al., 2002]. The Model II SGG has

More information

Influence of Temperature Variations on the Stability of a Submm Wave Receiver

Influence of Temperature Variations on the Stability of a Submm Wave Receiver Influence of Temperature Variations on the Stability of a Submm Wave A. Baryshev 1, R. Hesper 1, G. Gerlofsma 1, M. Kroug 2, W. Wild 3 1 NOVA/SRON/RuG 2 DIMES/TuD 3 SRON / RuG Abstract Radio astronomy

More information

MRI SYSTEM COMPONENTS Module One

MRI SYSTEM COMPONENTS Module One MRI SYSTEM COMPONENTS Module One 1 MAIN COMPONENTS Magnet Gradient Coils RF Coils Host Computer / Electronic Support System Operator Console and Display Systems 2 3 4 5 Magnet Components 6 The magnet The

More information

Proceedings of the Fourth Workshop on RF Superconductivity, KEK, Tsukuba, Japan

Proceedings of the Fourth Workshop on RF Superconductivity, KEK, Tsukuba, Japan ACTVTES ON RF SUPERCONDUCTVTY N FRASCAT, GENOVA, MLAN0 LABORATORES R. Boni, A. Cattoni, A. Gallo, U. Gambardella, D. Di Gioacchino, G. Modestino, C. Pagani*, R. Parodi**, L. Serafini*, B. Spataro, F. Tazzioli,

More information

arxiv: v1 [hep-ex] 27 Sep 2017

arxiv: v1 [hep-ex] 27 Sep 2017 First Axion Dark Matter Search with Toroidal Geometry arxiv:1709.09437v1 [hep-ex] 27 Sep 2017 Byeong Rok Ko Center for Axion and Precision Physics Research (CAPP), Institute for Basic Science (IBS), Daejeon

More information

Medical Imaging. X-rays, CT/CAT scans, Ultrasound, Magnetic Resonance Imaging

Medical Imaging. X-rays, CT/CAT scans, Ultrasound, Magnetic Resonance Imaging Medical Imaging X-rays, CT/CAT scans, Ultrasound, Magnetic Resonance Imaging From: Physics for the IB Diploma Coursebook 6th Edition by Tsokos, Hoeben and Headlee And Higher Level Physics 2 nd Edition

More information

Detection Beyond 100µm Photon detectors no longer work ("shallow", i.e. low excitation energy, impurities only go out to equivalent of

Detection Beyond 100µm Photon detectors no longer work (shallow, i.e. low excitation energy, impurities only go out to equivalent of Detection Beyond 100µm Photon detectors no longer work ("shallow", i.e. low excitation energy, impurities only go out to equivalent of 100µm) A few tricks let them stretch a little further (like stressing)

More information

Superconducting Transition-Edge Sensors and Superconducting Tunnel Junctions for Optical/UV Time-Energy Resolved Single-Photon Counters

Superconducting Transition-Edge Sensors and Superconducting Tunnel Junctions for Optical/UV Time-Energy Resolved Single-Photon Counters Superconducting Transition-Edge Sensors and Superconducting Tunnel Junctions for Optical/UV Time-Energy Resolved Single-Photon Counters NHST Meeting STScI - Baltimore 10 April 2003 TES & STJ Detector Summary

More information

Cavities at higher and lower frequencies

Cavities at higher and lower frequencies Cavities at higher and lower frequencies C. Hagmann, J. Hoskins, I. Stern, A.A. Chisholm, P. Sikivie, N.S. Sullivan, and D.B. Tanner University of Florida Basic cavity is a right circular cylinder Or:

More information

GSEB QUESTION PAPER PHYSICS

GSEB QUESTION PAPER PHYSICS GSEB QUESTION PAPER PHYSICS Time : 3 Hours Maximum Marks: 100 Instructions : 1. There are four sections and total 60 questions in this question paper. 2. Symbols used in this question paper have their

More information

J. L. Fisher, S. N. Rowland, F. A. Balter, S. S. Stolte, and Keith S. Pickens. Southwest Research Institute 6220 Culebra Road San Antonio, TX 78284

