The Use of Radio Spectrum. Welcome to. Where is radio used? Compare: Basic Wireless Communication Technique ETIF05. Göran Jönsson

Size: px
Start display at page:

Download "The Use of Radio Spectrum. Welcome to. Where is radio used? Compare: Basic Wireless Communication Technique ETIF05. Göran Jönsson"

Transcription

1 Welcome to Basic Wireless Communication Technique The Use of adio Spectrum ETIF05 EIT Göran Jönsson Electrical and Information Technology EIT Basic Wireless Communication Technique - ETIF05 - Lecture 1 3 Where is radio used? Compare: Low frequency electronics adio frequency electronics EIT Basic Wireless Communication Technique - ETIF05 - Lecture 1 2 EIT Basic Wireless Communication Technique - ETIF05 - Lecture 1 4

2 Overview bandwidth information bandwidth channel bandwidth modulation multiplexing frequency time code dynamic noise interference compression distortion intermodulation selectivity frequency stability 8 10 Schedule Monday Tuesday Wednesday Thursday Friday lunch Exercise 13 hour 15 Lecture Exercise hour Lect/ Exerc Exerc oratory exercises at three occasions in Sept/Oct Booking of time is possible from Tuesday September 6 at the course home page EIT Basic Wireless Communication Technique - ETIF05 - Lecture 1 5 EIT Basic Wireless Communication Technique - ETIF05 - Lecture 1 7 Basic Wireless Communication Technique ETIF05 Contents Electrical and Information Technology 1. Introduction, bandwidth, decibel, noise 2. eceiver principles, F amplifiers, intercept- and compression point, mixers, oscillators 3. Mixers, oscillators, PLL, frequency synthesizers 4. Analogue modulation, amplitude-, frequency- and phase modulation, modulation gain 5. F measurements, spectrum analyser, transmission lines 6. Transmission lines, Smith chart, vector network analyser 7. Digital modulation 8. Antennas, wave propagation, link budget 9. Cellular and broadcast radio systems EIT Basic Wireless Communication Technique - ETIF05 - Lecture 1 6 The course home page: EIT Basic Wireless Communication Technique - ETIF05 - Lecture 1 8

3 Literature esonant Circuits Parallel circuits are handled by summing the admittances Y 1 tot L C Parallel resonance Y tot ( ω) jωl + jωc 1 + j ωc 1 % ( $ ωl ' SEK 340 EIT Basic Wireless Communication Technique - ETIF05 - Lecture 1 9 esonant frequency: C 1 L 0 f 0 1 2π 1 LC EIT Basic Wireless Communication Technique - ETIF05 - Lecture 1 11 esonant Circuits Series circuits are handled by summing the impedances C L tot Series resonance Bandwidth The 3dB-bandwidth is defined as the frequency range where the circuit impedance or admittance has changed 3 db. Z Series circuit Z Parallel circuit 3 db Z tot ( ω) + jωl + 1 jωc + j ωl 1 % ( $ ωc ' The frequency that leaves a purely resistive impedance is called the resonant frequency: L 1 C 0 f 1 0 2π 1 LC f 1 f 0 f 2 B 3dB 3 db f f 1 f 0 f 2 B 3dB f EIT Basic Wireless Communication Technique - ETIF05 - Lecture 1 10 EIT Basic Wireless Communication Technique - ETIF05 - Lecture 1 12

4 db is a relative measure in logarithmic scale Decibel x [ db] 10 log( ratio) 10 log dbm, dbw are power units related to fixed references: 0 dbm 1 mw in 50Ω P [ dbm] 10 log$ P [ mw] 1[ mw] P [ dbw] 10 log$ P[ W ] % 0 dbw 1 W in 50Ω ' 1[ W ] dbv is a voltage unit but: Since the relation between power-voltage-current is the corresponding db-quantity for voltage or current will be P V 2 V dbv EIT Basic Wireless Communication Technique - ETIF05 - Lecture 1 13 % ' [ ] I 2 W [ ] 10 logv 2 20 logv [ V]! y linear y reference $ % Decibel Conversion between db and linear values: linear è db db è linear db is easy to calculate multiplication in linear become add in log division in linear become subtraction in log [ ] 10 log x db y linear y reference a b [ linear] a + b [ db] a b linear [ ] a b db [ ] EIT Basic Wireless Communication Technique - ETIF05 - Lecture 1 15! y linear y reference 10 x[ db] 10 $ % Linear scale provides poor dynamic: 1 : 85 Logarithmic scale provides excellent dynamic: 80 db : Linear or logarithmic scale? Q 2π Circuit Q - quality factor maximum energy stored in the circuit energy dissipated per cycle is a measure of the maximum instantaneous stored energy related to the total energy dissipated in the circuit is non-dimensional is called Q-värde or godhetstal in Swedish is also used for none-electric systems is also applicable to non-resonant circuits such as C-circuit or individual components such as a coil is equal to the ratio between the resonance frequency and the 3 db bandwidth: EIT Basic Wireless Communication Technique - ETIF05 - Lecture 1 14 EIT Basic Wireless Communication Technique - ETIF05 - Lecture 1 16

