BME 3113, Dept. of BME Lecture on Introduction to Biosignal Processing

Size: px
Start display at page:

Download "BME 3113, Dept. of BME Lecture on Introduction to Biosignal Processing"

Transcription

1 What is a signal? A signal is a varying quantity whose value can be measured and which conveys information. A signal can be simply defined as a function that conveys information. Signals are represented mathematically as functions of one or more independent variables. Example: temperature, T=f(t) It can vary over time We can measure it using a thermometer It conveys information : knowing the temperature outside will inform our decision as to which clothes to wear In digital signal processing system, signal is represented as a sequence of numbers either on a computer or in digital hardware Example: we could store the temperature at various times of the day as a sequence of numbers in an array on a computer: each reading might be a temperature reading in Celsius Examples of Signal Signals are functions of one or more variables (independent variables) that carry/convey information. For example: Electrical signals - voltages and currents in a circuit, power, electric field strength Thermal signals temperature Light signals light intensity, Mechanical signals force, torque, pressure Acoustic signals ---audio or speech signals (analog or digital) such as human voice, a dog s bark, bird s song, Video signals ---intensity variations in an image (e.g. a CAT scan, MRI data) Biological signals ---sequence of bases in a gene Brain signal (Electro-encephalogram or ECG signal) Stock market data Domain and Range of a Signal Domain is the number of independent variable of a signal A signal uses time as the independent variable (i.e., the parameter on the horizontal axis), is said to be in the time domain, or temporal domain Signal uses frequency as the independent variable, resulting in the term, frequency domain. signals that use distance as the independent parameter are said to be in the spatial domain (distance is a measure of space). The independent variable of a signal Most common parameter: Time Others: Distance, x, Number Generic name: sample number Other name of independent variable horizontal axis x-axis, the domain, and the abscissa

2 Range of a Signal Dependent variable of a signal is the range Dependent variable of a signal Examples: Specific: voltage, light intensity, sound pressure, or an infinite number of other parameters Generic label: amplitude Other name of Dependent variable vertical axis y-axis, range, and ordinate Example: domain and range Temperature Temperature is a function of single real-valued variable, T=f(t) We say that domain of the signal is one-dimensional Range of the signal is one Black and white photo Domain of the signal is two-dimensional Range of the signal is one Color photo Domain of the signal is two-dimensional Range of the signal is three-dimensional Biological Signals or biosiganls Biosignals are space, time, or space time records of a biological event such as a beating heart or a contracting muscle. The electrical, chemical, and Mechanical activity that occurs during these biological events often produces signals that can be measured and analyzed. Contain useful information that can be used to understand the underlying physiological mechanisms of a specific biological event or system, and which may be useful for medical diagnosis. Biomedical signals means the bio-signals which are generated in biological systems only. Biomedical signals are observations of physiological activities of organisms, ranging from gene and protein sequences, to neural and cardiac rhythms, to tissue and organ images. Examples of biomedical signals: ECG (Electrocardiogram) signal, EEG (Electroencephalogram) signal, etc.

3 Describing biosignals Continuous signals are described by a continuous function s (t) which will show information at any time. *Most biomedical signals are continuous Descrete signals are described by a sequence s (m) which will show information exactly at a particular time. Determenistic signals are signals which can be determined and described exactly using mathematics or gaphics. Real world biosignals are never deterministic. Periodic signals belong to this group and are expressed by s(t)= s(t+nt) n is integer and T is period. Blood pressure could be characterized as a complex periodic signal. Stochastic signals cannot be expressed exactly but only in terms of probabilities. Stationary stochastic processes wil not change in time. The expectations of such a process is time independant. Most of them are non stationary. An example would be EEG (Electroencephalography) ECG signal The Electrocardiogram (ECG) represents the electrical activity of the heart. It is characterized by a number of waves P, QRS, T related to the heart activity. Another wave, called U wave is also present but its importance is not yet identified. EEG Signal The Electroencephalogram (EEG) is a recording of electrical activity originating from the brain. It is recorded on the surface of the scalp using electrodes, thus the signal is retrievable non-invasively. Signal varies in terms of amplitude and frequency Normal frequency range: 0.5Hz to50 Hz. Sources of Biomedical signals ENG: Electroneurogram - Signals from nerves EMG: Electromyogram- Signals from muscles ECG: Electrocardiogram- Signals from Heart ERG: Electroretinogram- Signals from retina of an eye EOG: Electrooculogram- Signals from cornea and retina of an eye EEG: Electroencephalogram- Signals from brain MEG: Magneto encephalogram- Signals from brain using magnetic field USG: Ultra sonogram- Imaging from ultra sound reflection from the internal organs of the body

4 Brief Description of Origin /Sources of Biosignals Bioelectric Signals Generated by nerve and muscle cells as a result of electrochemical changes within and between cells Can be measured with intracellular or extracellular electrodes Examples: ECG, EGG, EEG, and EMG are results of the Bioelectric signals taken from the human body Biomagnetic Signals Different organs (heart, lungs & brain) generate weak magnetic fields Measured from specific physiological activity that is linked to an accompanying electric field from a specific tissue or organ Uses very precise magnetic sensors or SQUID magnetometers (Superconducting Quantum Interference Device) Example: Magnetic field in the head when listening music Magnetoencephalography (MEG) - monitor magnetic activity from the brain Magnetoneurography (MNG) monitor peripheral nerves Magnetogastrography (MGG) monitor gastrointestinal tract Magnetocardiography (MCG) monitor the heart Biochemical Signals Contain information about changes in concentration of various chemical agents in the body Oxygen concentration Determine levels of glucose, lactate and metabolites Provides information about the function of various physiological systems Biomechanical Signals Produced by the mechanical functions of biological signals such as: motion, displacement, tension, force, pressure, and flow Blood pressure measurement Bioacoustic Signals Are special subset of biomechanical signals that involve vibrations (motion) Respiratory system, joints, and muscles generate distinct bioacoustic signals Often measured at the skin using acoustic transducers such as microphones and accelerometers Examples: Biological sounds, such as lung sounds, heart sounds, bowel sounds, and joint sounds, flow of blood in the heart or through vessels, the flow a air in the lungs and airways, in the joints and in the digestive tract etc. Biooptical Signals: Bio-optical signals are the result of the optical functions of the biological systems, occurring naturally or induced by the measurement. Generated by the optical, or light-induced, attributes of biological systems May occur naturally or signals can be introduced to measure a biological parameter using an external light medium Example: human skin tissue Bio-impedance signals: tissue impedance provides information about composition, blood volume and distribution, endocrine activity, etc. Test sinusoidal currents may be injected into the tissue using a frequency range (50KHz-1MHz) to minimize electrode polarizations problems and low