J. L. Fisher, S. N. Rowland, F. A. Balter, S. S. Stolte, and Keith S. Pickens. Southwest Research Institute 6220 Culebra Road San Antonio, TX 78284 A CRYOGENIC EDDY CURRENT MICROPROBE J. L. Fisher, S. N. Rowland, F. A. Balter, S. S. Stolte, and Keith S. Pickens Southwest Research Institute 6220 Culebra Road San Antonio, TX 78284 INTRODUCTION In nondestructive

More information

Antenna-coupled bolometer arrays for measurement of the Cosmic Microwave Background polarization

Antenna-coupled bolometer arrays for measurement of the Cosmic Microwave Background polarization Journal of Low Temperature Physics manuscript No. (will be inserted by the editor) M. J. Myers a K. Arnold a P. Ade b G. Engargiola c W. Holzapfel a A. T. Lee a X. Meng d R. O Brient a P. L. Richards a

More information

Eddy Current Nondestructive Evaluation Using SQUID Sensors

Eddy Current Nondestructive Evaluation Using SQUID Sensors 73 Eddy Current Nondestructive Evaluation Using SQUID Sensors Francesco Finelli Sponsored by: LAPT Introduction Eddy current (EC) nondestructive evaluation (NDE) consists in the use of electromagnetic

More information

arxiv: v1 [astro-ph.im] 28 Oct 2016

arxiv: v1 [astro-ph.im] 28 Oct 2016 Design Overview of the DM Radio Pathfinder Experiment 1 Maximiliano Silva-Feaver, 1 Saptarshi Chaudhuri, 3 Hsaio-Mei Cho, 2 Carl Dawson, 1 Peter Graham, 1,3 Kent Irwin, 1 Stephen Kuenstner, 3 Dale Li,

More information

Evaluation Method of Magnetic Sensors Using the Calibrated Phantom for Magnetoencephalography

Evaluation Method of Magnetic Sensors Using the Calibrated Phantom for Magnetoencephalography J. Magn. Soc. Jpn., 41, 7-74 (217) Evaluation Method of Magnetic Sensors Using the Calibrated Phantom for Magnetoencephalography D. Oyama, Y. Adachi, and G. Uehara Applied Electronics Laboratory,

More information

discovery in 1993 [1]. These molecules are interesting due to their superparamagneticlike

discovery in 1993 [1]. These molecules are interesting due to their superparamagneticlike Preliminary spectroscopy measurements of Al-Al 2 O x -Pb tunnel junctions doped with single molecule magnets J. R. Nesbitt Department of Physics, University of Florida Tunnel junctions have been fabricated

More information

SQUID Test Structures Presented by Makoto Ishikawa

SQUID Test Structures Presented by Makoto Ishikawa SQUID Test Structures Presented by Makoto Ishikawa We need to optimize the microfabrication process for making an SIS tunnel junction because it is such an important structure in a SQUID. Figure 1 is a

More information

United States Patent [19]

United States Patent [19] United States Patent [19] Simmonds et al. [54] APPARATUS FOR REDUCING LOW FREQUENCY NOISE IN DC BIASED SQUIDS [75] Inventors: Michael B. Simmonds, Del Mar; Robin P. Giffard, Palo Alto, both of Calif. [73]

More information

SQUIDs and SQUID-microscopy

SQUIDs and SQUID-microscopy 1 SQUIDs and SQUID-microscopy Klaus Hasselbach 2 outline Basic principles of SQUIDs Applications of SQUIDs SQUID microscopy 3 Basic principles of SQUIDs Flux quantization in superconducting Ring DC and

More information

9/28/2010. Chapter , The McGraw-Hill Companies, Inc.

9/28/2010. Chapter , The McGraw-Hill Companies, Inc. Chapter 4 Sensors are are used to detect, and often to measure, the magnitude of something. They basically operate by converting mechanical, magnetic, thermal, optical, and chemical variations into electric

More information

SQUID-detected microtesla MRI in the presence of metal

SQUID-detected microtesla MRI in the presence of metal SQUID-detected microtesla MRI in the presence of metal Michael Mößle a, Song-I Han b, 1, Whittier R. Myers a, Seung-Kyun Lee a, Nathan Kelso a, Michael Hatridge a, Alexander Pines b and John Clarke a a

More information

ALIGNMENT METHODS APPLIED TO THE LEP MAGNET MEASUREMENTS. J. Billan, G. Brun, K. N. Henrichsen, P. Legrand, 0. Pagano, P. Rohmig and L. Walckiers.

