Goals of the Lab: Photodetectors and Noise (Part 2) Department of Physics. Slide 1. PHYSICS6770 Laboratory 4

Size: px
Start display at page:

Download "Goals of the Lab: Photodetectors and Noise (Part 2) Department of Physics. Slide 1. PHYSICS6770 Laboratory 4"

Transcription

1 Slide 1 Goals of the Lab: Understand the origin and properties of thermal noise Understand the origin and properties of optical shot noise In this lab, You will qualitatively and quantitatively determine the resistance-, temperature and frequency dependence of thermal noise as well as the light intensity dependence of optical shot noise. You will learn how to measure and how to control noise in experimental systems.

2 Background: Noise For a general overview about the origins the nature and the description of noise, refer to the lecture notes. Slide 2 Thermal noise: For electrical measurements of thermal noise (which never exceed the GHz range due to the speed limitations of electronics), it is reasonable to assume a noise spectral density: and hence, a noise voltage Shot noise: Shot noise is due to random arrival times of either individual charge carriers in a current (electrical shot noise) or photons in a light beam (optical shot noise). For electrical shot noise, we assume a noise spectral density: and hence, a noise power Applied to optical shot noise we obtain a noise power

3 Slide 3 Principal sketch of the experiments 1,2: Measurement of thermal Differential voltage amplifier PAR113 Tektronix TDS1012 Oscilloscope DVM Keithley 1000 Stanford Research SR760 Spectrum Analyzer shielded resistor shielded resistor Krohn-Hite 3100A active bandpass filter resistor without shielding Note that the clamps holding the resistor allow also a quick resistor change In order to measure noise produced by a thermal resistor, the resistor is connected to the input of a voltage amplifier. The output of the amplifier is then connected an active band pass filter and channel 1 of the oscilloscope. The output of the band pass is connected to channel 2 of the oscilloscope. Thus, the oscilloscope allows to observe the noise of both, the filtered and unfiltered signal. Connect the spectrum analyzer and the digital voltage meter (DVM) to the filtered signal.

4 Slide 4 Carry out the following experiment: 1. Thermal rms noise and noise spectrum (100kΩ resistor) With a 100kΩ resistor attached to the input of the PAR 113 differential amplifier, measure the root mean square voltage v rms and noise spectral density at room temperature. The gain of the PAR 113 should be set to 10 4, high pass filter set to 0Hz and low pass filter set to 300 khz. The output should be sent to an oscilloscope, DVM and spectrum analyzer. Be sure to include the gain of the amplifier in your measurement of the thermal noise of the resistor and comparison with theory. For this measurement, you may assume that the amplifier noise is negligible above 1kHz. 1a. Observe the thermal noise voltage across the resistor on the spectrum analyzer. With the input sensitivity correctly adjusted on the spectrum analyzer, and display showing power spectral density (V 2 /Hz ), you will observe the noise spectrum of the 100kΩ resistor. Note that the value of the noise spectrum is shown at the top of the screen, corresponding to that part of the spectrum to which the cursor is pointing. The value seen at the top is the noise voltage spectral density (V/ Hz), which is the square root of the power spectral density (V 2 /Hz). Record the noise spectrum. Note that it is flat above a frequency of 10 Hz and that spikes at fixed frequencies are found in the spectrum. These spikes are pick-up signals which come from various sources in the lab (line, computer monitors, etc.). Neglect these spike when making the following measurements. The noise below 10Hz is called 1/f noise or flicker noise. It is typically greater than the thermal or shot noise at these frequencies. Sketch the theoretical thermal noise spectrum on the measured spectrum. Point out the differences between measured and theoretical values on the graph and explain their origin.

5 Slide 5 1b. Now measure the thermal noise spectrum as in part a, but reduce the low pass filter frequency of the PAR 113 amplifier to 10 khz. Record the spectrum. Explain the change in the noise spectrum seen on the spectrum analyzer, and explain the primary features. 2. Measure rms thermal noise and compare with integrated power spectral density Select a 10kHz bandwidth (1kHz high pass and 11kHz low pass) for the pass band of the KH filter. Measure the rms noise voltage with the DVM and record it and the measurement bandwidth. Record the noise spectrum seen on the spectrum analyzer. Show that the rms noise voltage and spectral values measured are consistent using the equations shown on slide 2. Sketch the predicted noise spectrum (theoretical) on the graph which contains the measured spectrum analyzer data. Note and explain any deviations. 3. Thermal noise dependence upon resistance a. Measure the thermal rms noise voltage of 4 different resistors (1k,10k,100k, 1MΩ) at room temperature using the same settings as in part 2. (10kHz bandwidth). Measure the v rms for each resistor with the DVM and plot the results on a log-log scale (noise voltage versus resistance). Additionally, plot the corresponding voltage noise spectral density S t (f), obtained from the flat portion of the spectrum on the spectrum analyzer (in V/ Hz) for each resistor. b. Compare the measured noise voltage (v rms ) and voltage spectral density for each resistor with the predictions of Johnson noise theory using the experimental parameters (bandwidth, resistance, temperature). Discuss how the noise (v rms and voltage spectral density should depend upon resistance). Explain any discrepancies between measured and theoretical values.

