Common Types of Noise

Size: px
Start display at page:

Download "Common Types of Noise"

Transcription

1

2 Common Types of Noise Name Example Description Impulse Ignition, TVI Not Random, Cure by Shielding, Quantizing, Decoding, etc. BER Digital Systems, DAC's & ADC's. Often Bit Resolution and/or Bit Fidelity Shot Transistors Corpuscular Current Flow, Lots of Impulses Thermal Resistors, Atmosphere Thermal Agitation of Electrons Act Like Signal Flicker (1/f) Recombination Low frequency, FET s H

3 Noise Voltage

4 ktb----thenoise Floor R - j X R+jX L L k = 1.38 x 10 joule / k T = Temperature (K) B = Bandwidth (Hz) Available Noise Power, P av = ktb (Power Delivered to a Conjugate Load), (i.e. R = R, X = X) At Standard Temperature T (=290K) : kt= 4 x W/Hz = 174dBm / Hz Across 50 Ohms

5 Noise Power is a Function of Bandwidth Noise power = 10 log (BW 2 /BW 1 ) Bandwidth Noise power change Noise power 1 MHz 60 db -114 dbm 1 khz 30 db -144 dbm 10 Hz 10 db -164 dbm 2 Hz 3 db dbm 1 Hz 0 db -174 dbm

6 What is Noise Figure?. (Original Definition) (S/N) in (S/N) out F(dB) = 10 log (S/N) in (S/N) out Ts = 290K The linear ratio is known as Noise Factor

7 What is Noise Figure? Small Signal Imperfect Amplifier Signal larger But Noisier Thermal Agitation of Electrons adds noise to the signal Page 7

8 What is Noise Figure? Noise added by Amplifier Na Noise Added (Na) Noise (in) Noise (in) x Gain [N in G] Gain 20dB NF 10dB T o= 290K Nin at 290K N a Imperfect Amplifier Degrades Signal to Noise Ratio Np = Na + Nin G Page 8

9 What s the noise figure of an attenuator? Does an attenuator ADD noise? Does an attenuator attenuate noise? How does loss impact the noise figure of my receiver system?

10 Why do we measure Noise Figure? Example... Transmitter: ERP Path Losses Rcvr. Ant. Gain Power to Receiver + 55 dbm -200 db 60 db -85 dbm Power to Antenna: +40 dbm Frequency: 12 GHz Antenna Gain: +15 db Receiver: Noise 290K Noise in 100 MHz BW Receiver N.F. Receiver Sensitivity -174 dbm/hz + 80 db +5 db -89 dbm Link Margin: 4 db ERP = +55 dbm Path Losses: -200 db Choices to increase Margin by 3dB 1. Double transmitter power 2. Increase gain of antennas by 3dB 3. Lower the receiver noise figure by 3dB Receiver NF: 5 db Bandwidth: 100 MHz Antenna Gain: 60 db Page 10

11 Effect of 2nd Stage Contribution The Friis equation F12 = F1 + F2-1 G1 R Input Noise kt B o BG 1, Na1 BG, N 2 a2 1st Stage 2nd Stage Na1 Na2 N a1 G2 Total Noise Added Total Noise Power Output kt B o N a= (F-1)kT o B G K T obg1 k T o B G 1 G2 Noise Input x System Gain F = F total 1 + F F n- 1 G1 G 1 G2... Gn-1 F 12 = F 1 + F 2-1 G 1 Page 11

12 Friis Equation cascade or second stage noise contribution F12 = F1 + F2-1 G1 GAIN X 6dB (4) 12 db (16) 20 db (100) A B C N Factor Y F ABC = (2.0-1) + (4.0-1) 4 4 x 16 = = (3 db) F ACB = (4.0-1) + (2.0-1) 4 4 x 100 = = (4 db)

13 How Do We Get Low Noise Amps? Select or construct low-noise Transistors High electron mobility materials- Gaas low feedback and output resistance Low base current/small signal= low temp Find optimum balance between match, gain and noise output

14 Transistor Noise Parameters Finding the best balance between gain, match and noise

15 Noise Circles Gamma Optimum = Transistor match for minimum noise output

16 NF Measurement Techniques Signal Generator Method Y-factor Method (Calibrated noise source) Y-factor without a calibrated noise source

17 Signal Generator Method Signal Generator DUT Spectrum Analyzer/ Power Meter/ Receiver-Detector Load Steps 1. Measure SG Level output 2. Measure DUT output 3. Compute Gain 4. Terminate/Load Dut(KTB) 5. Measure Noise output of DUT 6. NFig= Noise Output -Gain dbm/hz

18 Signal Generator Method Can t see the DUT noise? >Add a preamp Signal Generator DUT Preamp Spectrum Analyzer/ Power Meter/ Receiver-Detector Load NF = Noise output - Gain(Dut) - Gain(Pre)+ 174 dbm/hz

19 . Noise Power is Linear with Temperature N IN Ts Na, G N = N +Gk(T )B out a { Added Noise Input Noise, N IN {s out Noise Output Power N 2 N 1 N a SLOPE kgb F = N IN OUT N G H 0 T 1 T 2 T s

20 Definition of Effective Input Noise Temperature, T e. Ts Na N = N + kgbts out a Zs@ Ts Zs@ Te Na=0 N out = kgb(t e + T s ) N out Noise Output Power Na T e T s H

21 Measurement of Noise. Z T c, T h N (T ) a e { N N 2 1 N 2 N p N kgb(t + T ) Y = 2 = h e N kgb(t + T ) 1 c e Noise Power Output N 1 N a T o= 290K Tc Th Ts T e = F = T h -YT T + T c F = e o Y-1 T o ( T T h T Y T c - 1) o o Y - 1 Temperature of Source Impedance