ALIGNMENT METHODS APPLIED TO THE LEP MAGNET MEASUREMENTS. J. Billan, G. Brun, K. N. Henrichsen, P. Legrand, 0. Pagano, P. Rohmig and L. Walckiers. 295 ALIGNMENT METHODS APPLIED TO THE LEP MAGNET MEASUREMENTS J. Billan, G. Brun, K. N. Henrichsen, P. Legrand, 0. Pagano, P. Rohmig and L. Walckiers. CERN, CH-1211 Geneva 23, Switzerland Introduction Electromagnets

More information

<NOTICE> <PREAMB> BILLING CODE 3510-DS-P DEPARTMENT OF COMMERCE. International Trade Administration. University of Colorado Boulder, et al.

<NOTICE> <PREAMB> BILLING CODE 3510-DS-P DEPARTMENT OF COMMERCE. International Trade Administration. University of Colorado Boulder, et al. This document is scheduled to be published in the Federal Register on 01/28/2013 and available online at http://federalregister.gov/a/2013-01700, and on FDsys.gov 1 BILLING CODE 3510-DS-P

More information

ExperimentswithaunSQUIDbasedintegrated magnetometer.

ExperimentswithaunSQUIDbasedintegrated magnetometer. ExperimentswithaunSQUIDbasedintegrated magnetometer. Heikki Seppä, Mikko Kiviranta and Vesa Virkki, VTT Automation, Measurement Technology, P.O. Box 1304, 02044 VTT, Finland Leif Grönberg, Jaakko Salonen,

More information

A new capacitive read-out for EXPLORER and NAUTILUS

A new capacitive read-out for EXPLORER and NAUTILUS A new capacitive read-out for EXPLORER and NAUTILUS M Bassan 1, P Carelli 2, V Fafone 3, Y Minenkov 4, G V Pallottino 5, A Rocchi 1, F Sanjust 5 and G Torrioli 2 1 University of Rome Tor Vergata and INFN

More information

HETERONUCLEAR IMAGING. Topics to be Discussed:

HETERONUCLEAR IMAGING. Topics to be Discussed: HETERONUCLEAR IMAGING BioE-594 Advanced MRI By:- Rajitha Mullapudi 04/06/2006 Topics to be Discussed: What is heteronuclear imaging. Comparing the hardware of MRI and heteronuclear imaging. Clinical applications

More information

Sample Testing with the Quadrupole Resonator A way to obtain RF results over a wide parameter range

Sample Testing with the Quadrupole Resonator A way to obtain RF results over a wide parameter range Sample Testing with the Quadrupole Resonator A way to obtain RF results over a wide parameter range Motivation Power consumption in a superconducting cavity is proportional to its surface resistance R

More information

5. Transducers Definition and General Concept of Transducer Classification of Transducers

5. Transducers Definition and General Concept of Transducer Classification of Transducers 5.1. Definition and General Concept of Definition The transducer is a device which converts one form of energy into another form. Examples: Mechanical transducer and Electrical transducer Electrical A

More information

LECTURE 20 ELECTROMAGNETIC WAVES. Instructor: Kazumi Tolich

LECTURE 20 ELECTROMAGNETIC WAVES. Instructor: Kazumi Tolich LECTURE 20 ELECTROMAGNETIC WAVES Instructor: Kazumi Tolich Lecture 20 2 25.6 The photon model of electromagnetic waves 25.7 The electromagnetic spectrum Radio waves and microwaves Infrared, visible light,

More information

Applied Electromagnetics Laboratory

Applied Electromagnetics Laboratory Department of ECE Overview of Present and Recent Research Projects http://www.egr.uh.edu/ael/ EM Faculty Ji Chen Ph.D. 1998 U. Illinois David Jackson Ph.D. 1985 UCLA Stuart Long Ph.D. 1974 Harvard Don