6 Slide 6 4 Thermal noise dependence upon temperature Using the set up described in silde 3, measure the v rms value of a 100k ohm resistor with the DVM at room temperature (~300K) and at liquid nitrogen temperature (~77K). Compare your results with thermal noise theory. 5 Thermal noise dependence upon bandwidth (15 min) Using the set up described in silde 3, measure the vrms value using the DVM as a function of the detection bandwidth. Adjust the KH filter to achieve a 1kHz, 10kHz and 100kHz passband bandwidth. For a 1kHz bandpass, adjust the high pass to 1kHz, and the low pass to 2kHz, for 10kHz bandpass, adjust the low pass to 11kHz, and so on. Record the measured values for each bandwidth and compare with theory.

7 Slide 7 white light lamp photodiode detector current source for lamp white light lamp photodiode detector voltage amplifier active band pass filter voltmeter 6 Measurement of shot noise Measure the average photo-current and shot noise current in a 10kHz detection bandwidth of a white light lamp illuminated photo-diode detector as a function of illumination power (or average photocurrent). Measure the average photocurrent using DVM. Calibrate the bandwidth to an exact value using thermal noise of a 100kΩ resistor. Vary the power of the lamp in order to vary the incident intensity on the detector. Plot the square of the noise current versus the average photo-current. Identify the shot noise limited region of the graph by comparing the measured data points with a line representing the theoretical relation between rms shot noise current and average current. Explain any deviations.

Measure the roll-off frequency of an acousto-optic modulator

Measure the roll-off frequency of an acousto-optic modulator Slide 1 Goals of the Lab: Get to know some of the properties of pin photodiodes Measure the roll-off frequency of an acousto-optic modulator Measure the cut-off frequency of a pin photodiode as a function

More information

Johnson Noise and the Boltzmann Constant

Johnson Noise and the Boltzmann Constant Johnson Noise and the Boltzmann Constant 1 Introduction The purpose of this laboratory is to study Johnson Noise and to measure the Boltzmann constant k. You will also get use a low-noise pre-amplifier,

More information

THERMAL NOISE. Advanced Laboratory, Physics 407, University of Wisconsin. Madison, Wisconsin 53706

THERMAL NOISE. Advanced Laboratory, Physics 407, University of Wisconsin. Madison, Wisconsin 53706 (revised 1/25/07) THERMAL NOISE Advanced Laboratory, Physics 407, University of Wisconsin Madison, Wisconsin 53706 Abstract The aim of this experiment is to observe the thermal noise in a resistor, to

More information

THERMAL NOISE. Advanced Laboratory, Physics 407, University of Wisconsin. Madison, Wisconsin 53706

THERMAL NOISE. Advanced Laboratory, Physics 407, University of Wisconsin. Madison, Wisconsin 53706 (revised 1/25/07) THERMAL NOISE Advanced Laboratory, Physics 407, University of Wisconsin Madison, Wisconsin 53706 Abstract The aim of this experiment is to observe the thermal noise in a resistor, to

More information

ECEN 4606, UNDERGRADUATE OPTICS LAB

ECEN 4606, UNDERGRADUATE OPTICS LAB ECEN 4606, UNDERGRADUATE OPTICS LAB Lab 10: Photodetectors Original: Professor McLeod SUMMARY: In this lab, you will characterize the fundamental low-frequency characteristics of photodiodes and the circuits

More information

First and second order systems. Part 1: First order systems: RC low pass filter and Thermopile. Goals: Department of Physics

First and second order systems. Part 1: First order systems: RC low pass filter and Thermopile. Goals: Department of Physics slide 1 Part 1: First order systems: RC low pass filter and Thermopile Goals: Understand the behavior and how to characterize first order measurement systems Learn how to operate: function generator, oscilloscope,

More information

Part 2: Second order systems: cantilever response

Part 2: Second order systems: cantilever response - cantilever response slide 1 Part 2: Second order systems: cantilever response Goals: Understand the behavior and how to characterize second order measurement systems Learn how to operate: function generator,

More information

ECE 4670 Spring 2014 Lab 1 Linear System Characteristics

ECE 4670 Spring 2014 Lab 1 Linear System Characteristics ECE 4670 Spring 2014 Lab 1 Linear System Characteristics 1 Linear System Characteristics The first part of this experiment will serve as an introduction to the use of the spectrum analyzer in making absolute

More information

PHYSICS 330 LAB Operational Amplifier Frequency Response

PHYSICS 330 LAB Operational Amplifier Frequency Response PHYSICS 330 LAB Operational Amplifier Frequency Response Objectives: To measure and plot the frequency response of an operational amplifier circuit. History: Operational amplifiers are among the most widely

More information

Thermal Johnson Noise Generated by a Resistor

Thermal Johnson Noise Generated by a Resistor Thermal Johnson Noise Generated by a Resistor Complete Pre- Lab before starting this experiment HISTORY In 196, experimental physicist John Johnson working in the physics division at Bell Labs was researching

More information

Homework Set 3.5 Sensitive optoelectronic detectors: seeing single photons

Homework Set 3.5 Sensitive optoelectronic detectors: seeing single photons Homework Set 3.5 Sensitive optoelectronic detectors: seeing single photons Due by 12:00 noon (in class) on Tuesday, Nov. 7, 2006. This is another hybrid lab/homework; please see Section 3.4 for what you