5 current (20MicroA to 20mA) to avoid tissue heating. The voltage drop due to the current and tissue impedance is measured. Bioimpedance signal Example: breath signal Gastric bioimpedance signal Thermal Biosignals: continuous or discrete carry information about the temperature of the body core or temperature distribution on the surface. The temperature measurement reflects physical and biochemical processes proceeded in organism. The measurement is usually performed by a contact method using a variety of thermometers. In special cases it is used 2D thermographic camera. Importance of Biomedical Signal Analysis Diagnosis of diseases Patient monitoring Biomedical research Classifications Since there are many Biosignals it is very hard to find a unique way of classifying them. Classification by existence Permanent biosignals They can exist without an artificial trigger and are available at any time. The source for those Biosignals is already inside the body.

6 Induced biosignals are artifically triggered or induced and last only during the time of excitation. Classification by dynamic nature A static biosignal carries information in its steadystate level which may exhibit relatively slow changes over time. Dynamic biosignals yield extensive changes in the time domain, with dynamic processes conveying the physiological information of interest. Classification by origin Magnetic biosignals These signals include motion and displacement signals, pressure and tension and flow signals, and others. Optic biosignals are the result of optical functions of the biologic system, occurring naturally or induced by the measurement (Blood oxigination) Acoustic biosignals Many physiological phenomina create noise like the flow of blood in the heart or throuhg blood vessels also the flow or air through the airways creates acoustic sounds. Chemical biosignals reflect chemical composition and its temporal changes in body solids, liquids, and gases. Examples are measuring the concentration of various ions and vicinity of a cell by means of specific ion electrodes Thermal Biosignals Temperature measurement shows physical and biochemical processes proceeded in organism.(heat loss, heat absorption)

7 According to signal source Bioelectric Signal Bioacoustics Signal Biomechanical Signal Biochemical Signal Bio-magnetic Signal Bio- optical signal Four stages of Biosignal processing Bandwidths, Amplitude Ranges, and Quantization of Some Frequently Used Biosignals

Biomedical Signals. Signals and Images in Medicine Lecture 1 Dr Nabeel Anwar

Biomedical Signals. Signals and Images in Medicine Lecture 1 Dr Nabeel Anwar Biomedical Signals Signals and Images in Medicine Lecture 1 Dr Nabeel Anwar Books 1. The Scientist and Engineer's Guide to Digital Signal Processing By Steven W. Smith, Ph.D. This book is written in simple

More information

*Notebook is excluded

*Notebook is excluded Biomedical Measurement Training System This equipment is designed for students to learn how to design specific measuring circuits and detect the basic physiological signals with practical operation. Moreover,

More information

* Notebook is excluded. Features KL-720 contains nine modules, including Electrocardiogram Measurement, E lectromyogram Measurement,

* Notebook is excluded. Features KL-720 contains nine modules, including Electrocardiogram Measurement, E lectromyogram Measurement, KL-720 Biomedical Measurement System Supplied by: 011 683 4365 This equipment is intended for students to learn how to design specific measuring circuits and detect the basic physiological signals with

More information

Wireless Sensor Networks. EP2980

Wireless Sensor Networks. EP2980 Wireless Sensor Networks EP2980 Jonas.Wahslen@sth.kth.se Sensors What to sense? How to sense/measure? Available sensors Technology Medical ECG Pulsoximeter Applications Smart Grid Industrial Automation

More information

Biomedical Signal Processing and Applications

Biomedical Signal Processing and Applications Proceedings of the 2010 International Conference on Industrial Engineering and Operations Management Dhaka, Bangladesh, January 9 10, 2010 Biomedical Signal Processing and Applications Muhammad Ibn Ibrahimy

More information

Biomedical Electrodes, Sensors, and Transducers. Definition of Biomedical Electrodes, Sensors, and Transducers. Electrode: Sensor: Transducer:

Biomedical Electrodes, Sensors, and Transducers. Definition of Biomedical Electrodes, Sensors, and Transducers. Electrode: Sensor: Transducer: Biomedical Electrodes, Sensors, and Transducers from: Chaterjee, Biomedical Instrumentation, chapter 6 Key Points Electrodes, Sensors, and Transducers: - types of electrodes - voltaic - electrolytic -

More information

Biomedical Sensor Systems Laboratory. Institute for Neural Engineering Graz University of Technology

Biomedical Sensor Systems Laboratory. Institute for Neural Engineering Graz University of Technology Biomedical Sensor Systems Laboratory Institute for Neural Engineering Graz University of Technology 2017 Bioinstrumentation Measurement of physiological variables Invasive or non-invasive Minimize disturbance

More information

Digital Signal Processing Lecture 1

Digital Signal Processing Lecture 1 Remote Sensing Laboratory Dept. of Information Engineering and Computer Science University of Trento Via Sommarive, 14, I-38123 Povo, Trento, Italy Digital Signal Processing Lecture 1 Prof. Begüm Demir

More information

Removal of Power-Line Interference from Biomedical Signal using Notch Filter

Removal of Power-Line Interference from Biomedical Signal using Notch Filter ISSN:1991-8178 Australian Journal of Basic and Applied Sciences Journal home page: www.ajbasweb.com Removal of Power-Line Interference from Biomedical Signal using Notch Filter 1 L. Thulasimani and 2 M.