More information

Magnetic tunnel junction sensor development for industrial applications

Magnetic tunnel junction sensor development for industrial applications Magnetic tunnel junction sensor development for industrial applications Introduction Magnetic tunnel junctions (MTJs) are a new class of thin film device which was first successfully fabricated in the

More information

BME 3113, Dept. of BME Lecture on Introduction to Biosignal Processing

BME 3113, Dept. of BME Lecture on Introduction to Biosignal Processing What is a signal? A signal is a varying quantity whose value can be measured and which conveys information. A signal can be simply defined as a function that conveys information. Signals are represented

More information

Detector Systems. Graeme Carrad

Detector Systems. Graeme Carrad Detector Systems Graeme Carrad November 2011 The Basic Structure of a typical Radio Telescope Antenna Receiver Conversion Digitiser Signal Processing / Correlator They are much the same CSIRO. Radiotelescope

More information

MECE 3320 Measurements & Instrumentation. Data Acquisition

MECE 3320 Measurements & Instrumentation. Data Acquisition MECE 3320 Measurements & Instrumentation Data Acquisition Dr. Isaac Choutapalli Department of Mechanical Engineering University of Texas Pan American Sampling Concepts 1 f s t Sampling Rate f s 2 f m or

More information

RF STATUS OF SUPERCONDUCTING MODULE DEVELOPMENT SUITABLE FOR CW OPERATION: ELBE CRYOSTATS

RF STATUS OF SUPERCONDUCTING MODULE DEVELOPMENT SUITABLE FOR CW OPERATION: ELBE CRYOSTATS RF STATUS OF SUPERCONDUCTING MODULE DEVELOPMENT SUITABLE FOR CW OPERATION: ELBE CRYOSTATS J. Teichert, A. Büchner, H. Büttig, F. Gabriel, P. Michel, K. Möller, U. Lehnert, Ch. Schneider, J. Stephan, A.

More information

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM Kryo 2013 Modern AC Josephson voltage standards at PTB J. Kohlmann, F. Müller, O. Kieler, Th. Scheller, R. Wendisch, B. Egeling, L. Palafox, J. Lee, and R. Behr Physikalisch-Technische Bundesanstalt Φ

More information

A New Multiplexable Superconducting Detector

A New Multiplexable Superconducting Detector A New Multiplexable Superconducting Detector Jonas Zmuidzinas California Institute of Technology Supported by: NASA Code R, A. Lidow Caltech Trustee, Caltech President s Fund, JPL DRDF Caltech Anastasios

More information

Measurement and noise performance of nano-superconducting-quantuminterference devices fabricated by focused ion beam

Measurement and noise performance of nano-superconducting-quantuminterference devices fabricated by focused ion beam Measurement and noise performance of nano-superconducting-quantuminterference devices fabricated by focused ion beam L. Hao,1,a_ J. C. Macfarlane,1 J. C. Gallop,1 D. Cox,1 J. Beyer,2 D. Drung,2 and T.

More information

Packaging of Cryogenic Components

Packaging of Cryogenic Components Packaging of Cryogenic Components William J. Schneider Senior Mechanical Engineer Emeritus November 19-23 2007 1 Packaging of Cryogenic Components Day one Introduction and Overview 2 What is important?

More information

First tests of prototype SCUBA-2 array

First tests of prototype SCUBA-2 array First tests of prototype SCUBA-2 array Adam Woodcraft Astronomical Instrumentation Group School of Physics and Astronomy,Cardiff University http://woodcraft.lowtemp lowtemp.org/ Techniques and Instrumentation

More information

SQUID-based instrumentation for ultra-low-field MRI

SQUID-based instrumentation for ultra-low-field MRI SQUID-based instrumentation for ultra-low-field MRI Vadim S Zotev, Andrei N Matlashov, Petr L Volegov, Algis V Urbaitis, Michelle A Espy and Robert H Kraus, Jr 1 Los Alamos National Laboratory, Group of