More information

8.2 Common Forms of Noise

8.2 Common Forms of Noise 8.2 Common Forms of Noise Johnson or thermal noise shot or Poisson noise 1/f noise or drift interference noise impulse noise real noise 8.2 : 1/19 Johnson Noise Johnson noise characteristics produced by

More information

Module 10 : Receiver Noise and Bit Error Ratio

Module 10 : Receiver Noise and Bit Error Ratio Module 10 : Receiver Noise and Bit Error Ratio Lecture : Receiver Noise and Bit Error Ratio Objectives In this lecture you will learn the following Receiver Noise and Bit Error Ratio Shot Noise Thermal

More information

PHY 122 Shot Noise. Complete Shot Noise Pre- Lab before starting this experiment

PHY 122 Shot Noise. Complete Shot Noise Pre- Lab before starting this experiment PHY 122 Shot Noise HISTORY Complete Shot Noise Pre- Lab before starting this experiment In 1918, experimental physicist Walter Scottky working in the research lab at Siemens was investigating the origins

More information

ECE 6416 Low-Noise Electronics Orientation Experiment

ECE 6416 Low-Noise Electronics Orientation Experiment ECE 6416 Low-Noise Electronics Orientation Experiment Object The object of this experiment is to become familiar with the instruments used in the low noise laboratory. Parts The following parts are required

More information

Optical Modulation and Frequency of Operation

Optical Modulation and Frequency of Operation Optical Modulation and Frequency of Operation Developers AB Overby Objectives Preparation Background The objectives of this experiment are to describe and illustrate the differences between frequency of

More information

PHY 123/253 Shot Noise

PHY 123/253 Shot Noise PHY 123/253 Shot Noise HISTORY Complete Pre- Lab before starting this experiment In 1918, experimental physicist Walter Scottky working in the research lab at Siemens was investigating the origins of noise

More information

NON-AMPLIFIED PHOTODETECTOR USER S GUIDE

NON-AMPLIFIED PHOTODETECTOR USER S GUIDE NON-AMPLIFIED PHOTODETECTOR USER S GUIDE Thank you for purchasing your Non-amplified Photodetector. This user s guide will help answer any questions you may have regarding the safe use and optimal operation

More information

THERMAL NOISE. Advanced Laboratory, Physics 407, University of Wisconsin. Madison, Wisconsin 53706

THERMAL NOISE. Advanced Laboratory, Physics 407, University of Wisconsin. Madison, Wisconsin 53706 (revised 4/27/01) THERMAL NOISE Advanced Laboratory, Physics 407, University of Wisconsin Madison, Wisconsin 53706 Abstract The aim of this experiment is to observe the thermal noise in a resistor, to

More information

Class #9: Experiment Diodes Part II: LEDs

Class #9: Experiment Diodes Part II: LEDs Class #9: Experiment Diodes Part II: LEDs Purpose: The objective of this experiment is to become familiar with the properties and uses of LEDs, particularly as a communication device. This is a continuation

More information

Experiment No. 2 Half Wave Rectifier using RC-Triggering

Experiment No. 2 Half Wave Rectifier using RC-Triggering Experiment No. 2 Half Wave Rectifier using RC-Triggering Pre-Lab Reading: 1. Power Electronics: Circuits, Devices and Applications, by M. H. Rashid, 3e. (See page 790 to get help for this experiment).

More information

ECE 440L. Experiment 1: Signals and Noise (1 week)

ECE 440L. Experiment 1: Signals and Noise (1 week) ECE 440L Experiment 1: Signals and Noise (1 week) I. OBJECTIVES Upon completion of this experiment, you should be able to: 1. Use the signal generators and filters in the lab to generate and filter noise

More information

ADC, FFT and Noise. p. 1. ADC, FFT, and Noise

ADC, FFT and Noise. p. 1. ADC, FFT, and Noise ADC, FFT and Noise. p. 1 ADC, FFT, and Noise Analog to digital conversion and the FFT A LabView program, Acquire&FFT_Nscans.vi, is available on your pc which (1) captures a waveform and digitizes it using

More information

Optical Power Meter Basics

Optical Power Meter Basics Optical Power Meter Basics Introduction An optical power meter measures the photon energy in the form of current or voltage from an optical detector such as a semiconductor, a thermopile, or a pyroelectric

More information

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 3 The Oscilloscope

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 3 The Oscilloscope POLYTECHNIC UNIVERSITY Electrical Engineering Department EE SOPHOMORE LABORATORY Experiment 3 The Oscilloscope Modified for Physics 18, Brooklyn College I. Overview of the Experiment The main objective

More information

Meeting Measurement Challenges For Low-Power, Pulsed, Or Modulated Light Sources

Meeting Measurement Challenges For Low-Power, Pulsed, Or Modulated Light Sources Meeting Measurement Challenges For Low-Power, Pulsed, Or Modulated Light Sources By Denise Ullery, Sylvia Tan, and Jay Jeong, Newport Corporation (www.newport.com) Traditionally, power meters have been