5 Circuit Q Thermal Noise Series circuit Q Q X s L s s Parallel circuit Q 1 s C s s C s L s All resistors produces noise at: constant power at all frequencies white noise power that only depends on the temperature Q p X p C p p p L p C p L p EIT Basic Wireless Communication Technique - ETIF05 - Lecture 1 17 EIT Basic Wireless Communication Technique - ETIF05 - Lecture Quality factor - some comparisons Q Balls F inductors Piano string Cathedral bells Good quality capacitors Air vacuum capacitors Ordinary quartz vibrators Pendulum (grandfather clock) Pendulum (vacuum) Earth Spectral lines EIT Basic Wireless Communication Technique - ETIF05 - Lecture 1 18 Maximum available noise power: white noise constant spectral density at room temperature Thermal Noise if the equivalent noise bandwidth in the system is B eq the noise power is: N 0th kt! W Hz $ k Bolzmann's constant 1, T absolute temperature [K] N 0th W % $ Hz 174 dbm/hz N th ktb eq [ W] B eq noise bandwidth EIT Basic Wireless Communication Technique - ETIF05 - Lecture 1 20

6 Noise Bandwidth Noise model for semi-conductor power actual filter ideal rectangular filter N th ktb eq [ W] equal areas Noisy diode IDC Ii n noisefree r d the noise from a P-N-junction is called shot noise (hagelbrus in swedish) white noise the noise current depends on the DC bias current: i n 2qI DC B eq q charge of the electron 1, C B eq equivalent noise bandwidth B eq Equivalent noise bandwidth frequency r d is the diode dynamic resistance: kt q r d I DC T T 0 290K I DC! V$ A% EIT Basic Wireless Communication Technique - ETIF05 - Lecture 1 21 EIT Basic Wireless Communication Technique - ETIF05 - Lecture 1 23 Noise model for the resistor Addition of Noise Sources Noisy resistor Ee n noisefree Maximum noise power is developed in a matched load: Ee n e n 2 Independent noise sources are added up as square sum: 2 e ntot e 2 n1 + e 2 n2 + e 2 n3 +! N th E $ n 1 2 % ktb 2 E n 4kTB EIT Basic Wireless Communication Technique - ETIF05 - Lecture 1 22 EIT Basic Wireless Communication Technique - ETIF05 - Lecture 1 24

7 Addition of Noise Sources Noise Temperature If all the resistors in a network are at equal noise temperature Pierce rule is applicable: eq A device* with the noise ratio N N 1+ T eq T 0 T eq ( N 1) T 0 [ K] * amplifier, attenuator, filter, cable etc 2 e ntot 4kTB eq 4kTB (( ) / / 3 ) An antenna with the noise ratio N ant T ant N ant T 0 [ K] EIT Basic Wireless Communication Technique - ETIF05 - Lecture 1 25 EIT Basic Wireless Communication Technique - ETIF05 - Lecture 1 27 Noise atio Noise atio (S/N) in T o Noi T eq G B (S/N) out For a passive attenuator at room temperature T 0 the noise ratio is equal to the attenuation L :! S $ N % N! S $ N % in out S in kt 0 B S in G ( kt 0 + kt eq ) BG 1+ T eq T 0 N 1+ T a $ T 0 % ( L 1) ' L Ta T0 NF [ db] 10log N The English notation is» N (Noise atio) in linear scale (times)» NF (Noise Figure) in logarithmic scale (db) In Swedish the letter F is used for both quantities hence NF [ db] L [ db] EIT Basic Wireless Communication Technique - ETIF05 - Lecture 1 26 EIT Basic Wireless Communication Technique - ETIF05 - Lecture 1 28

8 Friis formula Stage 1 Stage 2 Stage 3 SINAD measurement an alternative method for measuring signal quality G 3 N 1 N 2 N 3 SINAD signal + noise+ distortion noise + distortion! signal + noise+ distortion $ 20log db noise + distortion % [ ] N N N 1 + N N Friis formula shows that the first stage should be designed for: lowest possible noise ratio maximum possible gain Note: only linear quantities may be used SME F OUT modulated signal DUT f m Log Log + Σ SINAD EIT Basic Wireless Communication Technique - ETIF05 - Lecture 1 29 EIT Basic Wireless Communication Technique - ETIF05 - Lecture 1 31 An exemple: Installation of an antenna amplifier Case 1 Case 2 Case 3 Noise Figure Measurement Cable 30m L 1 17dB N 1 L 1 NF 2 3dB Cable 30m L 1 17dB N 1 L 1 Amplifier G 20dB NF 2 2dB NF 3 3dB Amplifier G 20dB NF 1 2dB Cable 30m L 2 17dB N 2 L 2 NF 3 3dB ( S N N ) in S N 1+ T eq ( ) T 0 ut What s the size of the total noise figure? Convert into linear quantities and use Friis formula: N tot N 1 + N N N 1 50 N 2 2 N 1 50 N 2 1,6 N 3 2 N 1 1,6 N 2 50 N 3 2 N tot NF tot 20dB 1,6 1 N tot ,5 80,5 NF tot 19dB Which is the best solution? 50 1 N tot 1, ,6 + 0, ,5 2,59 NF tot 4,1dB EIT Basic Wireless Communication Technique - ETIF05 - Lecture 1 30 T s NOISE SC DUT T eq,g EIT Basic Wireless Communication Technique - ETIF05 - Lecture 1 32 F IN N 0 k ( T eq +T s )G

HY448 Sample Problems

HY448 Sample Problems HY448 Sample Problems 10 November 2014 These sample problems include the material in the lectures and the guided lab exercises. 1 Part 1 1.1 Combining logarithmic quantities A carrier signal with power