22 Where Do T H and T C Come From? Noise Sources.. Gas Discharge Tubes Load/Termination Sun Noise (stars and galaxies, cold sky, cold load) Diode Noise sources Commercial and home-built

23 Avalanche Diode Noise Source ENR table Matching Pad Bias Input 28 VDC Noise Output

24 Excess Noise Ratio ENR (db) = 10 log ( Th 290 ) 290 Model Frequency Range ENR HP HP 346A 10 MHz - 18 GHz 6 db HP 346B 10 MHz - 18 GHz 15 db HP 346C 10 MHz GHz 15 db HP 346C/K01 HP 346B/H GHz GHz 20 to 7 db 5 db

25 Noise Figure Meter. Low Pass Filter f (2 GHz) IF

26 Making a Measurement. Calibration (Measurement System) DUT Measurement (DUT & System) N p N 2 N 2 ' N 1 ' N a ' N a N 1 kg G B kg B N a Y = N2 / N1 T c ' T ' h T s T c T h slope = kg 2 B = N 2 N 1 slope = kg G B = N 2 N T h T c T h T c G DUT = N 2 - N 1 T h T c N2 ' - N1 ' T h ' -T c ' F = F + Meas DUT F sys 1 G DUT

27 Simpler Yet.. +28V Measurement System N P (on) On Noise Source Off Noise Sourc e DUT Low Pass Filter N P (off) SECOND STAGE NF = ENR - 10 log ( Y-1) Y = N Pon / N Poff Page 27

28 ERRORS! Adapter and path losses Noise Source Cable C1 G 1 Coax/WG adapter G 2 DUT Coax/WG adapter Cable C2 Measurement system Page 28

29 ERRORS! Mismatch Uncertainty Noise Source Calibration ρ 3 ρ 1 ρ 2 ρ 4 DUT Measuring System Measurement ρ = reflection coefficient at a reference plane Page 29

30 Y-factor without a calibrated noise source Differentiating

31 Y-factor without a calibrated noise source Step Attenuator

32 Y-factor without a calibrated noise source 2 NF = 1 Y/ ENR

33 Conclusions ktb is THE noise floor at -174 dbm/hz Noise figure = Signal input /Noise input vs. Signal output /Noise output Noise figure is noise added by an amplifier or receiver Optimize noise figure by placing lowest noise/loss elements near antenna Second stage contribution is typically low There are several methods to measure noise figure The uncalibrated noise method could be very popular with hams

34 Noise Algebra N2 N1 No Tc Th - N2 kgb(te+th) Y = --- = N1 kgb(te+tc) --- Th-YTc Te = Y-1 (Solve for Te) Using T e = ( F -1 ) x To F Th Tc Y To To = Y F Th Tc Y Tc Tc = Y Page 34

Noise Figure Definitions and Measurements What is this all about?...

Noise Figure Definitions and Measurements What is this all about?... Noise Figure Definitions and Measurements What is this all about?... Bertrand Zauhar, ve2zaz@rac.ca November 2011 1 Today's Program on Noise Figure What is RF noise, how to quantify it, What is Noise Factor

More information

Agilent Fundamentals of RF and Microwave Noise Figure Measurements

Agilent Fundamentals of RF and Microwave Noise Figure Measurements Agilent Fundamentals of RF and Microwave Noise Figure Measurements Application Note 57-1 2 Table of Contents 1. What is Noise Figure?.....................................4 Introduction.................................................4

More information

Noise Figure Basics. John Eckert k2ox. Page

Noise Figure Basics. John Eckert k2ox. Page Noise Figure Basics John Eckert k2ox Noise Figure Basics Agenda Fundamental noise concepts How do we make measurements? What DUTs can we measure? What influences the measurement uncertainty? 2 Fundamental

More information

NOISE INTERNAL NOISE. Thermal Noise

NOISE INTERNAL NOISE. Thermal Noise NOISE INTERNAL NOISE......1 Thermal Noise......1 Shot Noise......2 Frequency dependent noise......3 THERMAL NOISE......3 Resistors in series......3 Resistors in parallel......4 Power Spectral Density......4

More information

Understanding Noise Figure

Understanding Noise Figure Understanding Noise Figure Iulian Rosu, YO3DAC / VA3IUL, http://www.qsl.net/va3iul One of the most frequently discussed forms of noise is known as Thermal Noise. Thermal noise is a random fluctuation in

More information

Noise by the Numbers

Noise by the Numbers Noise by the Numbers 1 What can I do with noise? The two primary applications for white noise are signal jamming/impairment and reference level comparison. Signal jamming/impairment is further divided

More information

Technical Note. HVM Receiver Noise Figure Measurements

Technical Note. HVM Receiver Noise Figure Measurements Technical Note HVM Receiver Noise Figure Measurements Joe Kelly, Ph.D. Verigy 1/13 Abstract In the last few years, low-noise amplifiers (LNA) have become integrated into receiver devices that bring signals

More information

1. Distortion in Nonlinear Systems

1. Distortion in Nonlinear Systems ECE145A/ECE18A Performance Limitations of Amplifiers 1. Distortion in Nonlinear Systems The upper limit of useful operation is limited by distortion. All analog systems and components of systems (amplifiers

More information

Advancements in Noise Measurement

Advancements in Noise Measurement Advancements in Noise Measurement by Ken Wong, Senior Member IEEE R&D Principal Engineer Component Test Division Agilent Technologies, Inc. Page 1 EuMw Objectives 007 Aerospace Agilent Workshop and Defense