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 145L: Electronic Transducer Laboratory FINAL EXAMINATION Fall 2013 You have three hours to

More information

Transmit filter designs for ADSL modems

Transmit filter designs for ADSL modems EE 233 Laboratory-4 1. Objectives Transmit filter designs for ADSL modems Design a filter from a given topology and specifications. Analyze the characteristics of the designed filter. Use SPICE to verify

More information

2. BAND-PASS NOISE MEASUREMENTS

2. BAND-PASS NOISE MEASUREMENTS 2. BAND-PASS NOISE MEASUREMENTS 2.1 Object The objectives of this experiment are to use the Dynamic Signal Analyzer or DSA to measure the spectral density of a noise signal, to design a second-order band-pass

More information

Amplified Photodetectors

Amplified Photodetectors Amplified Photodetectors User Guide (800)697-6782 sales@eotech.com www.eotech.com Page 1 of 6 EOT AMPLIFIED PHOTODETECTOR USER S GUIDE Thank you for purchasing your Amplified Photodetector from EOT. This

More information

Transmit filter designs for ADSL modems

Transmit filter designs for ADSL modems Transmit filter designs for ADSL modems 1. OBJECTIVES... 2 2. REFERENCE... 2 3. CIRCUITS... 2 4. COMPONENTS AND SPECIFICATIONS... 3 5. DISCUSSION... 3 6. PRE-LAB... 4 6.1 RECORDING SPECIFIED OPAMP PARAMETERS

More information

Lab VIII Photodetectors ECE 476

Lab VIII Photodetectors ECE 476 Lab VIII Photodetectors ECE 476 I. Purpose The electrical and optical properties of various photodetectors will be investigated. II. Background Photodiode A photodiode is a standard diode packaged so that

More information

Lab 1: Basic Lab Equipment and Measurements

Lab 1: Basic Lab Equipment and Measurements Abstract: Lab 1: Basic Lab Equipment and Measurements This lab exercise introduces the basic measurement instruments that will be used throughout the course. These instruments include multimeters, oscilloscopes,

More information

Effects of Incident Optical Power on the Effective Reverse Bias Voltage of Photodiodes This Lab Fact demonstrates how the effective reverse bias

Effects of Incident Optical Power on the Effective Reverse Bias Voltage of Photodiodes This Lab Fact demonstrates how the effective reverse bias Effects of Incident Optical Power on the Effective Reverse Bias Voltage of Photodiodes This Lab Fact demonstrates how the effective reverse bias voltage on a photodiode can vary as a function of the incident

More information

Electronic Noise. Analog Dynamic Range

Electronic Noise. Analog Dynamic Range Electronic Noise Dynamic range in the analog domain Resistor noise Amplifier noise Maximum signal levels Tow-Thomas Biquad noise example Implications on power dissipation EECS 247 Lecture 4: Dynamic Range

More information

BME/ISE 3512 Bioelectronics. Laboratory Five - Operational Amplifiers

BME/ISE 3512 Bioelectronics. Laboratory Five - Operational Amplifiers BME/ISE 3512 Bioelectronics Laboratory Five - Operational Amplifiers Learning Objectives: Be familiar with the operation of a basic op-amp circuit. Be familiar with the characteristics of both ideal and

More information

Fig [5]

Fig [5] 1 (a) Fig. 4.1 shows the I-V characteristic of a light-emitting diode (LED). 40 I / 10 3 A 30 20 10 0 1.0 1.5 2.0 V / V Fig. 4.1 (i) In Describe the significant features of the graph in terms of current,

More information

NON-AMPLIFIED HIGH SPEED PHOTODETECTOR USER S GUIDE

NON-AMPLIFIED HIGH SPEED PHOTODETECTOR USER S GUIDE NON-AMPLIFIED HIGH SPEED PHOTODETECTOR USER S GUIDE Thank you for purchasing your Non-amplified High Speed Photodetector. This user s guide will help answer any questions you may have regarding the safe

More information

Experiment No. 1 Half Wave Rectifier using R-Triggering

Experiment No. 1 Half Wave Rectifier using R-Triggering Experiment No. 1 Half Wave Rectifier using R-Triggering Pre-Lab Reading: Power Electronics: Circuits, Devices and Applications, by M. H. Rashid, 3e. Objectives: To analyze resistive firing/triggering of

More information

APPLICATION NOTE. Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz. Abstract

APPLICATION NOTE. Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz. Abstract APPLICATION NOTE Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz AN1560 Rev.1.00 Abstract Making accurate voltage and current noise measurements on

More information

Diodes This week, we look at switching diodes, LEDs, and diode rectification. Be sure to bring a flash drive for recording oscilloscope traces.