More information

CHAPTER 7 INTERFERENCE CANCELLATION IN EMG SIGNAL

CHAPTER 7 INTERFERENCE CANCELLATION IN EMG SIGNAL 131 CHAPTER 7 INTERFERENCE CANCELLATION IN EMG SIGNAL 7.1 INTRODUCTION Electromyogram (EMG) is the electrical activity of the activated motor units in muscle. The EMG signal resembles a zero mean random

More information

Physiological Signal Processing Primer

Physiological Signal Processing Primer Physiological Signal Processing Primer This document is intended to provide the user with some background information on the methods employed in representing bio-potential signals, such as EMG and EEG.

More information

Detection of Abnormalities in the Functioning of Heart Using DSP Techniques

Detection of Abnormalities in the Functioning of Heart Using DSP Techniques RESEARCH ARTICLE International Journal of Engineering and Techniques - Volume 3 Issue 3, May-June 2017 OPEN ACCESS Detection of Abnormalities in the Functioning of Heart Using DSP Techniques CH. Aruna

More information

Magnetoencephalography and Auditory Neural Representations

Magnetoencephalography and Auditory Neural Representations Magnetoencephalography and Auditory Neural Representations Jonathan Z. Simon Nai Ding Electrical & Computer Engineering, University of Maryland, College Park SBEC 2010 Non-invasive, Passive, Silent Neural

More information

Biosignal Analysis Biosignal Processing Methods. Medical Informatics WS 2007/2008

Biosignal Analysis Biosignal Processing Methods. Medical Informatics WS 2007/2008 Biosignal Analysis Biosignal Processing Methods Medical Informatics WS 2007/2008 JH van Bemmel, MA Musen: Handbook of medical informatics, Springer 1997 Biosignal Analysis 1 Introduction Fig. 8.1: The

More information

E C E S I G N A L S A N D S Y S T E M S. ECE 2221 Signals and Systems, Sem /2011, Dr. Sigit Jarot

E C E S I G N A L S A N D S Y S T E M S. ECE 2221 Signals and Systems, Sem /2011, Dr. Sigit Jarot 1 E C E 2 2 2 1 S I G N A L S A N D S Y S T E M S ECE 2221 Signals and Systems, Sem 3 2010/2011, Dr. Sigit Jarot Outline Course Objectives Learning Outcomes Course Synopsis Text and Supporting Books Course

More information

Biomedical Engineering Evoked Responses

Biomedical Engineering Evoked Responses Biomedical Engineering Evoked Responses Dr. rer. nat. Andreas Neubauer andreas.neubauer@medma.uni-heidelberg.de Tel.: 0621 383 5126 Stimulation of biological systems and data acquisition 1. How can biological

More information

EDL Group #3 Final Report - Surface Electromyograph System

EDL Group #3 Final Report - Surface Electromyograph System EDL Group #3 Final Report - Surface Electromyograph System Group Members: Aakash Patil (07D07021), Jay Parikh (07D07019) INTRODUCTION The EMG signal measures electrical currents generated in muscles during

More information

NEWS RELEASE IMEC REPORTS TWO WIRELESS PLATFORMS FOR BIOMEDICAL MONITORING

NEWS RELEASE IMEC REPORTS TWO WIRELESS PLATFORMS FOR BIOMEDICAL MONITORING NEWS RELEASE IMEC REPORTS TWO WIRELESS PLATFORMS FOR BIOMEDICAL MONITORING EMBEDDED SYSTEMS SILICON VALLEY IMEC WIRELESS SENSOR NODE CONFERENCE TRACK APRIL 4, 2007, 2:00PM - 3:30PM HILTON, ALMADEN ROOM

More information

Overview of Digital Signal Processing

Overview of Digital Signal Processing Overview of Digital Signal Processing Chapter Intended Learning Outcomes: (i) Understand basic terminology in digital signal processing (ii) Differentiate digital signal processing and analog signal processing

More information

Biomedical Instrumentation (BME420 ) Chapter 6: Biopotential Amplifiers John G. Webster 4 th Edition

Biomedical Instrumentation (BME420 ) Chapter 6: Biopotential Amplifiers John G. Webster 4 th Edition Biomedical Instrumentation (BME420 ) Chapter 6: Biopotential Amplifiers John G. Webster 4 th Edition Dr. Qasem Qananwah BME 420 Department of Biomedical Systems and Informatics Engineering 1 Biopotential

More information

Overview of Signal Processing

Overview of Signal Processing Overview of Signal Processing Chapter Intended Learning Outcomes: (i) Understand basic terminology in signal processing (ii) Differentiate digital signal processing and analog signal processing (iii) Describe

More information

Biomedical Instrumentation B2. Dealing with noise

Biomedical Instrumentation B2. Dealing with noise Biomedical Instrumentation B2. Dealing with noise B18/BME2 Dr Gari Clifford Noise & artifact in biomedical signals Ambient / power line interference: 50 ±0.2 Hz mains noise (or 60 Hz in many data sets)