More information

PRESENT AND FUTURE OF RESONANT DETECTORS

PRESENT AND FUTURE OF RESONANT DETECTORS RENCONTRES DE MORIOND 2003 PRESENT AND FUTURE OF RESONANT DETECTORS or Bars and Spheres : The hardware side MASSIMO BASSAN Università di Roma Tor Vergata and INFN - Sezione Roma2 For the ROG Collaboration

More information

Monolithic Pixel Sensors in SOI technology R&D activities at LBNL

Monolithic Pixel Sensors in SOI technology R&D activities at LBNL Monolithic Pixel Sensors in SOI technology R&D activities at LBNL Lawrence Berkeley National Laboratory M. Battaglia, L. Glesener (UC Berkeley & LBNL), D. Bisello, P. Giubilato (LBNL & INFN Padova), P.

More information

Josephson junction and SQUID based technology

Josephson junction and SQUID based technology VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD Josephson junction and SQUID based technology Cryocourse 2016: Aalto School and Workshop in Cryogenics and Quantum Engineering Juha Hassel 2.10.2016 Outline

More information

Josephson Circuits I. JJ RCSJ Model as Circuit Element

Josephson Circuits I. JJ RCSJ Model as Circuit Element Josephson Circuits I. Outline 1. RCSJ Model Review 2. Response to DC and AC Drives Voltage standard 3. The DC SQUID 4. Tunable Josephson Junction October 27, 2005 JJ RCSJ Model as Circuit Element Please

More information

Coherent Receivers Principles Downconversion

Coherent Receivers Principles Downconversion Coherent Receivers Principles Downconversion Heterodyne receivers mix signals of different frequency; if two such signals are added together, they beat against each other. The resulting signal contains

More information

arxiv: v1 [cond-mat.supr-con] 30 Jun 2011

arxiv: v1 [cond-mat.supr-con] 30 Jun 2011 SLUG Microwave Amplifier: Theory G. J. Ribeill, D. Hover, Y.-F. Chen, S. Zhu, and R. McDermott Department of Physics, University of Wisconsin, Madison, Wisconsin 5376, USA (Dated: October 3, 18 arxiv:117.73v1

More information

Magnetoencephalography and Auditory Neural Representations

Magnetoencephalography and Auditory Neural Representations Magnetoencephalography and Auditory Neural Representations Jonathan Z. Simon Nai Ding Electrical & Computer Engineering, University of Maryland, College Park SBEC 2010 Non-invasive, Passive, Silent Neural

More information

Background. Chapter Introduction to bolometers

Background. Chapter Introduction to bolometers 1 Chapter 1 Background Cryogenic detectors for photon detection have applications in astronomy, cosmology, particle physics, climate science, chemistry, security and more. In the infrared and submillimeter

More information

Voltage Biased Superconducting Quantum Interference Device Bootstrap Circuit

Voltage Biased Superconducting Quantum Interference Device Bootstrap Circuit Voltage Biased Superconducting Quantum Interference Device Bootstrap Circuit Xiaoming Xie 1, Yi Zhang 2, Huiwu Wang 1, Yongliang Wang 1, Michael Mück 3, Hui Dong 1,2, Hans-Joachim Krause 2, Alex I. Braginski

More information

SQUID Instruments and Applications

SQUID Instruments and Applications SQUID Instruments and Applications R. L. Fagaly Tristan Technologies San Diego, CA 92121 USA 1 INTRODUCTION...3 1.1 SUPERCONDUCTIVITY...3 1.2 MEISSNER EFFECT...4 1.3 FLUX QUANTIZATION...5 1.4 THE JOSEPHSON

More information

DEVELOPMENT OF A BETA 0.12, 88 MHZ, QUARTER WAVE RESONATOR AND ITS CRYOMODULE FOR THE SPIRAL2 PROJECT

DEVELOPMENT OF A BETA 0.12, 88 MHZ, QUARTER WAVE RESONATOR AND ITS CRYOMODULE FOR THE SPIRAL2 PROJECT DEVELOPMENT OF A BETA 0.12, 88 MHZ, QUARTER WAVE RESONATOR AND ITS CRYOMODULE FOR THE SPIRAL2 PROJECT G. Olry, J-L. Biarrotte, S. Blivet, S. Bousson, C. Commeaux, C. Joly, T. Junquera, J. Lesrel, E. Roy,