More information

Noise and Interference Limited Systems

Noise and Interference Limited Systems Chapter 3 Noise and Interference Limited Systems 47 Basics of link budgets Link budgets show how different components and propagation processes influence the available SNR Link budgets can be used to compute

More information

Channel Characteristics and Impairments

Channel Characteristics and Impairments ELEX 3525 : Data Communications 2013 Winter Session Channel Characteristics and Impairments is lecture describes some of the most common channel characteristics and impairments. A er this lecture you should

More information

NOISE INTERNAL NOISE. Thermal Noise

NOISE INTERNAL NOISE. Thermal Noise NOISE INTERNAL NOISE......1 Thermal Noise......1 Shot Noise......2 Frequency dependent noise......3 THERMAL NOISE......3 Resistors in series......3 Resistors in parallel......4 Power Spectral Density......4

More information

The Friis Transmission Formula

The Friis Transmission Formula The Friis Transmission Formula If we assume that the antennas are aligned for maximum transmission and reception, then in free space, P RX = G TXA e P TX 4πr 2 where A e is the receiving aperture of the

More information

Electromagnetic Oscillations and Currents. March 23, 2014 Chapter 30 1

Electromagnetic Oscillations and Currents. March 23, 2014 Chapter 30 1 Electromagnetic Oscillations and Currents March 23, 2014 Chapter 30 1 Driven LC Circuit! The voltage V can be thought of as the projection of the vertical axis of the phasor V m representing the time-varying

More information

1. Distortion in Nonlinear Systems

1. Distortion in Nonlinear Systems ECE145A/ECE18A Performance Limitations of Amplifiers 1. Distortion in Nonlinear Systems The upper limit of useful operation is limited by distortion. All analog systems and components of systems (amplifiers

More information

Outline. Noise and Distortion. Noise basics Component and system noise Distortion INF4420. Jørgen Andreas Michaelsen Spring / 45 2 / 45

Outline. Noise and Distortion. Noise basics Component and system noise Distortion INF4420. Jørgen Andreas Michaelsen Spring / 45 2 / 45 INF440 Noise and Distortion Jørgen Andreas Michaelsen Spring 013 1 / 45 Outline Noise basics Component and system noise Distortion Spring 013 Noise and distortion / 45 Introduction We have already considered

More information

RF Fundamental Concepts and Performance Parameters

RF Fundamental Concepts and Performance Parameters RF Fundamental Concepts and erformance arameters CCE 50 RF and Microwave System Design Dr. Owen Casha B. Eng. (Hons.) h.d. 09/0/0 Overview Introduction Nonlinearity and Time Variance System Noise Thermal

More information

Noise by the Numbers

Noise by the Numbers Noise by the Numbers 1 What can I do with noise? The two primary applications for white noise are signal jamming/impairment and reference level comparison. Signal jamming/impairment is further divided

More information

Contents. Telecom Service Chae Y. Lee. Data Signal Transmission Transmission Impairments Channel Capacity

Contents. Telecom Service Chae Y. Lee. Data Signal Transmission Transmission Impairments Channel Capacity Data Transmission Contents Data Signal Transmission Transmission Impairments Channel Capacity 2 Data/Signal/Transmission Data: entities that convey meaning or information Signal: electric or electromagnetic

More information

Low voltage LNA, mixer and VCO 1GHz

Low voltage LNA, mixer and VCO 1GHz DESCRIPTION The is a combined RF amplifier, VCO with tracking bandpass filter and mixer designed for high-performance low-power communication systems from 800-1200MHz. The low-noise preamplifier has a

More information

EE12: Laboratory Project (Part-2) AM Transmitter

EE12: Laboratory Project (Part-2) AM Transmitter EE12: Laboratory Project (Part-2) AM Transmitter ECE Department, Tufts University Spring 2008 1 Objective This laboratory exercise is the second part of the EE12 project of building an AM transmitter in

More information

Lecture 3: Data Transmission

Lecture 3: Data Transmission Lecture 3: Data Transmission 1 st semester 1439-2017 1 By: Elham Sunbu OUTLINE Data Transmission DATA RATE LIMITS Transmission Impairments Examples DATA TRANSMISSION The successful transmission of data

More information

Contents. CALIBRATION PROCEDURE NI PXIe-5668R 14 GHz and 26.5 GHz Signal Analyzer

Contents. CALIBRATION PROCEDURE NI PXIe-5668R 14 GHz and 26.5 GHz Signal Analyzer CALIBRATION PROCEDURE NI PXIe-5668R 14 GHz and 26.5 GHz Signal Analyzer This document contains the verification procedures for the National Instruments PXIe-5668R (NI 5668R) vector signal analyzer (VSA)

More information

Chapter 2. The Fundamentals of Electronics: A Review

Chapter 2. The Fundamentals of Electronics: A Review Chapter 2 The Fundamentals of Electronics: A Review Topics Covered 2-1: Gain, Attenuation, and Decibels 2-2: Tuned Circuits 2-3: Filters 2-4: Fourier Theory 2-1: Gain, Attenuation, and Decibels Most circuits

More information

R&D White Paper WHP 066. Specifying UHF active antennas and calculating system performance. Research & Development BRITISH BROADCASTING CORPORATION

R&D White Paper WHP 066. Specifying UHF active antennas and calculating system performance. Research & Development BRITISH BROADCASTING CORPORATION R&D White Paper WHP 066 July 2003 Specifying UHF active antennas and calculating system performance J. Salter Research & Development BRITISH BROADCASTING CORPORATION BBC Research & Development White Paper

More information

SHF Communication Technologies AG

SHF Communication Technologies AG SHF Communication Technologies AG Wilhelm-von-Siemens-Str. 23 Aufgang D 2277 Berlin Marienfelde Germany Phone ++49 30 / 772 05 0 Fax ++49 30 / 753 0 78 E-Mail: sales@shf.biz Web: http://www.shf.biz Tutorial

More information

RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS

RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS FUNCTIONS OF A RADIO RECEIVER The main functions of a radio receiver are: 1. To intercept the RF signal by using the receiver antenna 2. Select the

More information

Lecture 34: Nyquist Noise Formula. Cascading Noisy Components. Noise Figure.