More information

4.2 SHORT QUESTIONS AND ANSWERS 1. What is meant by cell? The basic living unit of the body is cell. The function of organs and other structure of the body is understood by cell organization. 2. Give the

More information

Статистическая обработка сигналов. Введение

Статистическая обработка сигналов. Введение Статистическая обработка сигналов. Введение А.Г. Трофимов к.т.н., доцент, НИЯУ МИФИ lab@neuroinfo.ru http://datalearning.ru Курс Статистическая обработка временных рядов Сентябрь 2018 А.Г. Трофимов Введение

More information

A Finite Impulse Response (FIR) Filtering Technique for Enhancement of Electroencephalographic (EEG) Signal

A Finite Impulse Response (FIR) Filtering Technique for Enhancement of Electroencephalographic (EEG) Signal IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 232-3331, Volume 12, Issue 4 Ver. I (Jul. Aug. 217), PP 29-35 www.iosrjournals.org A Finite Impulse Response

More information

Introduction to Electronic Circuit for Instrumentation

Introduction to Electronic Circuit for Instrumentation Introduction to Electronic Circuit for Instrumentation Fundamental quantities Length Mass Time Charge and electric current Heat and temperature Light and luminous intensity Matter (atom, ion and molecule)

More information

Available online at ScienceDirect. Procedia Computer Science 42 (2014 )

Available online at   ScienceDirect. Procedia Computer Science 42 (2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 42 (2014 ) 365 371 International Conference on Robot PRIDE 2013-2014 - Medical and Rehabilitation Robotics and Instrumentation,

More information

Biomechanical Instrumentation Considerations in Data Acquisition ÉCOLE DES SCIENCES DE L ACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS

Biomechanical Instrumentation Considerations in Data Acquisition ÉCOLE DES SCIENCES DE L ACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition Data Acquisition in Biomechanics Why??? Describe and Understand a Phenomena Test a Theory Evaluate a condition/situation Data Acquisition

More information

TE 302 DISCRETE SIGNALS AND SYSTEMS. Chapter 1: INTRODUCTION

TE 302 DISCRETE SIGNALS AND SYSTEMS. Chapter 1: INTRODUCTION TE 302 DISCRETE SIGNALS AND SYSTEMS Study on the behavior and processing of information bearing functions as they are currently used in human communication and the systems involved. Chapter 1: INTRODUCTION

More information

Changing the sampling rate

Changing the sampling rate Noise Lecture 3 Finally you should be aware of the Nyquist rate when you re designing systems. First of all you must know your system and the limitations, e.g. decreasing sampling rate in the speech transfer

More information

Application of Breakthrough

Application of Breakthrough Application of Breakthrough Sensor Technology to Medical Diagnostic Equipment 21 August 2011 Levon P. Thorose PSI CEO Precision Instrumentation Inc. (PSI) levonpthorose@hotmail.com Content Breakthrough

More information

Ques on (2): [18 Marks] a) Draw the atrial synchronous Pacemaker block diagram and explain its operation. Benha University June 2013

Ques on (2): [18 Marks] a) Draw the atrial synchronous Pacemaker block diagram and explain its operation. Benha University June 2013 Benha University June 2013 Benha Faculty of Engineering Electrical Department Hospital Instrumentations (E472) 4 Th year (control) Dr.Waleed Abdel Aziz Salem Time: 3 Hrs Answer the following questions.

More information

EKG De-noising using 2-D Wavelet Techniques

EKG De-noising using 2-D Wavelet Techniques EKG De-noising using -D Wavelet Techniques Abstract Sarosh Patel, Manan Joshi and Dr. Lawrence Hmurcik University of Bridgeport Bridgeport, CT {saroshp, mjoshi, hmurcik}@bridgeport.edu The electrocardiogram

More information

NON-CONTACT VOLTAGE AND ELECTRIC FIELD MEASUREMENT USING THE ELECTRIC POTENTIAL SENSOR

NON-CONTACT VOLTAGE AND ELECTRIC FIELD MEASUREMENT USING THE ELECTRIC POTENTIAL SENSOR NON-CONTACT VOLTAGE AND ELECTRIC FIELD MEASUREMENT USING THE ELECTRIC POTENTIAL SENSOR, University of Sussex, UK R.J. Prance A. Aydin S. Beardsmore-Rust M. Nock C.J. Harland P.B. Stiffell P. Watson D.

More information

The physics of ultrasound. Dr Graeme Taylor Guy s & St Thomas NHS Trust

The physics of ultrasound. Dr Graeme Taylor Guy s & St Thomas NHS Trust The physics of ultrasound Dr Graeme Taylor Guy s & St Thomas NHS Trust Physics & Instrumentation Modern ultrasound equipment is continually evolving This talk will cover the basics What will be covered?

More information

Syllabus Recording Devices

Syllabus Recording Devices Syllabus Recording Devices Introduction, Strip chart recorders, Galvanometer recorders, Null balance recorders, Potentiometer type recorders, Bridge type recorders, LVDT type recorders, Circular chart

More information

HUMAN DETECTION AND RESCUE USING BIO POTENTIAL SIGNALS

HUMAN DETECTION AND RESCUE USING BIO POTENTIAL SIGNALS ISET GOLDEN JUBILEE SYMPOSIUM Indian Society of Earthquake Technology Department of Earthquake Engineering Building IIT Roorkee, Roorkee October 20-21, 2012 Paper No. A007 HUMAN DETECTION AND RESCUE USING

More information

UNIVERSITY OF CALGARY DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING BIOMEDICAL SIGNAL ANALYSIS ENEL 563

UNIVERSITY OF CALGARY DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING BIOMEDICAL SIGNAL ANALYSIS ENEL 563 UNIVERSITY OF CALGARY DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING BIOMEDICAL SIGNAL ANALYSIS ENEL 563 Total: 50 Marks FINAL EXAMINATION Tuesday, December 13 th, 2005 8:00 A.M. 11:00 A.M. ENA 123 3