More information

7 Telsa SQUID Magnetometer

7 Telsa SQUID Magnetometer 7 Telsa SQUID Magnetometer Cryogen Free / Liquid Helium Cooled www.cryogenic.co.uk Introduction S700X - For better magnetic measurements Cryogen free or Liquid Helium based system High homogeneity 7 Tesla

More information

Realization of H.O.: Lumped Element Resonator

Realization of H.O.: Lumped Element Resonator Realization of H.O.: Lumped Element Resonator inductor L capacitor C a harmonic oscillator currents and magnetic fields +q -q charges and electric fields Realization of H.O.: Transmission Line Resonator

More information

CHAPTER 6 CARBON NANOTUBE AND ITS RF APPLICATION

CHAPTER 6 CARBON NANOTUBE AND ITS RF APPLICATION CHAPTER 6 CARBON NANOTUBE AND ITS RF APPLICATION 6.1 Introduction In this chapter we have made a theoretical study about carbon nanotubes electrical properties and their utility in antenna applications.

More information

System Options. Magnetic Property Measurement System. AC Susceptibility. AC Susceptibility Specifications

System Options. Magnetic Property Measurement System. AC Susceptibility. AC Susceptibility Specifications System Options AC Susceptibility Magnetic Property Measurement System Many materials display dissipative mechanisms when exposed to an oscillating magnetic field, and their susceptibility is described

More information

TERAHERTZ NbN/A1N/NbN MIXERS WITH Al/SiO/NbN MICROSTRIP TUNING CIRCUITS

TERAHERTZ NbN/A1N/NbN MIXERS WITH Al/SiO/NbN MICROSTRIP TUNING CIRCUITS TERAHERTZ NbN/A1N/NbN MIXERS WITH Al/SiO/NbN MICROSTRIP TUNING CIRCUITS Yoshinori UZAWA, Zhen WANG, and Akira KAWAKAMI Kansai Advanced Research Center, Communications Research Laboratory, Ministry of Posts

More information

Figure 4.1 Vector representation of magnetic field.

Figure 4.1 Vector representation of magnetic field. Chapter 4 Design of Vector Magnetic Field Sensor System 4.1 3-Dimensional Vector Field Representation The vector magnetic field is represented as a combination of three components along the Cartesian coordinate

More information

Overview of Present Axion Searches and Future Possibility in KEK

Overview of Present Axion Searches and Future Possibility in KEK Overview of Present Axion Searches and Future Possibility in KEK 11/12/2010 KEK 1, NAOJ 2, Osaka City Univ. 3 T. Tomaru 1, D. Tatsumi 2, N. Kanda 3, T. Suzuki 1 Detector tech. in high energy phys. Analysis

More information

Millimeter and Submillimeter SIS Mixers with the Noise Temperature Close to the Quantum Limit

Millimeter and Submillimeter SIS Mixers with the Noise Temperature Close to the Quantum Limit Fifth International Symposium on Space Terahertz Technology Page 73 Millimeter and Submillimeter SIS Mixers with the Noise Temperature Close to the Quantum Limit A. Karpov*, J. Blonder, B. Lazarefr, K.

More information

A Planar SIS Receiver with Logperiodic Antenna for Submillimeter Wavelengths. F. Schdfer *, E. Kreysa* T. Lehnert **, and K.H.

A Planar SIS Receiver with Logperiodic Antenna for Submillimeter Wavelengths. F. Schdfer *, E. Kreysa* T. Lehnert **, and K.H. Fourth International Symposium on Space Terahertz Technology Page 661 A Planar SIS Receiver with Logperiodic Antenna for Submillimeter Wavelengths F. Schdfer *, E. Kreysa* T. Lehnert **, and K.H. Gundlach**

More information

Superconducting RF Cavity Performance Degradation after Quenching in Static Magnetic Field

Superconducting RF Cavity Performance Degradation after Quenching in Static Magnetic Field Superconducting RF Cavity Performance Degradation after Quenching in Static Magnetic Field T. Khabiboulline, D. Sergatskov, I. Terechkine* Fermi National Accelerator Laboratory (FNAL) *MS-316, P.O. Box

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises Exercises 1 12 are primarily conceptual questions designed to see whether you understand the main concepts of the chapter. 1. The four areas in Figure 20.34 are in a magnetic field.