Lecture 34: Nyquist Noise Formula. Cascading Noisy Components. Noise Figure. Whites, EE 322 Lecture 34 Page 1 of 10 Lecture 34: Nyquist Noise Formula. Cascading Noisy Components. Noise Figure. Due to thermal agitation of charges in resistors, attenuators, mixers, etc., such devices

More information

Common Types of Noise

Common Types of Noise Common Types of Noise Name Example Description Impulse Ignition, TVI Not Random, Cure by Shielding, Quantizing, Decoding, etc. BER Digital Systems, DAC's & ADC's. Often Bit Resolution and/or Bit Fidelity

More information

Antennas and Propagation. Chapter 5

Antennas and Propagation. Chapter 5 Antennas and Propagation Chapter 5 Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

Low-Noise Amplifiers

Low-Noise Amplifiers 007/Oct 4, 31 1 General Considerations Noise Figure Low-Noise Amplifiers Table 6.1 Typical LNA characteristics in heterodyne systems. NF IIP 3 db 10 dbm Gain 15 db Input and Output Impedance 50 Ω Input

More information

1GHz low voltage LNA, mixer and VCO

1GHz low voltage LNA, mixer and VCO DESCRIPTION The is a combined RF amplifier, VCO with tracking bandpass filter and mixer designed for high-performance low-power communication systems from 800-1200MHz. The low-noise preamplifier has a

More information

Lecture 2 Physical Layer - Data Transmission

Lecture 2 Physical Layer - Data Transmission DATA AND COMPUTER COMMUNICATIONS Lecture 2 Physical Layer - Data Transmission Mei Yang Based on Lecture slides by William Stallings 1 DATA TRANSMISSION The successful transmission of data depends on two

More information

RF AND MICROWAVE ENGINEERING

RF AND MICROWAVE ENGINEERING RF AND MICROWAVE ENGINEERING FUNDAMENTALS OF WIRELESS COMMUNICATIONS Frank Gustrau Dortmund University of Applied Sciences and Arts, Germany WILEY A John Wiley & Sons, Ltd., Publication Preface List of

More information

1. What is the unit of electromotive force? (a) volt (b) ampere (c) watt (d) ohm. 2. The resonant frequency of a tuned (LRC) circuit is given by

1. What is the unit of electromotive force? (a) volt (b) ampere (c) watt (d) ohm. 2. The resonant frequency of a tuned (LRC) circuit is given by Department of Examinations, Sri Lanka EXAMINATION FOR THE AMATEUR RADIO OPERATORS CERTIFICATE OF PROFICIENCY ISSUED BY THE DIRECTOR GENERAL OF TELECOMMUNICATIONS, SRI LANKA 2004 (NOVICE CLASS) Basic Electricity,

More information

TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation. Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation. Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation Ted Johansson, EKS, ISY RX Nonlinearity Issues: 2.2, 2.4 Demodulation: not in the book 2 RX nonlinearities System Nonlinearity

More information

Noise and Distortion in Microwave System

Noise and Distortion in Microwave System Noise and Distortion in Microwave System Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 1 Introduction Noise is a random process from many sources: thermal,

More information

Design of a Regenerative Receiver for the Short-Wave Bands A Tutorial and Design Guide for Experimental Work. Part I

Design of a Regenerative Receiver for the Short-Wave Bands A Tutorial and Design Guide for Experimental Work. Part I Design of a Regenerative Receiver for the Short-Wave Bands A Tutorial and Design Guide for Experimental Work Part I Ramón Vargas Patrón rvargas@inictel-uni.edu.pe INICTEL-UNI Regenerative Receivers remain

More information

Antennas and Propagation

Antennas and Propagation Antennas and Propagation Chapter 5 Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

Chapter 31. Alternating Current. PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow

Chapter 31. Alternating Current. PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Chapter 31 Alternating Current PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Learning Goals for Chapter 31 Looking forward at How

More information

Low voltage high performance mixer FM IF system

Low voltage high performance mixer FM IF system DESCRIPTION The is a low voltage high performance monolithic FM IF system incorporating a mixer/oscillator, two limiting intermediate frequency amplifiers, quadrature detector, logarithmic received signal

More information

Introduction to Surface Acoustic Wave (SAW) Devices

Introduction to Surface Acoustic Wave (SAW) Devices May 31, 2018 Introduction to Surface Acoustic Wave (SAW) Devices Part 7: Basics of RF Circuits Ken-ya Hashimoto Chiba University k.hashimoto@ieee.org http://www.te.chiba-u.jp/~ken Contents Noise Figure

More information

(i) Determine the admittance parameters of the network of Fig 1 (f) and draw its - equivalent circuit.