More information

R&D White Paper WHP 066. Specifying UHF active antennas and calculating system performance. Research & Development BRITISH BROADCASTING CORPORATION

R&D White Paper WHP 066. Specifying UHF active antennas and calculating system performance. Research & Development BRITISH BROADCASTING CORPORATION R&D White Paper WHP 066 July 2003 Specifying UHF active antennas and calculating system performance J. Salter Research & Development BRITISH BROADCASTING CORPORATION BBC Research & Development White Paper

More information

Mohr on Receiver Noise Characterization, Insights & Surprises

Mohr on Receiver Noise Characterization, Insights & Surprises Tutorial Mohr on eceiver Noise Characterization, Insights & urprises ichard J. Mohr, PE President,.J. Mohr Associates, Inc. Presented to the Microwave Theory & Techniques ociety of the IEEE Long Island

More information

Lecture 14 - Low Noise Amplifier Design

Lecture 14 - Low Noise Amplifier Design Lecture 14 - Low Noise Amplifier Design Microwave Active Circuit Analysis and Design Clive Poole and Izzat Darwazeh Academic Press Inc. Poole-Darwazeh 2015 Lecture 14 - Low Noise Amplifier Design Slide1

More information

New Ultra-Fast Noise Parameter System... Opening A New Realm of Possibilities in Noise Characterization

New Ultra-Fast Noise Parameter System... Opening A New Realm of Possibilities in Noise Characterization New Ultra-Fast Noise Parameter System... Opening A New Realm of Possibilities in Noise Characterization David Ballo Application Development Engineer Agilent Technologies Gary Simpson Chief Technology Officer

More information

Noise and Interference Limited Systems

Noise and Interference Limited Systems Chapter 3 Noise and Interference Limited Systems 47 Basics of link budgets Link budgets show how different components and propagation processes influence the available SNR Link budgets can be used to compute

More information

Noise guarding and shielding

Noise guarding and shielding Noise guarding and shielding Tadeusz Stepinski, Signaler och system Noise Physics of noise Noise calculations Guarding and shielding Sources of interference Shielding Guarding Symmetric-ended signals Physics

More information

TSEK02: Radio Electronics Lecture 6: Propagation and Noise. Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 6: Propagation and Noise. Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 6: Propagation and Noise Ted Johansson, EKS, ISY 2 Propagation and Noise - Channel and antenna: not in the Razavi book - Noise: 2.3 The wireless channel The antenna Signal

More information

Noise Figure Measurement Accuracy: The Y-Factor Method

Noise Figure Measurement Accuracy: The Y-Factor Method APPLICATION NOTE Noise Figure Measurement Accuracy: The Y-Factor Method 1.6 1.4 Measurement uncertainty (db) 1.2 1 0.8 0.6 0.4 0.2 0 DUT noise figure (db) 2 4 6 30 25 20 DUT gain (db) 15 10 5 Table of

More information

Analog Communication (10EC53)

Analog Communication (10EC53) Introduction The function of the communication system is to make available at the destination a signal originating at a distant point. This signal is called the desired signal. Unfortunately, during the

More information

A Method for Gain over Temperature Measurements Using Two Hot Noise Sources

A Method for Gain over Temperature Measurements Using Two Hot Noise Sources A Method for Gain over Temperature Measurements Using Two Hot Noise Sources Vince Rodriguez and Charles Osborne MI Technologies: Suwanee, 30024 GA, USA vrodriguez@mitechnologies.com Abstract P Gain over

More information

7. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission

7. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission 7. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission 7.1 Test Setup Refer to the APPENDIX I. 7.2 Limit According to 15.247(d), in any 100 khz bandwidth outside the frequency band

More information

Whitham D. Reeve Anchorage, Alaska USA See last page for document information

Whitham D. Reeve Anchorage, Alaska USA See last page for document information Noise utorial Part V ~ Noise Factor Measurements Whitham D. Reeve Anchorage, Alaska USA See last page for document information Noise utorial V ~ Noise Factor Measurements Abstract: With the exception of

More information

Low frequency noise measurements in direct detection radiometers

Low frequency noise measurements in direct detection radiometers Low frequency noise measurements in direct detection radiometers E. Artal, B. Aja, J. Cagigas, J.L. Cano, L. de la Fuente, A. Pérez, E. Villa Universidad de Cantabria, Santander (Spain) Receiver Gain Stability

More information

RF Fundamental Concepts and Performance Parameters

RF Fundamental Concepts and Performance Parameters RF Fundamental Concepts and erformance arameters CCE 50 RF and Microwave System Design Dr. Owen Casha B. Eng. (Hons.) h.d. 09/0/0 Overview Introduction Nonlinearity and Time Variance System Noise Thermal

More information

NEWTON TRAINING (2018):

NEWTON TRAINING (2018): NEWTON TRAINING (2018): RADIOMETER, SQUARE LAW DETECTOR and Noise Diodes Basics and HartRAO implementations. Keith Jones Basic Radiometer A device for measuring the radiant flux (power) of Electromagnetic

More information

TSEK02: Radio Electronics Lecture 6: Propagation and Noise. Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 6: Propagation and Noise. Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 6: Propagation and Noise Ted Johansson, EKS, ISY 2 Propagation and Noise - Channel and antenna: not in the Razavi book - Noise: 2.3 The wireless channel The antenna Signal

More information

The Use of Radio Spectrum. Welcome to. Where is radio used? Compare: Basic Wireless Communication Technique ETIF05. Göran Jönsson

The Use of Radio Spectrum. Welcome to. Where is radio used? Compare: Basic Wireless Communication Technique ETIF05. Göran Jönsson Welcome to Basic Wireless Communication Technique The Use of adio Spectrum ETIF05 EIT 2016-08-29 Göran Jönsson Electrical and Information Technology EIT 2016-08-29 Basic Wireless Communication Technique

More information

Spectrian Dual Mode Cellular Power Amplifier Model No.: SCLPA 800 CR FCC ID: I2ONTHX51AA

Spectrian Dual Mode Cellular Power Amplifier Model No.: SCLPA 800 CR FCC ID: I2ONTHX51AA A Class II Permissive Change - FCC Part 22 Type Acceptance Test Report for Spectrian Dual Mode Cellular Power Amplifier Model No.: SCLPA 800 CR FCC ID: I2ONTHX51AA Date of Report: May 26, 1999 Total No.