Diodes This week, we look at switching diodes, LEDs, and diode rectification. Be sure to bring a flash drive for recording oscilloscope traces. Diodes This week, we look at switching diodes, LEDs, and diode rectification. Be sure to bring a flash drive for recording oscilloscope traces. 1. Basic diode characteristics Build the circuit shown in

More information

transformer rectifiers

transformer rectifiers Power supply mini-project This week, we finish up 201 lab with a short mini-project. We will build a bipolar power supply and use it to power a simple amplifier circuit. 1. power supply block diagram Figure

More information

Department of Electrical & Computer Engineering Technology. EET 3086C Circuit Analysis Laboratory Experiments. Masood Ejaz

Department of Electrical & Computer Engineering Technology. EET 3086C Circuit Analysis Laboratory Experiments. Masood Ejaz Department of Electrical & Computer Engineering Technology EET 3086C Circuit Analysis Laboratory Experiments Masood Ejaz Experiment # 1 DC Measurements of a Resistive Circuit and Proof of Thevenin Theorem

More information

Model 4402B. Ultra-Pure Sinewave Oscillator 1Hz to 110kHz Typical Distortion of % Serial No. Operating Manual

Model 4402B. Ultra-Pure Sinewave Oscillator 1Hz to 110kHz Typical Distortion of % Serial No. Operating Manual Model 4402B Ultra-Pure Sinewave Oscillator 1Hz to 110kHz Typical Distortion of 0.0005% Serial No. Operating Manual 15 Jonathan Drive, Unit 4, Brockton, MA 02301 U.S.A. Tel: (508) 580-1660; Fax: (508) 583-8989

More information

Experiment 1: The Wave Model of light vs. the Quantum Model

Experiment 1: The Wave Model of light vs. the Quantum Model 012-04049J h/e Apparatus and h/e Apparatus Accessory Kit Experiment 1: The Wave Model of light vs. the Quantum Model Setup According to the photon theory of light, the maximum kinetic energy, KE, of photoelectrons

More information

Noise Performance Application Note

Noise Performance Application Note AM & FM Laser Noise Noise Performance Application Note The Pure Photonics low-noise tunable laser product provide by design a 10kHz intrinsic linewidth (i.e. related to the laser physics) and low AM (RIN)

More information

BME 3512 Bioelectronics Laboratory Five - Operational Amplifiers

BME 3512 Bioelectronics Laboratory Five - Operational Amplifiers BME 351 Bioelectronics Laboratory Five - Operational Amplifiers Learning Objectives: Be familiar with the operation of a basic op-amp circuit. Be familiar with the characteristics of both ideal and real

More information

BIOE 123 Module 3. Electronics 2: Time Varying Circuits. Lecture (30 min) Date. Learning Goals

BIOE 123 Module 3. Electronics 2: Time Varying Circuits. Lecture (30 min) Date. Learning Goals BIOE 123 Module 3 Electronics 2: Time Varying Circuits Lecture (30 min) Date Learning Goals Learn about the behavior of capacitors and inductors Learn how to analyze time-varying circuits to quantify parameters

More information

Lab #2: Electrical Measurements II AC Circuits and Capacitors, Inductors, Oscillators and Filters

Lab #2: Electrical Measurements II AC Circuits and Capacitors, Inductors, Oscillators and Filters Lab #2: Electrical Measurements II AC Circuits and Capacitors, Inductors, Oscillators and Filters Goal: In circuits with a time-varying voltage, the relationship between current and voltage is more complicated

More information

UNIT - 5 OPTICAL RECEIVER

UNIT - 5 OPTICAL RECEIVER UNIT - 5 LECTURE-1 OPTICAL RECEIVER Introduction, Optical Receiver Operation, receiver sensitivity, quantum limit, eye diagrams, coherent detection, burst mode receiver operation, Analog receivers. RECOMMENDED

More information

Low_Pass_Filter_1st_Order -- Overview

Low_Pass_Filter_1st_Order -- Overview Low_Pass_Filter_1st_Order -- Overview 1 st Order Low Pass Filter Objectives: After performing this lab exercise, learner will be able to: Understand and comprehend working of opamp Comprehend basics of

More information

Test No. 1. Introduction to Scope Measurements. Report History. University of Applied Sciences Hamburg. Last chance!! EEL2 No 1

Test No. 1. Introduction to Scope Measurements. Report History. University of Applied Sciences Hamburg. Last chance!! EEL2 No 1 University of Applied Sciences Hamburg Group No : DEPARTMENT OF INFORMATION ENGINEERING Laboratory for Instrumentation and Measurement L: in charge of the report Test No. Date: Assistant A2: Professor:

More information

SHF Communication Technologies AG. Wilhelm-von-Siemens-Str. 23D Berlin Germany. Phone Fax

SHF Communication Technologies AG. Wilhelm-von-Siemens-Str. 23D Berlin Germany. Phone Fax SHF Communication Technologies AG Wilhelm-von-Siemens-Str. 23D 12277 Berlin Germany Phone +49 30 772051-0 Fax ++49 30 7531078 E-Mail: sales@shf.de Web: http://www.shf.de Application Note Jitter Injection

More information

MIL-STD-202G METHOD 308 CURRENT-NOISE TEST FOR FIXED RESISTORS

MIL-STD-202G METHOD 308 CURRENT-NOISE TEST FOR FIXED RESISTORS CURRENT-NOISE TEST FOR FIXED RESISTORS 1. PURPOSE. This resistor noise test method is performed for the purpose of establishing the "noisiness" or "noise quality" of a resistor in order to determine its

More information

INTRODUCTION TO COMMUNICATION SYSTEMS LABORATORY IV. Binary Pulse Amplitude Modulation and Pulse Code Modulation