More information

Introduction to Digital Signal Processing (Discrete-time Signal Processing)

Introduction to Digital Signal Processing (Discrete-time Signal Processing) Introduction to Digital Signal Processing (Discrete-time Signal Processing) Prof. Chu-Song Chen Research Center for Info. Tech. Innovation, Academia Sinica, Taiwan Dept. CSIE & GINM National Taiwan University

More information

BRAIN COMPUTER INTERFACE (BCI) RESEARCH CENTER AT SRM UNIVERSITY

BRAIN COMPUTER INTERFACE (BCI) RESEARCH CENTER AT SRM UNIVERSITY BRAIN COMPUTER INTERFACE (BCI) RESEARCH CENTER AT SRM UNIVERSITY INTRODUCTION TO BCI Brain Computer Interfacing has been one of the growing fields of research and development in recent years. An Electroencephalograph

More information

BME 701 Lecture 1. Measurement and Instrumentation

BME 701 Lecture 1. Measurement and Instrumentation BME 701 Lecture 1 Measurement and Instrumentation 1 Cochlear Implant 2 Advances in Vision (Retinal Stimulation) 3 Mini Gastric Imaging 4 5 Aspects of Measurement General Instrumentation Transducers (Electrodes)

More information

Noise Suppression in Unshielded Magnetocardiography: Least-Mean Squared Algorithm versus Genetic Algorithm

Noise Suppression in Unshielded Magnetocardiography: Least-Mean Squared Algorithm versus Genetic Algorithm Edith Cowan University Research Online ECU Publications 2012 2012 Noise Suppression in Unshielded Magnetocardiography: Least-Mean Squared Algorithm versus Genetic Algorithm Valentina Tiporlini Edith Cowan

More information

GBM8320 Dispositifs Médicaux Intelligents

GBM8320 Dispositifs Médicaux Intelligents GBM8320 Dispositifs Médicaux Intelligents Biopotential amplifiers Part 1 Mohamad Sawan et al. Laboratoire de neurotechnologies Polystim http://www.cours.polymtl.ca/gbm8320/ mohamad.sawan@polymtl.ca M5418

More information

Physiological signal(bio-signals) Method, Application, Proposal

Physiological signal(bio-signals) Method, Application, Proposal Physiological signal(bio-signals) Method, Application, Proposal Bio-Signals 1. Electrical signals ECG,EMG,EEG etc 2. Non-electrical signals Breathing, ph, movement etc General Procedure of bio-signal recognition

More information

Biopotential Electrodes

Biopotential Electrodes Biomedical Instrumentation Prof. Dr. Nizamettin AYDIN naydin@yildiz.edu.tr naydin@ieee.org http://www.yildiz.edu.tr/~naydin Biopotential Electrodes 1 2 Electrode electrolyte interface The current crosses

More information

Implementation of wireless ECG measurement system in ubiquitous health-care environment

Implementation of wireless ECG measurement system in ubiquitous health-care environment Implementation of wireless ECG measurement system in ubiquitous health-care environment M. C. KIM 1, J. Y. YOO 1, S. Y. YE 2, D. K. JUNG 3, J. H. RO 4, G. R. JEON 4 1 Department of Interdisciplinary Program

More information

Bio-Impedance Spectroscopy (BIS) Measurement System for Wearable Devices

Bio-Impedance Spectroscopy (BIS) Measurement System for Wearable Devices Bio-Impedance Spectroscopy (BIS) Measurement System for Wearable Devices Bassem Ibrahim*, Drew A. Hall, Roozbeh Jafari* * Embedded Signal Processing (ESP) Lab, Texas A&M University, TX, USA BioSensors

More information

IBES - Introduction to Biomedical Electronic Systems

IBES - Introduction to Biomedical Electronic Systems Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering Teaching unit: 710 - EEL - Department of Electronic Engineering Academic year: Degree: 2018 MASTER'S DEGREE IN ELECTRONIC

More information

Lauri Parkkonen. Jyväskylä Summer School 2013

Lauri Parkkonen. Jyväskylä Summer School 2013 Jyväskylä Summer School 2013 COM7: Electromagnetic Signals from The Human Brain: Fundamentals and Analysis (TIEJ659) Pre-processing of MEG data Lauri Parkkonen Dept. Biomedical Engineering and Computational

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION NDE2002 predict. assure. improve. National Seminar of ISNT Chennai, 5. 7. 12. 2002 www.nde2002.org AN ELECTROMAGNETIC ACOUSTIC TECHNIQUE FOR NON-INVASIVE DEFECT DETECTION IN MECHANICAL PROSTHETIC HEART

More information

Chapter 16. Waves and Sound

Chapter 16. Waves and Sound Chapter 16 Waves and Sound 16.1 The Nature of Waves 1. A wave is a traveling disturbance. 2. A wave carries energy from place to place. 1 16.1 The Nature of Waves Transverse Wave 16.1 The Nature of Waves

More information

Bio-Potential Amplifiers

Bio-Potential Amplifiers Bio-Potential Amplifiers Biomedical Models for Diagnosis Body Signal Sensor Signal Processing Output Diagnosis Body signals and sensors were covered in EE470 The signal processing part is in EE471 Bio-Potential

More information

Development of Electrocardiograph Monitoring System

Development of Electrocardiograph Monitoring System Development of Electrocardiograph Monitoring System Khairul Affendi Rosli 1*, Mohd. Hafizi Omar 1, Ahmad Fariz Hasan 1, Khairil Syahmi Musa 1, Mohd Fairuz Muhamad Fadzil 1, and Shu Hwei Neu 1 1 Department