More information

Keysight Technologies Noise Figure Measurement Accuracy: The Y-Factor Method

Keysight Technologies Noise Figure Measurement Accuracy: The Y-Factor Method Keysight Technologies Noise Figure Measurement Accuracy: The Y-Factor Method Application Note 1.6 1.4 Measurement uncertainty (db) 1.2 1 0.8 0.6 0.4 0.2 0 DUT noise figure (db) 2 4 6 30 25 20 DUT gain

More information

RECEIVER SENSITIVITY / NOISE

RECEIVER SENSITIVITY / NOISE RECEIVER SENSITIVITY / NOISE RECEIVER SENSITIVITY Sensitivity in a receiver is normally taken as the imum input signal (S ) required to produce a specified output signal having a specified signal-to-noise

More information

SHF Communication Technologies AG

SHF Communication Technologies AG SHF Communication Technologies AG Wilhelm-von-Siemens-Str. 23 Aufgang D 2277 Berlin Marienfelde Germany Phone ++49 30 / 772 05 0 Fax ++49 30 / 753 0 78 E-Mail: sales@shf.biz Web: http://www.shf.biz Tutorial

More information

Calibration Techniques for the Home Lab

Calibration Techniques for the Home Lab Calibration Techniques for the Home Lab Jacques Audet VE2AZX jacaudet@videotron.ca Web: ve2azx.net September 2018 ve2azx.net 1 Summary - Using a reference multimeter as a calibrator for less accurate instruments.

More information

Keysight Technologies 8 Hints for Making Better Measurements Using RF Signal Generators. Application Note

Keysight Technologies 8 Hints for Making Better Measurements Using RF Signal Generators. Application Note Keysight Technologies 8 Hints for Making Better Measurements Using RF Signal Generators Application Note 02 Keysight 8 Hints for Making Better Measurements Using RF Signal Generators - Application Note

More information

Introduction to Analog And Digital Communications

Introduction to Analog And Digital Communications Introduction to Analog And Digital Communications Second Edition Simon Haykin, Michael Moher Chapter 11 System and Noise Calculations 11.1 Electrical Noise 11.2 Noise Figure 11.3 Equivalent Noise Temperature

More information

Noise and Distortion in Microwave System

Noise and Distortion in Microwave System Noise and Distortion in Microwave System Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 1 Introduction Noise is a random process from many sources: thermal,

More information

Noise Figure Measurement Accuracy The Y-Factor Method. Application Note 57-2

Noise Figure Measurement Accuracy The Y-Factor Method. Application Note 57-2 Noise Figure Measurement Accuracy The Y-Factor Method Application Note 57-2 Table of contents 1 Introduction...4 2 Noise figure measurement...5 2.1 Fundamentals...5 2.1.1 What is noise figure?...5 2.1.2

More information

Swept Return Loss & VSWR Antenna Measurements using the Eagle Technologies RF Bridge

Swept Return Loss & VSWR Antenna Measurements using the Eagle Technologies RF Bridge Swept Return Loss & VSWR Antenna Measurements using the Eagle Technologies RF Bridge April, 2015 Page 1 of 7 Introduction Return loss and VSWR are a measure of the magnitude of a transmitted RF Signal

More information

Microwave Seminar. Noise and Bit Error Ratio. J. Richie. Spring 2013

Microwave Seminar. Noise and Bit Error Ratio. J. Richie. Spring 2013 Microwave Seminar Noise and Bit Error Ratio J. Richie Spring 2013 Outline Noise Noise and Equivalent Temperature Noise Figure Small Scale Fade and Multipath Impulse Response Model Types of Fading Modulation

More information

LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers

LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers General Description The LM13600 series consists of two current controlled transconductance amplifiers each with

More information

Application Note: Swept Return Loss & VSWR Antenna Measurements using the Eagle Technologies RF Bridge

Application Note: Swept Return Loss & VSWR Antenna Measurements using the Eagle Technologies RF Bridge : Swept Return Loss & VSWR Antenna Measurements using the Eagle Technologies RF Bridge FCT-1008A Introduction Return loss and VSWR are a measure of the magnitude of a transmitted RF Signal in relation

More information

RF Receiver Hardware Design

RF Receiver Hardware Design RF Receiver Hardware Design Bill Sward bsward@rtlogic.com February 18, 2011 Topics Customer Requirements Communication link environment Performance Parameters/Metrics Frequency Conversion Architectures

More information

Preliminary Users Manual for the Self Contained Return Loss and Cable Fault Test Set with Amplified Wideband Noise Source Copyright 2001 Bryan K.

Preliminary Users Manual for the Self Contained Return Loss and Cable Fault Test Set with Amplified Wideband Noise Source Copyright 2001 Bryan K. Preliminary Users Manual for the Self Contained Return Loss and Cable Fault Test Set with Amplified Wideband Noise Source Copyright 2001 Bryan K. Blackburn Self Contained Test Set Test Port Regulated 12

More information

Application Note 57-2 Noise Figure Measurement Accuracy

Application Note 57-2 Noise Figure Measurement Accuracy application Application Note 57- Noise Figure Measurement Accuracy Table of contents Chapter Introduction..................................................... Accurate noise figure measurements mean money..................