INTRODUCTION TO COMMUNICATION SYSTEMS LABORATORY IV. Binary Pulse Amplitude Modulation and Pulse Code Modulation INTRODUCTION TO COMMUNICATION SYSTEMS Introduction: LABORATORY IV Binary Pulse Amplitude Modulation and Pulse Code Modulation In this lab we will explore some of the elementary characteristics of binary

More information

Lab 2: Linear and Nonlinear Circuit Elements and Networks

Lab 2: Linear and Nonlinear Circuit Elements and Networks OPTI 380B Intermediate Optics Laboratory Lab 2: Linear and Nonlinear Circuit Elements and Networks Objectives: Lean how to use: Function of an oscilloscope probe. Characterization of capacitors and inductors

More information

Calibration Techniques for the Home Lab

Calibration Techniques for the Home Lab Calibration Techniques for the Home Lab Jacques Audet VE2AZX jacaudet@videotron.ca Web: ve2azx.net September 2018 ve2azx.net 1 Summary - Using a reference multimeter as a calibrator for less accurate instruments.

More information

VCC. Digital 16 Frequency Divider Digital-to-Analog Converter Butterworth Active Filter Sample-and-Hold Amplifier (part 2) Last Update: 03/19/14

VCC. Digital 16 Frequency Divider Digital-to-Analog Converter Butterworth Active Filter Sample-and-Hold Amplifier (part 2) Last Update: 03/19/14 Digital 16 Frequency Divider Digital-to-Analog Converter Butterworth Active Filter Sample-and-Hold Amplifier (part 2) ECE3204 Lab 5 Objective The purpose of this lab is to design and test an active Butterworth

More information

The University of Toledo R. Ellingson and M. Heben

The University of Toledo R. Ellingson and M. Heben focal length, f Spectral Measurement Using a Monochromator, Thermopile Detector, and Lock-In Amplifier September 18, 2012 The University of Toledo R. Ellingson and M. Heben Where are We, Where we are Going?

More information

Noise Specs Confusing?

Noise Specs Confusing? Noise Specs Confusing? It s really all very simple once you understand it. Then, here s the inside story on noise for those of us who haven t been designing low noise amplifiers for ten years. You hear

More information

1 Lock-in Amplifier Introduction

1 Lock-in Amplifier Introduction 1 Lock-in Amplifier Introduction The purpose of this laboratory is to introduce the student to the lock-in amplifier. A lock-in amplifier is a nearly ubiquitous piece of laboratory equipment, and can serve

More information

Laboratory 4 Operational Amplifier Department of Mechanical and Aerospace Engineering University of California, San Diego MAE170

Laboratory 4 Operational Amplifier Department of Mechanical and Aerospace Engineering University of California, San Diego MAE170 Laboratory 4 Operational Amplifier Department of Mechanical and Aerospace Engineering University of California, San Diego MAE170 Megan Ong Diana Wu Wong B01 Tuesday 11am April 28 st, 2015 Abstract: The

More information

ECE 342 Fall 2017 Optoelectronic Link Project Lab 2: Active Bandpass Filters

ECE 342 Fall 2017 Optoelectronic Link Project Lab 2: Active Bandpass Filters ECE 342 Fall 2017 Optoelectronic Link Project Lab 2: Active Bandpass Filters Overview The performance of any electronic circuit, analog or digital, is limited by the noise floor. In a classical system,

More information

Investigate the characteristics of PIN Photodiodes and understand the usage of the Lightwave Analyzer component.

Investigate the characteristics of PIN Photodiodes and understand the usage of the Lightwave Analyzer component. PIN Photodiode 1 OBJECTIVE Investigate the characteristics of PIN Photodiodes and understand the usage of the Lightwave Analyzer component. 2 PRE-LAB In a similar way photons can be generated in a semiconductor,

More information

Chemistry Instrumental Analysis Lecture 10. Chem 4631

Chemistry Instrumental Analysis Lecture 10. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 10 Types of Instrumentation Single beam Double beam in space Double beam in time Multichannel Speciality Types of Instrumentation Single beam Requires stable

More information

Effect of Beam Size on Photodiode Saturation

Effect of Beam Size on Photodiode Saturation Effect of Beam Size on Photodiode Saturation Experiments were conducted to demonstrate a change in the saturation point for a FDS1010 silicon photodiode as a function of beam diameter. The saturation point

More information

Gilbert Cell Multiplier Measurements from GHz II: Sample of Eight Multipliers

Gilbert Cell Multiplier Measurements from GHz II: Sample of Eight Multipliers Gilbert Cell Multiplier Measurements from 2-18.5 GHz II: Sample of Eight Multipliers A.I. Harris 26 February 2002, 7 June 2002 1 Overview and summary This note summarizes a set of measurements of eight

More information

Reference Sources. Prelab. Proakis chapter 7.4.1, equations to as attached

Reference Sources. Prelab. Proakis chapter 7.4.1, equations to as attached Purpose The purpose of the lab is to demonstrate the signal analysis capabilities of Matlab. The oscilloscope will be used as an A/D converter to capture several signals we have examined in previous labs.