More information

Potential Risks of MRI in Device Patients

Potential Risks of MRI in Device Patients Outline Potential Risks of MRI in Device Patients Redha Boubertakh r.boubertakh@qmul.ac.uk MRI and cardiac implantable electronic devices (CIED) Components of an MRI scanner MRI implant and device safety

More information

Linguistics 401 LECTURE #2. BASIC ACOUSTIC CONCEPTS (A review)

Linguistics 401 LECTURE #2. BASIC ACOUSTIC CONCEPTS (A review) Linguistics 401 LECTURE #2 BASIC ACOUSTIC CONCEPTS (A review) Unit of wave: CYCLE one complete wave (=one complete crest and trough) The number of cycles per second: FREQUENCY cycles per second (cps) =

More information

ELG3336 Design of Mechatronics System

ELG3336 Design of Mechatronics System ELG3336 Design of Mechatronics System Elements of a Data Acquisition System 2 Analog Signal Data Acquisition Hardware Your Signal Data Acquisition DAQ Device System Computer Cable Terminal Block Data Acquisition

More information

Biosignal filtering and artifact rejection, Part II. Biosignal processing, S Autumn 2017

Biosignal filtering and artifact rejection, Part II. Biosignal processing, S Autumn 2017 Biosignal filtering and artifact rejection, Part II Biosignal processing, 521273S Autumn 2017 Example: eye blinks interfere with EEG EEG includes ocular artifacts that originates from eye blinks EEG: electroencephalography

More information

Design on Electrocardiosignal Detection Sensor

Design on Electrocardiosignal Detection Sensor Sensors & Transducers 203 by IFSA http://www.sensorsportal.com Design on Electrocardiosignal Detection Sensor Hao ZHANG School of Mathematics and Computer Science, Tongling University, 24406, China E-mail:

More information

Module 5: Experimental Modal Analysis for SHM Lecture 36: Laser doppler vibrometry. The Lecture Contains: Laser Doppler Vibrometry

Module 5: Experimental Modal Analysis for SHM Lecture 36: Laser doppler vibrometry. The Lecture Contains: Laser Doppler Vibrometry The Lecture Contains: Laser Doppler Vibrometry Basics of Laser Doppler Vibrometry Components of the LDV system Working with the LDV system file:///d /neha%20backup%20courses%2019-09-2011/structural_health/lecture36/36_1.html

More information

V Technical Textiles Interconnect PRESENTED BY V TECHNICAL TEXTILES, INC.

V Technical Textiles Interconnect PRESENTED BY V TECHNICAL TEXTILES, INC. 1 V Technical Textiles Interconnect PRESENTED BY V TECHNICAL TEXTILES, INC. Introduction 2 Flexible conductive fabrics are taking the place of thin film technologies for sensing, heating, and flexible

More information

Evaluation Method of Magnetic Sensors Using the Calibrated Phantom for Magnetoencephalography

Evaluation Method of Magnetic Sensors Using the Calibrated Phantom for Magnetoencephalography J. Magn. Soc. Jpn., 41, 7-74 (217) Evaluation Method of Magnetic Sensors Using the Calibrated Phantom for Magnetoencephalography D. Oyama, Y. Adachi, and G. Uehara Applied Electronics Laboratory,

More information

1. What is a Cathode? a. The generator from which a conventional current leaves a polarized electrical device b. The power supply from which a

1. What is a Cathode? a. The generator from which a conventional current leaves a polarized electrical device b. The power supply from which a 1. What is a Cathode? a. The generator from which a conventional current leaves a polarized electrical device b. The power supply from which a conventional current leaves a polarized electrical device

More information

Hardware. MRI System. MRI system Multicoil Microstrip. Part1

Hardware. MRI System. MRI system Multicoil Microstrip. Part1 Hardware MRI system Multicoil Microstrip MRI System Part1 1 The MRI system is made up of a variety of subsystems. the Operator Workspace Gradient Driver subsystem The Physiological Acquisition Controller

More information

1. INTRODUCTION: 2. EOG: system, handicapped people, wheelchair.

1. INTRODUCTION: 2. EOG: system, handicapped people, wheelchair. ABSTRACT This paper presents a new method to control and guide mobile robots. In this case, to send different commands we have used electrooculography (EOG) techniques, so that, control is made by means

More information

Digital Signal Processing:

Digital Signal Processing: Digital Signal Processing: Mathematical and algorithmic manipulation of discretized and quantized or naturally digital signals in order to extract the most relevant and pertinent information that is carried

More information

Introduction to Medical Electronics Industry Test Analysis and Solution

Introduction to Medical Electronics Industry Test Analysis and Solution Background and development status of the medical electronics industry Background Introduction to Medical Electronics Industry Test Analysis and Solution As the global population ages, increasing health

More information

Amarillo ISD Science Curriculum

Amarillo ISD Science Curriculum Amarillo Independent School District follows the Texas Essential Knowledge Skills (TEKS). All of AISD curriculum documents resources are aligned to the TEKS. The State of Texas State Board of Education

More information

Your key partner for electromagnetism in harsh environment MRI

Your key partner for electromagnetism in harsh environment MRI DESCRIPTION Kapteos electro-optic probes eoprobe TM give you access to a complete measurement of the electric (E) field, in both frequency and time domains for single-shot or repetitive signals, whatever

More information

Wireless Neural Loggers

Wireless Neural Loggers Deuteron Technologies Ltd. Electronics for Neuroscience Wireless Neural Loggers On-animal neural recording Deuteron Technologies provides a family of animal-borne neural data loggers for recording 8, 16,