(i) Determine the admittance parameters of the network of Fig 1 (f) and draw its - equivalent circuit. I.E.S-(Conv.)-1995 ELECTRONICS AND TELECOMMUNICATION ENGINEERING PAPER - I Some useful data: Electron charge: 1.6 10 19 Coulomb Free space permeability: 4 10 7 H/m Free space permittivity: 8.85 pf/m Velocity

More information

Introduction to Analog And Digital Communications

Introduction to Analog And Digital Communications Introduction to Analog And Digital Communications Second Edition Simon Haykin, Michael Moher Chapter 11 System and Noise Calculations 11.1 Electrical Noise 11.2 Noise Figure 11.3 Equivalent Noise Temperature

More information

TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation. Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation. Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation Ted Johansson, EKS, ISY 2 RX Nonlinearity Issues, Demodulation RX nonlinearities (parts of 2.2) System Nonlinearity Sensitivity

More information

EXPERIMENT 4: RC, RL and RD CIRCUITs

EXPERIMENT 4: RC, RL and RD CIRCUITs EXPERIMENT 4: RC, RL and RD CIRCUITs Equipment List An assortment of resistor, one each of (330, 1k,1.5k, 10k,100k,1000k) Function Generator Oscilloscope 0.F Ceramic Capacitor 100H Inductor LED and 1N4001

More information

Wireless Physical Layer Concepts: Part II

Wireless Physical Layer Concepts: Part II Wireless Physical Layer Concepts: Part II Raj Jain Professor of CSE Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at:

More information

Exercises on overhead power lines (and underground cables)

Exercises on overhead power lines (and underground cables) Exercises on overhead power lines (and underground cables) 1 From the laws of Electromagnetism it can be shown that l c = 1 v 2 where v is the speed of propagation of electromagnetic waves in the environment

More information

Class XII Chapter 7 Alternating Current Physics

Class XII Chapter 7 Alternating Current Physics Question 7.1: A 100 Ω resistor is connected to a 220 V, 50 Hz ac supply. (a) What is the rms value of current in the circuit? (b) What is the net power consumed over a full cycle? Resistance of the resistor,

More information

EE133 - Prelab 3 The Low-Noise Amplifier

EE133 - Prelab 3 The Low-Noise Amplifier Prelab 3 - EE33 - Prof. Dutton - Winter 2004 EE33 - Prelab 3 The Low-Noise Amplifier Transmitter Receiver Audio Amp XO BNC to ANT BNC to ANT XO CO (LM566) Mixer (SA602) Power Amp LNA Mixer (SA602) IF Amp

More information

Antennas and Propagation. Chapter 5

Antennas and Propagation. Chapter 5 Antennas and Propagation Chapter 5 Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

Physics 115. Inductors, Capacitors, and RLC circuits. General Physics II. Session 34

Physics 115. Inductors, Capacitors, and RLC circuits. General Physics II. Session 34 Physics 115 General Physics II Session 34 Inductors, Capacitors, and RLC circuits R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 06/05/13 1 Lecture Schedule

More information

EC 554 Data Communications

EC 554 Data Communications EC 554 Data Communications Mohamed Khedr http://webmail. webmail.aast.edu/~khedraast.edu/~khedr Syllabus Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week

More information

Low Distortion Mixer AD831

Low Distortion Mixer AD831 a FEATURES Doubly-Balanced Mixer Low Distortion +2 dbm Third Order Intercept (IP3) + dbm 1 db Compression Point Low LO Drive Required: dbm Bandwidth MHz RF and LO Input Bandwidths 2 MHz Differential Current

More information

ELEC3106 Electronics. Lecture notes: non-linearity and noise. Objective. Non-linearity. Non-linearity measures

ELEC3106 Electronics. Lecture notes: non-linearity and noise. Objective. Non-linearity. Non-linearity measures ELEC316 Electronics Lecture notes: non-linearity and noise Objective The objective o these brie notes is to supplement the textbooks used in the course on the topic o non-linearity and electrical noise.

More information

ECE 440L. Experiment 1: Signals and Noise (1 week)

ECE 440L. Experiment 1: Signals and Noise (1 week) ECE 440L Experiment 1: Signals and Noise (1 week) I. OBJECTIVES Upon completion of this experiment, you should be able to: 1. Use the signal generators and filters in the lab to generate and filter noise

More information

Antennas and Propagation

Antennas and Propagation CMPE 477 Wireless and Mobile Networks Lecture 3: Antennas and Propagation Antennas Propagation Modes Line of Sight Transmission Fading in the Mobile Environment Introduction An antenna is an electrical

More information

Keywords: ISM, RF, transmitter, short-range, RFIC, switching power amplifier, ETSI

Keywords: ISM, RF, transmitter, short-range, RFIC, switching power amplifier, ETSI Maxim > Design Support > Technical Documents > Application Notes > Wireless and RF > APP 4929 Keywords: ISM, RF, transmitter, short-range, RFIC, switching power amplifier, ETSI APPLICATION NOTE 4929 Adapting

More information

Antennas & Propagation. CSG 250 Fall 2007 Rajmohan Rajaraman

Antennas & Propagation. CSG 250 Fall 2007 Rajmohan Rajaraman Antennas & Propagation CSG 250 Fall 2007 Rajmohan Rajaraman Introduction An antenna is an electrical conductor or system of conductors o Transmission - radiates electromagnetic energy into space o Reception

More information

Radio ETI031 Laboratory Experiments 2: VECTOR NETWORK ANALYSER, ANTENNA and RECEIVER MEASUREMENTS