More information

A Test Lab Techno Corp. Report Number:1410FR27

A Test Lab Techno Corp. Report Number:1410FR27 Mode 5: IEEE 802.11n 2.4GHz 40MHz Link Mode 2422 2437 2452 Page 41 of 85 9 Out of Band Conducted Emissions Measurement 9.1. Limit In any 100 khz bandwidth outside the frequency band in which the spread

More information

On-Wafer Noise Parameter Measurements using Cold-Noise Source and Automatic Receiver Calibration

On-Wafer Noise Parameter Measurements using Cold-Noise Source and Automatic Receiver Calibration Focus Microwaves Inc. 970 Montee de Liesse, Suite 308 Ville St.Laurent, Quebec, Canada, H4T-1W7 Tel: +1-514-335-67, Fax: +1-514-335-687 E-mail: info@focus-microwaves.com Website: http://www.focus-microwaves.com

More information

AVN Training HartRAO 2016

AVN Training HartRAO 2016 AVN Training HartRAO 2016 Microwave 1 Overview Introduction to basic components used in microwave receivers. Performance characteristics of these components. Assembly of components into a complete microwave

More information

RF Board Design. EEC 134 Application Note. Jo Han Yu

RF Board Design. EEC 134 Application Note. Jo Han Yu EEC 134 Application Note Jo Han Yu EEC 134 Application Note RF Board Design Introduction The objective of this application note is to outline the process of designing system and PCB layout for RF board

More information

The Friis Transmission Formula

The Friis Transmission Formula The Friis Transmission Formula If we assume that the antennas are aligned for maximum transmission and reception, then in free space, P RX = G TXA e P TX 4πr 2 where A e is the receiving aperture of the

More information

Measurement of RF Interference from a Canopy 900MHz Access Point and Subscriber Module Using A Yagi Antenna

Measurement of RF Interference from a Canopy 900MHz Access Point and Subscriber Module Using A Yagi Antenna Measurement of RF Interference from a Canopy 900MHz Access Point and Subscriber Module Using A Yagi Antenna For : Motorola, Inc. 1301 East Algonquin Road Schaumburg, IL 60196 P.O. No. : 40335 Date Tested

More information

Audio Noise Figure Meter

Audio Noise Figure Meter Audio Noise Figure Meter Abstract Low noise amplifiers in the audio range are used in many applications. The definition of 'lownoise' is very flexible and poorly defined so any experimenter in this field

More information

350MHz, Ultra-Low-Noise Op Amps

350MHz, Ultra-Low-Noise Op Amps 9-442; Rev ; /95 EVALUATION KIT AVAILABLE 35MHz, Ultra-Low-Noise Op Amps General Description The / op amps combine high-speed performance with ultra-low-noise performance. The is compensated for closed-loop

More information

COUPLING / DECOUPLING NETWORK (CDN) CDN AF TYPE, CDN CAN

COUPLING / DECOUPLING NETWORK (CDN) CDN AF TYPE, CDN CAN IEC / EN 61000-4-6 specifies the design and performance of a range of coupling / decoupling networks (CDNs). Each CDN is specific to the of cable and the intended signal carried on the cable. Teseq offers

More information

MWA REVB LNA Measurements

MWA REVB LNA Measurements 1 MWA REVB LNA Measurements Hamdi Mani, Judd Bowman Abstract The MWA LNA (REVB) was measured on the Low Frequency Radio astronomy Lab using state of the art test equipment. S-parameters of the amplifier

More information

A Noise-Temperature Measurement System Using a Cryogenic Attenuator

A Noise-Temperature Measurement System Using a Cryogenic Attenuator TMO Progress Report 42-135 November 15, 1998 A Noise-Temperature Measurement System Using a Cryogenic Attenuator J. E. Fernandez 1 This article describes a method to obtain accurate and repeatable input

More information

Preamplifiers for Callisto Solar Radio Spectrometer

Preamplifiers for Callisto Solar Radio Spectrometer Preamplifiers for Callisto Solar Radio Spectrometer Whitham Reeve and Christian Monstein 1. Introduction We investigated the performance of three amplifiers (figure 1) for Callisto applications by measuring

More information

Noise generators. Spatial Combining of Multiple Microwave Noise Radiators NOISE ARRAY. This article reports on. experiments to increase the

Noise generators. Spatial Combining of Multiple Microwave Noise Radiators NOISE ARRAY. This article reports on. experiments to increase the From April 2008 High Frequency Electronics Copyright 2008 Summit Technical Media LLC Spatial Combining of Multiple Microwave Noise Radiators By Jiri Polivka Spacek Labs Inc. Noise generators This article

More information

UNDERSTANDING NOISE PARAMETER MEASUREMENTS (AN )

UNDERSTANDING NOISE PARAMETER MEASUREMENTS (AN ) UNDERSTANDING NOISE PARAMETER MEASUREMENTS (AN-60-040) Overview This application note reviews noise theory & measurements and S-parameter measurements used to characterize transistors and amplifiers at

More information

Keysight Technologies Making Accurate Intermodulation Distortion Measurements with the PNA-X Network Analyzer, 10 MHz to 26.5 GHz

Keysight Technologies Making Accurate Intermodulation Distortion Measurements with the PNA-X Network Analyzer, 10 MHz to 26.5 GHz Keysight Technologies Making Accurate Intermodulation Distortion Measurements with the PNA-X Network Analyzer, 10 MHz to 26.5 GHz Application Note Overview This application note describes accuracy considerations