More information

System Inputs, Physical Modeling, and Time & Frequency Domains

System Inputs, Physical Modeling, and Time & Frequency Domains System Inputs, Physical Modeling, and Time & Frequency Domains There are three topics that require more discussion at this point of our study. They are: Classification of System Inputs, Physical Modeling,

More information

Medical Images Analysis and Processing

Medical Images Analysis and Processing Medical Images Analysis and Processing - 25642 Emad Course Introduction Course Information: Type: Graduated Credits: 3 Prerequisites: Digital Image Processing Course Introduction Reference(s): Insight

More information

ELECTROMYOGRAPHY UNIT-4

ELECTROMYOGRAPHY UNIT-4 ELECTROMYOGRAPHY UNIT-4 INTRODUCTION EMG is the study of muscle electrical signals. EMG is sometimes referred to as myoelectric activity. Muscle tissue conducts electrical potentials similar to the way

More information

Lecture 4 Biopotential Amplifiers

Lecture 4 Biopotential Amplifiers Bioinstrument Sahand University of Technology Lecture 4 Biopotential Amplifiers Dr. Shamekhi Summer 2016 OpAmp and Rules 1- A = (gain is infinity) 2- Vo = 0, when v1 = v2 (no offset voltage) 3- Rd = (input

More information

Using Rank Order Filters to Decompose the Electromyogram

Using Rank Order Filters to Decompose the Electromyogram Using Rank Order Filters to Decompose the Electromyogram D.J. Roberson C.B. Schrader droberson@utsa.edu schrader@utsa.edu Postdoctoral Fellow Professor The University of Texas at San Antonio, San Antonio,

More information

Introduction to Biomedical Engineering

Introduction to Biomedical Engineering Introduction to Biomedical Engineering Biomedical Instrumentation Kung-Bin Sung 5/8/007 Outline Chapter 8 and chapter 5 of st edition: Bioinstrumentation Bridge circuit Operational amplifiers, instrumentation

More information

Bioelectric Signal Measuring System

Bioelectric Signal Measuring System Journal of Physics: Conference Series OPEN ACCESS Bioelectric Signal Measuring System To cite this article: A Guadarrama-Santana et al 2015 J. Phys.: Conf. Ser. 582 012017 View the article online for updates

More information

Chapter 7. Waves and Sound

Chapter 7. Waves and Sound Chapter 7 Waves and Sound What is wave? A wave is a disturbance that propagates from one place to another. Or simply, it carries energy from place to place. The easiest type of wave to visualize is a transverse

More information

Signals A Preliminary Discussion EE442 Analog & Digital Communication Systems Lecture 2

Signals A Preliminary Discussion EE442 Analog & Digital Communication Systems Lecture 2 Signals A Preliminary Discussion EE442 Analog & Digital Communication Systems Lecture 2 The Fourier transform of single pulse is the sinc function. EE 442 Signal Preliminaries 1 Communication Systems and

More information

Crew Health Monitoring Systems

Crew Health Monitoring Systems Project Dissemination Athens 24-11-2015 Advanced Cockpit for Reduction Of Stress and Workload Presented by Aristeidis Nikologiannis Prepared by Aristeidis Nikologiannis Security & Safety Systems Department

More information

BME 405 BIOMEDICAL ENGINEERING SENIOR DESIGN 1 Fall 2005 BME Design Mini-Project Project Title

BME 405 BIOMEDICAL ENGINEERING SENIOR DESIGN 1 Fall 2005 BME Design Mini-Project Project Title BME 405 BIOMEDICAL ENGINEERING SENIOR DESIGN 1 Fall 2005 BME Design Mini-Project Project Title Basic system for Electrocardiography Customer/Clinical need A recent health care analysis have demonstrated

More information

BME 599a Applied Electrophysiology Midterm (Thursday 10/12/00 09:30)

BME 599a Applied Electrophysiology Midterm (Thursday 10/12/00 09:30) 1 BME 599a Applied Electrophysiology Midterm (Thursday 10/12/00 09:30) Time : 45 minutes Name : MARKING PRECEDENT Points : 70 USC ID : Note : When asked for short written answers please pay attention to

More information

IMPROVEMENTS IN ELECTROCARDIOGRAPHY SMOOTHENING AND AMPLIFICATION

IMPROVEMENTS IN ELECTROCARDIOGRAPHY SMOOTHENING AND AMPLIFICATION IMPROVEMENTS IN ELECTROCARDIOGRAPHY SMOOTHENING AND AMPLIFICATION Manan Joshi, Sarosh Patel, Dr. Lawrence Hmurcik Electrical Engineering Department University of Bridgeport Bridgeport, CT 06604 Abstract

More information

STUDY NOTES UNIT I IMAGE PERCEPTION AND SAMPLING. Elements of Digital Image Processing Systems. Elements of Visual Perception structure of human eye

STUDY NOTES UNIT I IMAGE PERCEPTION AND SAMPLING. Elements of Digital Image Processing Systems. Elements of Visual Perception structure of human eye DIGITAL IMAGE PROCESSING STUDY NOTES UNIT I IMAGE PERCEPTION AND SAMPLING Elements of Digital Image Processing Systems Elements of Visual Perception structure of human eye light, luminance, brightness

More information

IMPLEMENTATION OF DIGITAL FILTER ON FPGA FOR ECG SIGNAL PROCESSING

IMPLEMENTATION OF DIGITAL FILTER ON FPGA FOR ECG SIGNAL PROCESSING IMPLEMENTATION OF DIGITAL FILTER ON FPGA FOR ECG SIGNAL PROCESSING Pramod R. Bokde Department of Electronics Engg. Priyadarshini Bhagwati College of Engg. Nagpur, India pramod.bokde@gmail.com Nitin K.