Radio ETI031 Laboratory Experiments 2: VECTOR NETWORK ANALYSER, ANTENNA and RECEIVER MEASUREMENTS Lund University Electrical and Information Technology GJ 2007-09-30 Radio ETI031 Laboratory Experiments 2: VECTOR NETWORK ANALYSER, ANTENNA and RECEIVER MEASUREMENTS Göran Jönsson 2007 Objectives: Part

More information

Bode 100. User Manual

Bode 100. User Manual Bode 100 User Manual Bode 100 User Manual Article Number VESD0661 - Manual Version: Bode100.AE.3 OMICRON Lab 2008. All rights reserved. This User Manual is a publication of OMICRON electronics GmbH. This

More information

6.976 High Speed Communication Circuits and Systems Lecture 20 Performance Measures of Wireless Communication

6.976 High Speed Communication Circuits and Systems Lecture 20 Performance Measures of Wireless Communication 6.976 High Speed Communication Circuits and Systems Lecture 20 Performance Measures of Wireless Communication Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott

More information

EXPERIMENT FREQUENCY RESPONSE OF AC CIRCUITS. Structure. 8.1 Introduction Objectives

EXPERIMENT FREQUENCY RESPONSE OF AC CIRCUITS. Structure. 8.1 Introduction Objectives EXPERIMENT 8 FREQUENCY RESPONSE OF AC CIRCUITS Frequency Response of AC Circuits Structure 81 Introduction Objectives 8 Characteristics of a Series-LCR Circuit 83 Frequency Responses of a Resistor, an

More information

A Low Noise Amplifier with HF Selectivity

A Low Noise Amplifier with HF Selectivity A Low Noise Amplifier with HF Selectivity Johan Karlsson Mikael Grudd Radio project 2008 Department of Electrical and Information Technology Lund University Supervisor: Göran Jönsson Abstract This report

More information

RF/IF Terminology and Specs

RF/IF Terminology and Specs RF/IF Terminology and Specs Contributors: Brad Brannon John Greichen Leo McHugh Eamon Nash Eberhard Brunner 1 Terminology LNA - Low-Noise Amplifier. A specialized amplifier to boost the very small received

More information

EC6503 Transmission Lines and WaveguidesV Semester Question Bank

EC6503 Transmission Lines and WaveguidesV Semester Question Bank UNIT I TRANSMISSION LINE THEORY A line of cascaded T sections & Transmission lines General Solution, Physicasignificance of the equations 1. Derive the two useful forms of equations for voltage and current

More information

Antennas and Propagation

Antennas and Propagation Mobile Networks Module D-1 Antennas and Propagation 1. Introduction 2. Propagation modes 3. Line-of-sight transmission 4. Fading Slides adapted from Stallings, Wireless Communications & Networks, Second

More information

FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY

FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY In this experiment we will analytically determine and measure the frequency response of networks containing resistors, AC source/sources, and energy storage

More information

Chapter 30 Inductance, Electromagnetic. Copyright 2009 Pearson Education, Inc.

Chapter 30 Inductance, Electromagnetic. Copyright 2009 Pearson Education, Inc. Chapter 30 Inductance, Electromagnetic Oscillations, and AC Circuits 30-7 AC Circuits with AC Source Resistors, capacitors, and inductors have different phase relationships between current and voltage

More information

TSEK02: Radio Electronics Lecture 6: Propagation and Noise. Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 6: Propagation and Noise. Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 6: Propagation and Noise Ted Johansson, EKS, ISY 2 Propagation and Noise - Channel and antenna: not in the Razavi book - Noise: 2.3 The wireless channel The antenna Signal

More information

THE BASICS OF RADIO SYSTEM DESIGN

THE BASICS OF RADIO SYSTEM DESIGN THE BASICS OF RADIO SYSTEM DESIGN Mark Hunter * Abstract This paper is intended to give an overview of the design of radio transceivers to the engineer new to the field. It is shown how the requirements

More information

Low-voltage mixer FM IF system

Low-voltage mixer FM IF system DESCRIPTION The is a low-voltage monolithic FM IF system incorporating a mixer/oscillator, two limiting intermediate frequency amplifiers, quadrature detector, logarithmic received signal strength indicator

More information

Understanding Mixers Terms Defined, and Measuring Performance

Understanding Mixers Terms Defined, and Measuring Performance Understanding Mixers Terms Defined, and Measuring Performance Mixer Terms Defined Statistical Processing Applied to Mixers Today's stringent demands for precise electronic systems place a heavy burden

More information

PHYSICS - CLUTCH CH 29: ALTERNATING CURRENT.

PHYSICS - CLUTCH CH 29: ALTERNATING CURRENT. !! www.clutchprep.com CONCEPT: ALTERNATING VOLTAGES AND CURRENTS BEFORE, we only considered DIRECT CURRENTS, currents that only move in - NOW we consider ALTERNATING CURRENTS, currents that move in Alternating

More information

Application Note 1299

Application Note 1299 A Low Noise High Intercept Point Amplifier for 9 MHz Applications using ATF-54143 PHEMT Application Note 1299 1. Introduction The Avago Technologies ATF-54143 is a low noise enhancement mode PHEMT designed

More information

LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers

LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers General Description The LM13600 series consists of two current controlled transconductance amplifiers each with

More information

EC Transmission Lines And Waveguides

EC Transmission Lines And Waveguides EC6503 - Transmission Lines And Waveguides UNIT I - TRANSMISSION LINE THEORY A line of cascaded T sections & Transmission lines - General Solution, Physical Significance of the Equations 1. Define Characteristic