More information

Channel Characteristics and Impairments

Channel Characteristics and Impairments ELEX 3525 : Data Communications 2013 Winter Session Channel Characteristics and Impairments is lecture describes some of the most common channel characteristics and impairments. A er this lecture you should

More information

The object of this experiment is to become familiar with the instruments used in the low noise laboratory.

The object of this experiment is to become familiar with the instruments used in the low noise laboratory. 0. ORIENTATION 0.1 Object The object of this experiment is to become familiar with the instruments used in the low noise laboratory. 0.2 Parts The following parts are required for this experiment: 1. A

More information

PHYS 3322 Modern Laboratory Methods I AC R, RC, and RL Circuits

PHYS 3322 Modern Laboratory Methods I AC R, RC, and RL Circuits Purpose PHYS 3322 Modern Laboratory Methods I AC, C, and L Circuits For a given frequency, doubling of the applied voltage to resistors, capacitors, and inductors doubles the current. Hence, each of these

More information

LAB V. LIGHT EMITTING DIODES

LAB V. LIGHT EMITTING DIODES LAB V. LIGHT EMITTING DIODES 1. OBJECTIVE In this lab you are to measure I-V characteristics of Infrared (IR), Red and Blue light emitting diodes (LEDs). The emission intensity as a function of the diode

More information

Shielding. Fig. 6.1: Using a Steel Paint Can

Shielding. Fig. 6.1: Using a Steel Paint Can Analysis and Measurement of Intrinsic Noise in Op Amp Circuits Part VI: Noise Measurement Examples by Art Kay, Senior Applications Engineer, Texas Instruments Incorporated In Part IV we introduced the

More information

Equivalent Equipment Circuits

Equivalent Equipment Circuits 1. Introduction Equivalent Equipment Circuits The student will analyze the internal properties of the equipment used in lab. The input resistance of the oscilloscope and Digital MultiMeter (DMM) when used

More information

PMT tests at UMD. Vlasios Vasileiou Version st May 2006

PMT tests at UMD. Vlasios Vasileiou Version st May 2006 PMT tests at UMD Vlasios Vasileiou Version 1.0 1st May 2006 Abstract This memo describes the tests performed on three Milagro PMTs in UMD. Initially, pulse-height distributions of the PMT signals were

More information

DC Circuits, Ohm's Law and Multimeters Physics 246

DC Circuits, Ohm's Law and Multimeters Physics 246 DC Circuits, Ohm's Law and Multimeters Physics 246 Theory: In this lab we will learn the use of multimeters, verify Ohm s law, and study series and parallel combinations of resistors and capacitors. For

More information

CHAPTER 14. Introduction to Frequency Selective Circuits

CHAPTER 14. Introduction to Frequency Selective Circuits CHAPTER 14 Introduction to Frequency Selective Circuits Frequency-selective circuits Varying source frequency on circuit voltages and currents. The result of this analysis is the frequency response of

More information

Operational Amplifier

Operational Amplifier Operational Amplifier Joshua Webster Partners: Billy Day & Josh Kendrick PHY 3802L 10/16/2013 Abstract: The purpose of this lab is to provide insight about operational amplifiers and to understand the

More information

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT In this chapter, the experimental results for fine-tuning of the laser wavelength with an intracavity liquid crystal element

More information

NOISE INTERNAL NOISE. Thermal Noise

NOISE INTERNAL NOISE. Thermal Noise NOISE INTERNAL NOISE......1 Thermal Noise......1 Shot Noise......2 Frequency dependent noise......3 THERMAL NOISE......3 Resistors in series......3 Resistors in parallel......4 Power Spectral Density......4

More information

EECS40 RLC Lab guide

EECS40 RLC Lab guide EECS40 RLC Lab guide Introduction Second-Order Circuits Second order circuits have both inductor and capacitor components, which produce one or more resonant frequencies, ω0. In general, a differential

More information

Filters And Waveform Shaping

Filters And Waveform Shaping Physics 3330 Experiment #3 Fall 2001 Purpose Filters And Waveform Shaping The aim of this experiment is to study the frequency filtering properties of passive (R, C, and L) circuits for sine waves, and

More information

80-MHz Balanced Photoreceivers Model 18X7

80-MHz Balanced Photoreceivers Model 18X7 USER S GUIDE 80-MHz Balanced Photoreceivers Model 18X7 2584 Junction Ave. San Jose, CA 95134-1902 USA phone: (408) 919 1500 e-mail: contact@newfocus.com www.newfocus.com Warranty New Focus, Inc. guarantees

More information

Non-amplified Photodetectors

Non-amplified Photodetectors Non-amplified Photodetectors User Guide (800)697-6782 sales@eotech.com www.eotech.com Page 1 of 9 EOT NON-AMPLIFIED PHOTODETECTOR USER S GUIDE Thank you for purchasing your Non-amplified Photodetector

More information

1. An engineer measures the (step response) rise time of an amplifier as. Estimate the 3-dB bandwidth of the amplifier. (2 points)

1. An engineer measures the (step response) rise time of an amplifier as. Estimate the 3-dB bandwidth of the amplifier. (2 points) Exam 1 Name: Score /60 Question 1 Short Takes 1 point each unless noted otherwise. 1. An engineer measures the (step response) rise time of an amplifier as. Estimate the 3-dB bandwidth of the amplifier.