More information

Introduction to Computational Neuroscience

Introduction to Computational Neuroscience Introduction to Computational Neuroscience Lecture 4: Data analysis I Lesson Title 1 Introduction 2 Structure and Function of the NS 3 Windows to the Brain 4 Data analysis 5 Data analysis II 6 Single neuron

More information

II Year (04 Semester) EE6403 Discrete Time Systems and Signal Processing

II Year (04 Semester) EE6403 Discrete Time Systems and Signal Processing Class Subject Code Subject II Year (04 Semester) EE6403 Discrete Time Systems and Signal Processing 1.CONTENT LIST: Introduction to Unit I - Signals and Systems 2. SKILLS ADDRESSED: Listening 3. OBJECTIVE

More information

EE-241. Introductory Electronics Laboratory Project Ideas Fall 2009

EE-241. Introductory Electronics Laboratory Project Ideas Fall 2009 EE-241. Introductory Electronics Laboratory Project Ideas Fall 2009 EASY TO MODERATE 1. Musical notes display In this project students would build a display unit that will show high and low frequency sounds

More information

Wavelet Based Classification of Finger Movements Using EEG Signals

Wavelet Based Classification of Finger Movements Using EEG Signals 903 Wavelet Based Classification of Finger Movements Using EEG R. Shantha Selva Kumari, 2 P. Induja Senior Professor & Head, Department of ECE, Mepco Schlenk Engineering College Sivakasi, Tamilnadu, India

More information

EOG artifact removal from EEG using a RBF neural network

EOG artifact removal from EEG using a RBF neural network EOG artifact removal from EEG using a RBF neural network Mohammad seifi mohamad_saifi@yahoo.com Ali akbar kargaran erdechi aliakbar.kargaran@gmail.com MS students, University of hakim Sabzevari, Sabzevar,

More information

Medical Imaging. X-rays, CT/CAT scans, Ultrasound, Magnetic Resonance Imaging

Medical Imaging. X-rays, CT/CAT scans, Ultrasound, Magnetic Resonance Imaging Medical Imaging X-rays, CT/CAT scans, Ultrasound, Magnetic Resonance Imaging From: Physics for the IB Diploma Coursebook 6th Edition by Tsokos, Hoeben and Headlee And Higher Level Physics 2 nd Edition

More information

The Human Brain and Senses: Memory

The Human Brain and Senses: Memory The Human Brain and Senses: Memory Methods of Learning Learning - There are several types of memory, and each is processed in a different part of the brain. Remembering Mirror Writing Today we will be.

More information

780. Biomedical signal identification and analysis

780. Biomedical signal identification and analysis 780. Biomedical signal identification and analysis Agata Nawrocka 1, Andrzej Kot 2, Marcin Nawrocki 3 1, 2 Department of Process Control, AGH University of Science and Technology, Poland 3 Department of

More information

SQUID - Superconducting QUantum Interference Device. Introduction History Operation Applications

SQUID - Superconducting QUantum Interference Device. Introduction History Operation Applications SQUID - Superconducting QUantum Interference Device Introduction History Operation Applications Introduction Very sensitive magnetometer Superconducting quantum interference device based on quantum effects

More information

NeuVision 500. Abundant and friendly display interface, multifold ECG display screen:

NeuVision 500. Abundant and friendly display interface, multifold ECG display screen: NeuVision 500 Features This monitoring system may be used to monitor patient s 6 physiological parameters: ECG, respiratory rate, body temperature, non-invasive blood pressure (NIBP), pulse oxygen saturation

More information

Introduction. ELCT903, Sensor Technology Electronics and Electrical Engineering Department 1. Dr.-Eng. Hisham El-Sherif

Introduction. ELCT903, Sensor Technology Electronics and Electrical Engineering Department 1. Dr.-Eng. Hisham El-Sherif Introduction In automation industry every mechatronic system has some sensors to measure the status of the process variables. The analogy between the human controlled system and a computer controlled system

More information

WRIST BAND PULSE OXIMETER

WRIST BAND PULSE OXIMETER WRIST BAND PULSE OXIMETER Vinay Kadam 1, Shahrukh Shaikh 2 1,2- Department of Biomedical Engineering, D.Y. Patil School of Biotechnology and Bioinformatics, C.B.D Belapur, Navi Mumbai (India) ABSTRACT

More information

A Superior Current Source with Improved Bandwidth and Output Impedance for Bioimpedance Spectroscopy

A Superior Current Source with Improved Bandwidth and Output Impedance for Bioimpedance Spectroscopy International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 12, Issue 12 (December 2016), PP.24-29 A Superior Current Source with Improved Bandwidth

More information

ECG Project. Raphal Blanchet, Axel Boland, Thomas Donnay, Mario Jose Teles Varandas, University of Liege

ECG Project. Raphal Blanchet, Axel Boland, Thomas Donnay, Mario Jose Teles Varandas, University of Liege ECG Project Raphal Blanchet, Axel Boland, Thomas Donnay, Mario Jose Teles Varandas, University of Liege Abstract We were asked to design our own Electrocardiogram. Obviously, recording heart beats without

More information

Analog-Digital Interface

Analog-Digital Interface Analog-Digital Interface Tuesday 24 November 15 Summary Previous Class Dependability Today: Redundancy Error Correcting Codes Analog-Digital Interface Converters, Sensors / Actuators Sampling DSP Frequency

More information

An introduction to Digital Signal Processing

An introduction to Digital Signal Processing An introduction to Digital Signal Processing Claudia Feregrino-Uribe & Alicia Morales-Reyes Original material: Rene Cumplido Autumn 2015, CCC-INAOE Introduction DSP is one of the most powerful technologies

More information