More information

Background (~EE369B)

Background (~EE369B) Background (~EE369B) Magnetic Resonance Imaging D. Nishimura Overview of NMR Hardware Image formation and k-space Excitation k-space Signals and contrast Signal-to-Noise Ratio (SNR) Pulse Sequences 13

More information

Inductive De-fluxing of Superconducting Quantum Interference Devices

Inductive De-fluxing of Superconducting Quantum Interference Devices Inductive De-fluxing of Superconducting Quantum Interference Devices Andrei N. Matlashov 1, Vasili K. Semenov 2*, William H. Anderson 3 1 Center for Axion and Precision Physics, IBS, Daejeon 34141, South

More information

AC Transport Option for the PPMS. 31 October, 2002

AC Transport Option for the PPMS. 31 October, 2002 AC Transport Option for the PPMS 31 October, 2002 Outline Basics of electrical transport measurements QD ACT Hardware Performing ACT Measurements Basic Troubleshooting Electrical Resistance Resistance:

More information

Electromagnet Motor Generator

Electromagnet Motor Generator Magnetism and Electromagnetic Induction Study Guide Chapter 36 & 37 Key Terms: Magnetic Pole Magnetic Field Magnetic Domain Electromagnet Motor Generator Electromagnetic Induction Faraday s Law Transformer

More information

CCDS. Lesson I. Wednesday, August 29, 12

CCDS. Lesson I. Wednesday, August 29, 12 CCDS Lesson I CCD OPERATION The predecessor of the CCD was a device called the BUCKET BRIGADE DEVICE developed at the Phillips Research Labs The BBD was an analog delay line, made up of capacitors such

More information

Filters And Waveform Shaping

Filters And Waveform Shaping Physics 3330 Experiment #3 Fall 2001 Purpose Filters And Waveform Shaping The aim of this experiment is to study the frequency filtering properties of passive (R, C, and L) circuits for sine waves, and

More information

The next science run of the gravitational wave detector NAUTILUS

The next science run of the gravitational wave detector NAUTILUS INSTITUTE OF PHYSICSPUBLISHING Class. Quantum Grav. 19 (2002) 1911 1917 CLASSICAL ANDQUANTUM GRAVITY PII: S0264-9381(02)30887-6 The next science run of the gravitational wave detector NAUTILUS PAstone

More information

REVISION #25, 12/12/2012

REVISION #25, 12/12/2012 HYPRES NIOBIUM INTEGRATED CIRCUIT FABRICATION PROCESS #03-10-45 DESIGN RULES REVISION #25, 12/12/2012 Direct all inquiries, questions, comments and suggestions concerning these design rules and/or HYPRES

More information

R.K.YADAV. 2. Explain with suitable sketch the operation of two-cavity Klystron amplifier. explain the concept of velocity and current modulations.

R.K.YADAV. 2. Explain with suitable sketch the operation of two-cavity Klystron amplifier. explain the concept of velocity and current modulations. Question Bank DEPARTMENT OF ELECTRONICS AND COMMUNICATION SUBJECT- MICROWAVE ENGINEERING(EEC-603) Unit-III 1. What are the high frequency limitations of conventional tubes? Explain clearly. 2. Explain

More information

Vibration studies of a superconducting accelerating

Vibration studies of a superconducting accelerating Vibration studies of a superconducting accelerating module at room temperature and at 4.5 K Ramila Amirikas, Alessandro Bertolini, Wilhelm Bialowons Vibration studies on a Type III cryomodule at room temperature

More information

Workshop,, Nov , Hirschberg. DITANET-Workshop

Workshop,, Nov , Hirschberg. DITANET-Workshop DITANET-Workshop Workshop,, Nov. 24-25 25 2009, Hirschberg A Cryogenic Current Comparator for FAIR M. Schwickert, H. Reeg, GSI Beam Diagnostics Department W. Vodel, R. Geithner, Friedrich-Schiller-Universität

More information