More information

PARAMETER CONDITIONS TYPICAL PERFORMANCE Operating Supply Voltage 3.1V to 3.5V Supply Current V CC = 3.3V, LO applied 152mA

PARAMETER CONDITIONS TYPICAL PERFORMANCE Operating Supply Voltage 3.1V to 3.5V Supply Current V CC = 3.3V, LO applied 152mA DESCRIPTION LT5578 Demonstration circuit 1545A-x is a high linearity upconverting mixer featuring the LT5578. The LT 5578 is a high performance upconverting mixer IC optimized for output frequencies in

More information

R&TTE (1999/5/EC ) Directive ETSI EN V1.6.1: 2004 TEST REPORT

R&TTE (1999/5/EC ) Directive ETSI EN V1.6.1: 2004 TEST REPORT Page: 1 of 29 R&TTE (1999/5/EC ) Directive ETSI EN 300 328 V1.6.1: 2004 TEST REPORT FOR Product Name: Brand Name: Model Name: Model Difference: Report No.: Bluetooth Module Mitsumi WML-C40NB,WML-C40NH,

More information

Power Measurement Basics

Power Measurement Basics Back to Basics - 2006 Objectives On completion of this module, you will be able to: Explain the importance of power measurements Define the three basic types of power measurements Describe the power meter/sensor

More information

A Low Noise GHz Amplifier

A Low Noise GHz Amplifier A Low Noise 3.4-4.6 GHz Amplifier C. Risacher*, M. Dahlgren*, V. Belitsky* * GARD, Radio & Space Science Department with Onsala Space Observatory, Microtechnology Centre at Chalmers (MC2), Chalmers University

More information

Utilizzo del Time Domain per misure EMI

Utilizzo del Time Domain per misure EMI Utilizzo del Time Domain per misure EMI Roberto Sacchi Measurement Expert Manager - Europe 7 Giugno 2017 Compliance EMI receiver requirements (CISPR 16-1-1 ) range 9 khz - 18 GHz: A normal +/- 2 db absolute

More information

Ave output power ANT 1(dBm) Ave output power ANT 2 (dbm)

Ave output power ANT 1(dBm) Ave output power ANT 2 (dbm) Page 41 of 103 9.6. Test Result The test was performed with 802.11b Channel Frequency (MHz) power ANT 1(dBm) power ANT 2 (dbm) power ANT 1(mW) power ANT 2 (mw) Limits dbm / W Low 2412 7.20 7.37 5.248 5.458

More information

Network Analysis Basics

Network Analysis Basics Adolfo Del Solar Application Engineer adolfo_del-solar@agilent.com MD1010 Network B2B Agenda Overview What Measurements do we make? Network Analyzer Hardware Error Models and Calibration Example Measurements

More information

Goals of the Lab: Photodetectors and Noise (Part 2) Department of Physics. Slide 1. PHYSICS6770 Laboratory 4

Goals of the Lab: Photodetectors and Noise (Part 2) Department of Physics. Slide 1. PHYSICS6770 Laboratory 4 Slide 1 Goals of the Lab: Understand the origin and properties of thermal noise Understand the origin and properties of optical shot noise In this lab, You will qualitatively and quantitatively determine

More information

UNIVERSITI MALAYSIA PERLIS Pusat Pengajian Kejuruteraan Komputer dan Perhubungan Semester 1, 2011/12 DKT 211 Basic Communication Engineering

UNIVERSITI MALAYSIA PERLIS Pusat Pengajian Kejuruteraan Komputer dan Perhubungan Semester 1, 2011/12 DKT 211 Basic Communication Engineering UNIVERSITI MALAYSIA PERLIS Pusat Pengajian Kejuruteraan Komputer dan Perhubungan Semester 1, 2011/12 DKT 211 Basic Communication Engineering TUTORIAL 1: NOISE AND TRANSMISSION MEDIA & EM TUTORIAL 1 CHAPTER

More information

Assist Lecturer: Marwa Maki. Active Filters

Assist Lecturer: Marwa Maki. Active Filters Active Filters In past lecture we noticed that the main disadvantage of Passive Filters is that the amplitude of the output signals is less than that of the input signals, i.e., the gain is never greater

More information

MICROWAVE RADIO SYSTEMS GAIN. PENTel.Com Engr. Josephine Bagay, Ece faculty

MICROWAVE RADIO SYSTEMS GAIN. PENTel.Com Engr. Josephine Bagay, Ece faculty MICROWAVE RADIO SYSTEMS GAIN PENTel.Com Engr. Josephine Bagay, Ece faculty SYSTEM GAIN G s is the difference between the nominal output power of a transmitter (P t ) and the minimum input power to a receiver

More information

I.E.S-(Conv.)-2007 ELECTRONICS AND TELECOMMUNICATION ENGINEERING PAPER - II Time Allowed: 3 hours Maximum Marks : 200 Candidates should attempt Question No. 1 which is compulsory and FOUR more questions

More information

Advanced Compliance Solutions, Inc FAU Blvd, Suite 310 Boca Raton, Florida (561)

Advanced Compliance Solutions, Inc FAU Blvd, Suite 310 Boca Raton, Florida (561) 2129.01 Advanced Compliance Solutions, Inc. 3998 FAU Blvd, Suite 310 Boca Raton, Florida 33431 (561) 961-5585 Technical Report No. 09-2067a-2 EMI Evaluation of the AMM Marketing, LLC s E-Pulse UH 900,

More information

ELEN726 Microwave Measurements: Theory & Techniques. Lecture 3 Amplifier & Mixer Measurements