More information

Dr.-Ing. Ulrich L. Rohde

Dr.-Ing. Ulrich L. Rohde Dr.-Ing. Ulrich L. Rohde Noise in Oscillators with Active Inductors Presented to the Faculty 3 : Mechanical engineering, Electrical engineering and industrial engineering, Brandenburg University of Technology

More information

CHAPTER 3 CMOS LOW NOISE AMPLIFIERS

CHAPTER 3 CMOS LOW NOISE AMPLIFIERS 46 CHAPTER 3 CMOS LOW NOISE AMPLIFIERS 3.1 INTRODUCTION The Low Noise Amplifier (LNA) plays an important role in the receiver design. LNA serves as the first block in the RF receiver. It is a critical

More information

EXPERIMENT 4: RC, RL and RD CIRCUITs

EXPERIMENT 4: RC, RL and RD CIRCUITs EXPERIMENT 4: RC, RL and RD CIRCUITs Equipment List Resistor, one each of o 330 o 1k o 1.5k o 10k o 100k o 1000k 0.F Ceramic Capacitor 4700H Inductor LED and 1N4004 Diode. Introduction We have studied

More information

LF to 4 GHz High Linearity Y-Mixer ADL5350

LF to 4 GHz High Linearity Y-Mixer ADL5350 LF to GHz High Linearity Y-Mixer ADL535 FEATURES Broadband radio frequency (RF), intermediate frequency (IF), and local oscillator (LO) ports Conversion loss:. db Noise figure:.5 db High input IP3: 25

More information

433MHz front-end with the SA601 or SA620

433MHz front-end with the SA601 or SA620 433MHz front-end with the SA60 or SA620 AN9502 Author: Rob Bouwer ABSTRACT Although designed for GHz, the SA60 and SA620 can also be used in the 433MHz ISM band. The SA60 performs amplification of the

More information

Lab 4. Crystal Oscillator

Lab 4. Crystal Oscillator Lab 4. Crystal Oscillator Modeling the Piezo Electric Quartz Crystal Most oscillators employed for RF and microwave applications use a resonator to set the frequency of oscillation. It is desirable to

More information

COMMUNICATION SYSTEMS NCERT

COMMUNICATION SYSTEMS NCERT Exemplar Problems Physics Chapter Fifteen COMMUNCATON SYSTEMS MCQ 151 Three waves A, B and C of frequencies 1600 khz, 5 MHz and 60 MHz, respectively are to be transmitted from one place to another Which

More information

Data Communications & Computer Networks

Data Communications & Computer Networks Data Communications & Computer Networks Chapter 3 Data Transmission Fall 2008 Agenda Terminology and basic concepts Analog and Digital Data Transmission Transmission impairments Channel capacity Home Exercises

More information

Kent Bertilsson Muhammad Amir Yousaf

Kent Bertilsson Muhammad Amir Yousaf Today s topics Analog System (Rev) Frequency Domain Signals in Frequency domain Frequency analysis of signals and systems Transfer Function Basic elements: R, C, L Filters RC Filters jw method (Complex

More information

Data and Computer Communications. Chapter 3 Data Transmission

Data and Computer Communications. Chapter 3 Data Transmission Data and Computer Communications Chapter 3 Data Transmission Data Transmission quality of the signal being transmitted The successful transmission of data depends on two factors: characteristics of the

More information

Lab Exercise PN: Phase Noise Measurement - 1 -

Lab Exercise PN: Phase Noise Measurement - 1 - Lab Exercise PN: Phase Noise Measurements Phase noise is a critical specification for oscillators used in applications such as Doppler radar and synchronous communications systems. It is tricky to measure

More information

Satellite Navigation Principle and performance of GPS receivers

Satellite Navigation Principle and performance of GPS receivers Satellite Navigation Principle and performance of GPS receivers AE4E08 GPS Block IIF satellite Boeing North America Christian Tiberius Course 2010 2011, lecture 3 Today s topics Introduction basic idea

More information

Today s menu. Last lecture. Series mode interference. Noise and interferences R/2 V SM Z L. E Th R/2. Voltage transmission system

Today s menu. Last lecture. Series mode interference. Noise and interferences R/2 V SM Z L. E Th R/2. Voltage transmission system Last lecture Introduction to statistics s? Random? Deterministic? Probability density functions and probabilities? Properties of random signals. Today s menu Effects of noise and interferences in measurement

More information

Noise Lecture 1. EEL6935 Chris Dougherty (TA)

Noise Lecture 1. EEL6935 Chris Dougherty (TA) Noise Lecture 1 EEL6935 Chris Dougherty (TA) An IEEE Definition of Noise The IEEE Standard Dictionary of Electrical and Electronics Terms defines noise (as a general term) as: unwanted disturbances superposed

More information

CHAPTER 4 ULTRA WIDE BAND LOW NOISE AMPLIFIER DESIGN

CHAPTER 4 ULTRA WIDE BAND LOW NOISE AMPLIFIER DESIGN 93 CHAPTER 4 ULTRA WIDE BAND LOW NOISE AMPLIFIER DESIGN 4.1 INTRODUCTION Ultra Wide Band (UWB) system is capable of transmitting data over a wide spectrum of frequency bands with low power and high data

More information

Data and Computer Communications Chapter 3 Data Transmission

Data and Computer Communications Chapter 3 Data Transmission Data and Computer Communications Chapter 3 Data Transmission Eighth Edition by William Stallings Transmission Terminology data transmission occurs between a transmitter & receiver via some medium guided