More information

2520 Pulsed Laser Diode Test System

2520 Pulsed Laser Diode Test System Complete pulse test of laser diode bars and chips with dual photocurrent measurement channels 0 Pulsed Laser Diode Test System Simplifies laser diode L-I-V testing prior to packaging or active temperature

More information

Measurement of SQUID noise levels for SuperCDMS SNOLAB detectors

Measurement of SQUID noise levels for SuperCDMS SNOLAB detectors Measurement of SQUID noise levels for SuperCDMS SNOLAB detectors Maxwell Lee SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, MS29 SLAC-TN-15-051 Abstract SuperCDMS SNOLAB is a second generation

More information

HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE

HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE Thank you for purchasing your High Speed Fiber Photodetector. This user s guide will help answer any questions you may have regarding the safe use and optimal

More information

DC/DC Converter Stability Measurement

DC/DC Converter Stability Measurement Strongly supported by By Stephan Synkule, Lukas Heinzle & Florian Hämmerle 2018 by OMICRON Lab V3.3 Visit www.omicron-lab.com for more information. Contact support@omicron-lab.com for technical support.

More information

Keysight Technologies Making Accurate Intermodulation Distortion Measurements with the PNA-X Network Analyzer, 10 MHz to 26.5 GHz

Keysight Technologies Making Accurate Intermodulation Distortion Measurements with the PNA-X Network Analyzer, 10 MHz to 26.5 GHz Keysight Technologies Making Accurate Intermodulation Distortion Measurements with the PNA-X Network Analyzer, 10 MHz to 26.5 GHz Application Note Overview This application note describes accuracy considerations

More information

Electronic Instrumentation

Electronic Instrumentation Chapter 3 Noise and Interference in Instrumentation Systems 1 Chapter 3. Noise and Interference in Instrumentation Systems Introduction Origin of Noise in Circuits Noise Models for Amplifiers. Examples

More information

ECE Lab #4 OpAmp Circuits with Negative Feedback and Positive Feedback

ECE Lab #4 OpAmp Circuits with Negative Feedback and Positive Feedback ECE 214 Lab #4 OpAmp Circuits with Negative Feedback and Positive Feedback 20 February 2018 Introduction: The TL082 Operational Amplifier (OpAmp) and the Texas Instruments Analog System Lab Kit Pro evaluation

More information

7. Experiment K: Wave Propagation

7. Experiment K: Wave Propagation 7. Experiment K: Wave Propagation This laboratory will be based upon observing standing waves in three different ways, through coaxial cables, in free space and in a waveguide. You will also observe some

More information

Electric Currents 2 D V. (1)

Electric Currents 2 D V. (1) Name: Date: Electric Currents 2. A battery is connected in series with a resistor R. The battery transfers 2 000 C of charge completely round the circuit. During this process, 2 500 J of energy is dissipated

More information

EXPERIMENT 3 Half-Wave and Full-Wave Rectification

EXPERIMENT 3 Half-Wave and Full-Wave Rectification Name & Surname: ID: Date: EXPERIMENT 3 Half-Wave and Full-Wave Rectification Objective To calculate, compare, draw, and measure the DC output voltages of half-wave and full-wave rectifier circuits. Tools

More information

JFET Noise. Figure 1: JFET noise equivalent circuit. is the mean-square thermal drain noise current and i 2 fd

JFET Noise. Figure 1: JFET noise equivalent circuit. is the mean-square thermal drain noise current and i 2 fd JFET Noise 1 Object The objects of this experiment are to measure the spectral density of the noise current output of a JFET, to compare the measured spectral density to the theoretical spectral density,

More information

LAB V. LIGHT EMITTING DIODES

LAB V. LIGHT EMITTING DIODES LAB V. LIGHT EMITTING DIODES 1. OBJECTIVE In this lab you will measure the I-V characteristics of Infrared (IR), Red and Blue light emitting diodes (LEDs). Using a photodetector, the emission intensity

More information

Experiment Five: The Noisy Channel Model

Experiment Five: The Noisy Channel Model Experiment Five: The Noisy Channel Model Modified from original TIMS Manual experiment by Mr. Faisel Tubbal. Objectives 1) Study and understand the use of marco CHANNEL MODEL module to generate and add

More information

Lab #2: Electrical Measurements II AC Circuits and Capacitors, Inductors, Oscillators and Filters

Lab #2: Electrical Measurements II AC Circuits and Capacitors, Inductors, Oscillators and Filters Lab #2: Electrical Measurements II AC Circuits and Capacitors, Inductors, Oscillators and Filters Goal: In circuits with a time-varying voltage, the relationship between current and voltage is more complicated

More information

771 Series LASER SPECTRUM ANALYZER. The Power of Precision in Spectral Analysis. It's Our Business to be Exact! bristol-inst.com

771 Series LASER SPECTRUM ANALYZER. The Power of Precision in Spectral Analysis. It's Our Business to be Exact! bristol-inst.com 771 Series LASER SPECTRUM ANALYZER The Power of Precision in Spectral Analysis It's Our Business to be Exact! bristol-inst.com The 771 Series Laser Spectrum Analyzer combines proven Michelson interferometer

More information