ELEN726 Microwave Measurements: Theory & Techniques. Lecture 3 Amplifier & Mixer Measurements http://www.hfoscillators.com/apskhanna/teaching.html ELEN726 Microwave Measurements: Theory & Techniques Lecture 3 Amplifier & Mixer Measurements References: http://www.hfoscillators.com/apskhanna/scu/wi04_elen726/class3.html

More information

Chapter 1: Introduction. EET-223: RF Communication Circuits Walter Lara

Chapter 1: Introduction. EET-223: RF Communication Circuits Walter Lara Chapter 1: Introduction EET-223: RF Communication Circuits Walter Lara Introduction Electronic communication involves transmission over medium from source to destination Information can contain voice,

More information

Radiated Spurious Emission Testing. Jari Vikstedt

Radiated Spurious Emission Testing. Jari Vikstedt Radiated Spurious Emission Testing Jari Vikstedt jari.vikstedt@ets-lindgren.com What is RSE? RSE = radiated spurious emission Radiated chamber Emission EMI Spurious intentional radiator 2 Spurious Spurious,

More information

EXAM Amplifiers and Instrumentation (EE1C31)

EXAM Amplifiers and Instrumentation (EE1C31) DELFT UNIVERSITY OF TECHNOLOGY Faculty of Electrical Engineering, Mathematics and Computer Science EXAM Amplifiers and Instrumentation (EE1C31) April 18, 2017, 9.00-12.00 hr This exam consists of four

More information

ECE-342 Test 1: Sep 27, :00-8:00, Closed Book. Name : SOLUTION

ECE-342 Test 1: Sep 27, :00-8:00, Closed Book. Name : SOLUTION ECE-342 Test 1: Sep 27, 2011 6:00-8:00, Closed Book Name : SOLUTION All solutions must provide units as appropriate. Use the physical constants and data as provided on the formula sheet the last page of

More information

Application Note 5525

Application Note 5525 Using the Wafer Scale Packaged Detector in 2 to 6 GHz Applications Application Note 5525 Introduction The is a broadband directional coupler with integrated temperature compensated detector designed for

More information

27-31 GHz 1W Power Amplifier TGA4509-EPU

27-31 GHz 1W Power Amplifier TGA4509-EPU 27-31 GHz 1W Power Amplifier Key Features 22 db Nominal Gain @ 30 GHz 30 dbm Nominal Pout @ P1dB 25% PAE @ P1dB -10 db Nominal Return Loss Built-in Power Detector 0.25-µm mmw phemt 3MI Bias Conditions:

More information

Chapter X Measuring VSWR and Gain in Wireless Systems By Eamon Nash

Chapter X Measuring VSWR and Gain in Wireless Systems By Eamon Nash Chapter X Measuring VSWR and Gain in Wireless Systems By Eamon Nash Introduction Measurement and control of gain and reflected power in wireless transmitters are critical auxiliary functions that are often

More information

FCC CFR47 PART 15 SUBPART C CERTIFICATION TEST REPORT FOR DUAL RADIO OUTDOOR ACCESS POINT MODEL NUMBER: AP-ONE FCC ID: SWX-AP1R2

FCC CFR47 PART 15 SUBPART C CERTIFICATION TEST REPORT FOR DUAL RADIO OUTDOOR ACCESS POINT MODEL NUMBER: AP-ONE FCC ID: SWX-AP1R2 FCC CFR47 PART 15 SUBPART C CERTIFICATION TEST REPORT FOR DUAL RADIO OUTDOOR ACCESS POINT MODEL NUMBER: AP-ONE REPORT NUMBER: 04U3091-1 ISSUE DATE: JANUARY 07, 2005 Prepared for UBIQUITI NETWORKS 1111

More information

Low-Noise Amplifiers

Low-Noise Amplifiers 007/Oct 4, 31 1 General Considerations Noise Figure Low-Noise Amplifiers Table 6.1 Typical LNA characteristics in heterodyne systems. NF IIP 3 db 10 dbm Gain 15 db Input and Output Impedance 50 Ω Input

More information

Configuration of PNA-X, NVNA and X parameters

Configuration of PNA-X, NVNA and X parameters Configuration of PNA-X, NVNA and X parameters VNA 1. S-Parameter Measurements 2. Harmonic Measurements NVNA 3. X-Parameter Measurements Introducing the PNA-X 50 GHz 43.5 GHz 26.5 GHz 13.5 GHz PNA-X Agilent

More information

INSTRUCTION SHEET WIDEBAND POWER SENSOR MODEL Copyright 2008 by Bird Electronic Corporation Instruction Book P/N Rev.

INSTRUCTION SHEET WIDEBAND POWER SENSOR MODEL Copyright 2008 by Bird Electronic Corporation Instruction Book P/N Rev. INSTRUCTION SHEET WIDEBAND POWER SENSOR MODEL 5012 Copyright 2008 by Bird Electronic Corporation Instruction Book P/N 920-5012 Rev. C Description The Bird 5012 Wideband Power Sensor (WPS) is a Thruline

More information

Measuring Non-linear Amplifiers

Measuring Non-linear Amplifiers Measuring Non-linear Amplifiers Transceiver Components & Measuring Techniques MM3 Jan Hvolgaard Mikkelsen Radio Frequency Integrated Systems and Circuits Division Aalborg University 27 Agenda Non-linear

More information

Noise Figure Measurement Accuracy The Y-Factor Method. Application Note 57-2

Noise Figure Measurement Accuracy The Y-Factor Method. Application Note 57-2 Noise Figure Measurement Accuracy The Y-Factor Method Application Note 57-2 2 Table of contents 1 Introduction...4 2 Noise figure measurement...5 2.1 Fundamentals...5 2.1.1 What is noise figure?...5 2.1.2