More information

Receiver Design. Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21

Receiver Design. Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21 Receiver Design Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21 MW & RF Design / Prof. T. -L. Wu 1 The receiver mush be very sensitive to -110dBm

More information

Exercise 1: RF Stage, Mixer, and IF Filter

Exercise 1: RF Stage, Mixer, and IF Filter SSB Reception Analog Communications Exercise 1: RF Stage, Mixer, and IF Filter EXERCISE OBJECTIVE DISCUSSION On the circuit board, you will set up the SSB transmitter to transmit a 1000 khz SSB signal

More information

+ 2. Basic concepts of RFIC design

+ 2. Basic concepts of RFIC design + 2. Basic concepts of RFIC design 1 A. Thanachayanont RF Microelectronics + General considerations: 2 Units in RF design n Voltage gain and power gain n Ap and Av are equal if vin and vout appear across

More information

Ansys Designer RF Training Lecture 3: Nexxim Circuit Analysis for RF

Ansys Designer RF Training Lecture 3: Nexxim Circuit Analysis for RF Ansys Designer RF Solutions for RF/Microwave Component and System Design 7. 0 Release Ansys Designer RF Training Lecture 3: Nexxim Circuit Analysis for RF Designer Overview Ansoft Designer Advanced Design

More information

Electrochemical Impedance Spectroscopy and Harmonic Distortion Analysis

Electrochemical Impedance Spectroscopy and Harmonic Distortion Analysis Electrochemical Impedance Spectroscopy and Harmonic Distortion Analysis Bernd Eichberger, Institute of Electronic Sensor Systems, University of Technology, Graz, Austria bernd.eichberger@tugraz.at 1 Electrochemical

More information

Experiment No. 2 Pre-Lab Signal Mixing and Amplitude Modulation

Experiment No. 2 Pre-Lab Signal Mixing and Amplitude Modulation Experiment No. 2 Pre-Lab Signal Mixing and Amplitude Modulation Read the information presented in this pre-lab and answer the questions given. Submit the answers to your lab instructor before the experimental

More information

Understanding Noise Figure

Understanding Noise Figure Understanding Noise Figure Iulian Rosu, YO3DAC / VA3IUL, http://www.qsl.net/va3iul One of the most frequently discussed forms of noise is known as Thermal Noise. Thermal noise is a random fluctuation in

More information

Simulation of small signal resonant amplifier based on Multisim Dan Ren

Simulation of small signal resonant amplifier based on Multisim Dan Ren Simulation of small signal resonant amplifier based on Multisim Dan Ren College of engineering and technology, Eastern Liaoning University, Dandong Liaoning 118000, China ldxyrendan@163.com Abstract. In

More information

Lecture 2 Analog circuits. IR detection

Lecture 2 Analog circuits. IR detection Seeing the light.. Lecture Analog circuits I t IR light V 9V V Q OP805 RL IR detection Noise sources: Electrical (60Hz, 0Hz, 80Hz.) Other electrical IR from lights IR from cameras (autofocus) Visible light

More information

Aalto University School of Electrical Engineering. ELEC-E4750 Radiowave Propagation and Scattering Session 1: Prerequisite

Aalto University School of Electrical Engineering. ELEC-E4750 Radiowave Propagation and Scattering Session 1: Prerequisite ELEC-E4750 Radiowave Propagation and Scattering Session 1: Prerequisite ELEC-E4750 15.09.2016 1 Course Implementation Responsible teacher: Katsuyuki Haneda, teachers: Usman Virk and Suzan Miah The course

More information

The Principle V(SWR) The Result. Mirror, Mirror, Darkly, Darkly

The Principle V(SWR) The Result. Mirror, Mirror, Darkly, Darkly The Principle V(SWR) The Result Mirror, Mirror, Darkly, Darkly 1 Question time!! What do you think VSWR (SWR) mean to you? What does one mean by a transmission line? Coaxial line Waveguide Water pipe Tunnel

More information

PXIe Contents SPECIFICATIONS. 14 GHz and 26.5 GHz Vector Signal Analyzer

PXIe Contents SPECIFICATIONS. 14 GHz and 26.5 GHz Vector Signal Analyzer SPECIFICATIONS PXIe-5668 14 GHz and 26.5 GHz Vector Signal Analyzer These specifications apply to the PXIe-5668 (14 GHz) Vector Signal Analyzer and the PXIe-5668 (26.5 GHz) Vector Signal Analyzer with

More information

Lab 4 Power Factor Correction

Lab 4 Power Factor Correction Lab 4 Power Factor Correction Last Name: First Name: Student Number: Lab Section: Monday Tuesday Wednesday Thursday Friday TA Signature: Lab objectives o Introduction to Power Factor o Introduction to

More information

Unit 3 - Wireless Propagation and Cellular Concepts

Unit 3 - Wireless Propagation and Cellular Concepts X Courses» Introduction to Wireless and Cellular Communications Unit 3 - Wireless Propagation and Cellular Concepts Course outline How to access the portal Assignment 2. Overview of Cellular Evolution

More information

Differential Signal and Common Mode Signal in Time Domain

Differential Signal and Common Mode Signal in Time Domain Differential Signal and Common Mode Signal in Time Domain Most of multi-gbps IO technologies use differential signaling, and their typical signal path impedance is ohm differential. Two 5ohm cables, however,

More information