More information

Schottky Barrier Diode Video Detectors. Application Note 923

Schottky Barrier Diode Video Detectors. Application Note 923 Schottky Barrier Diode Video Detectors Application Note 923 I. Introduction This Application Note describes the characteristics of Agilent Technologies Schottky Barrier Diodes intended for use in video

More information

Improved Measurement of Passive Intermodulation Products

Improved Measurement of Passive Intermodulation Products Presentation to: ANAMET Improved Measurement of Passive Intermodulation Products James Miall Date: March 2004 Introduction PIM = Passive InterModulation IMD = InterModulation Distortion PIM is mixing of

More information

Memorandum. Introduction. List of Figures. To: E. Bryerton K. Crady G. Ediss N. Horner A. R. Kerr D. Koller G. Lauria S.-K. Pan K. Saini D.

Memorandum. Introduction. List of Figures. To: E. Bryerton K. Crady G. Ediss N. Horner A. R. Kerr D. Koller G. Lauria S.-K. Pan K. Saini D. Memorandum To: E. Bryerton K. Crady G. Ediss N. Horner A. R. Kerr D. Koller G. Lauria S.-K. Pan K. Saini D. Thacker cc: From: J. Webber J. Effland R. Groves Date: 02-12-13 Subject: Gain vs. LO Power of

More information

NOISE FIGURE ANALYZER

NOISE FIGURE ANALYZER NOISE FIGURE ANALYZER H5M-04, H5M series noise figure analyzers are designed to measure noise figure and gain of amplifiers and frequency converters. ACCURACY SPEED QUALITY NF Analyzer H5M-04 10 MHz to

More information

Description. Output Stage. 5k (10k) - + 5k (10k)

Description. Output Stage. 5k (10k) - + 5k (10k) THAT Corporation Low Noise, High Performance Audio Preamplifier IC FEATURES Low Noise: 1 nv/hz input noise (60dB gain) 34 nv/hz input noise (0dB gain) (1512) Low THD+N (full audio bandwidth): 0.001% 40dB

More information

RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS

RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS FUNCTIONS OF A RADIO RECEIVER The main functions of a radio receiver are: 1. To intercept the RF signal by using the receiver antenna 2. Select the

More information

8 Hints for Better Spectrum Analysis. Application Note

8 Hints for Better Spectrum Analysis. Application Note 8 Hints for Better Spectrum Analysis Application Note 1286-1 The Spectrum Analyzer The spectrum analyzer, like an oscilloscope, is a basic tool used for observing signals. Where the oscilloscope provides

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY To: From: EDGES MEMO #073 MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS 01886 Updated July 16, 2012 Telephone: 781-981-5407 Fax: 781-981-0590 EDGES Group Alan E.E.

More information

Introduction to Analog Interfacing. ECE/CS 5780/6780: Embedded System Design. Various Op Amps. Ideal Op Amps

Introduction to Analog Interfacing. ECE/CS 5780/6780: Embedded System Design. Various Op Amps. Ideal Op Amps Introduction to Analog Interfacing ECE/CS 5780/6780: Embedded System Design Scott R. Little Lecture 19: Operational Amplifiers Most embedded systems include components that measure and/or control real-world

More information

THEORY OF MEASUREMENTS

THEORY OF MEASUREMENTS THEORY OF MEASUREMENTS Brian Mason Fifth NAIC-NRAO School on Single-Dish Radio Astronomy Arecibo, PR July 2009 OUTLINE Antenna-Sky Coupling Noise the Radiometer Equation Minimum Tsys Performance measures

More information

Improving Amplitude Accuracy with Next-Generation Signal Generators

Improving Amplitude Accuracy with Next-Generation Signal Generators Improving Amplitude Accuracy with Next-Generation Signal Generators Generate True Performance Signal generators offer precise and highly stable test signals for a variety of components and systems test

More information

PHYSICS 330 LAB Operational Amplifier Frequency Response

PHYSICS 330 LAB Operational Amplifier Frequency Response PHYSICS 330 LAB Operational Amplifier Frequency Response Objectives: To measure and plot the frequency response of an operational amplifier circuit. History: Operational amplifiers are among the most widely

More information

Department of Mechanical and Aerospace Engineering. MAE334 - Introduction to Instrumentation and Computers. Final Examination.

Department of Mechanical and Aerospace Engineering. MAE334 - Introduction to Instrumentation and Computers. Final Examination. Name: Number: Department of Mechanical and Aerospace Engineering MAE334 - Introduction to Instrumentation and Computers Final Examination December 12, 2002 Closed Book and Notes 1. Be sure to fill in your

More information

HF LNA Doug Ronald W6DSR HF LNA

HF LNA Doug Ronald W6DSR HF LNA HF LNA 1 High Dynamic Range 1.5 30 MHz Low Noise Amplifier. By Doug Ronald, W6DSR I have always had an interest in building high-performance receivers and transmitters for HF. An expected performance metric

More information

GPS receivers built for various

GPS receivers built for various GNSS Solutions: Measuring GNSS Signal Strength angelo joseph GNSS Solutions is a regular column featuring questions and answers about technical aspects of GNSS. Readers are invited to send their questions

More information

Martec/Wayne Dalton Transmitter Model(s): 3977

Martec/Wayne Dalton Transmitter Model(s): 3977 The University of Michigan Radiation Laboratory 3228 EECS Building Ann Arbor, MI 48109-2122 Tel: (734) 764-0500 Measured Radio Frequency Emissions From Martec/Wayne Dalton Transmitter Model(s): 3977 Report

More information