Inductive Power Transfer: The Capacitive Problem!

Size: px
Start display at page:

Download "Inductive Power Transfer: The Capacitive Problem!"

Transcription

1 Inductive Power Transfer: The Capacitive Problem! Paolo GUGLIELMI POLITECNICO DI TORINO - DENERG paolo.guglielmi@polito.it HEV TCP 26, Versailles, Apr. 2017

2 Agenda The Dynamic WPT The Goal and the Challenge The Susa Test Site POLITO and SAET Solutions The DWPT configuration adopted The precision problem The embedding problem First Tests Small prototypes At the test site POLITO vs SAET embedding solution Conclusions: Lesson learned

3 Dynamic Wireless Power Transfer 85kHz Compensation AC/DC On-board converter Load Receiver Transmitter DC/AC converter AC/DC converter Electrical network Compensation Transfer electric energy to a vehicle in motion at high speed Motorway operation oriented

4 Dynamic Wireless Power Transfer DWPT Highway Contact up-roof Highway Strongly reduced Visual impact Long distances and pads Different possible users Large power demand NEW power distribution problem

5 Dynamic Wireless Power Transfer MV 10-22kV 3phase 50Hz Trasfo MV-LV Y- Y Configuration #1 for Motorway Small on pole Sub-station 600kVA AC/DC 12pulse ICTComm CSCU Sign. Power Supply V DC local distribution 500m

6 Dynamic Wireless Power Transfer MV 6.5kV DC Configuration #2 for Motorway Insulated DC/DC bidirectional Small underground sub station 500kW ICTComm CSCU Sign. Power Supply V DC local distribution 500m

7 The GOAL and the Challenges 1. An interoperable test site DWPT capability up to 100m & 100kW total each coil designed to operate between 0 and 20kW Flexibility each coil can individually limit the transmittable power Two different distribution and WPT configuration on ground POLITO and SAET solutions The vehicle will chose how much power to take MINIMAL COST 2. All ICT and communication issues Authorization Accounting and Metering 3. EMF for human exposure

8 Agenda The Dynamic WPT The Goal and the Challenge The Susa Test Site POLITO and SAET Solutions The DWPT configuration adopted The precision problem The embedding problem First Tests Small prototypes At the test site POLITO vs SAET embedding solution Conclusions: Lesson learned

9 The Susa test-site TEST SITE The Italian test site by Susa, Piedmont - ITALY

10 The Susa test-site BRUXELLES TEST SITE TURIN The Italian test site by Susa, Piedmont - ITALY

11 The Susa test-site TEST SITE TURIN The Italian test site by Susa, Piedmont - ITALY

12 The Susa test-site A32 MOTORWAY TEST SITE SUSA MUNICIPALITIES The Italian test site by Susa, Piedmont - ITALY

13 The Susa test-site The Italian test site by Susa, Piedmont - ITALY

14 POLITO power configuration 400V AC 400V AC Trasfo 120kVA Shelter side the road ICTComm CSCU Sign. Power Supply 650Vdc AC/DC SC 22kW DC out Power room To SAET solution Road 650Vdc DC/HFs Coils + Cap. 25 x 2m (x 2) = 100m

15 SAET power configuration Shelter side the road 400V AC 400V AC Trasfo Trasfo. Y- Y 120kVA 100kVA AC/DC 12puls ICTComm CSCU Sign. Power Supply Power room To POLITO solution Road 650Vdc DC/HFs Coils + Cap. 25 x 2m (x 2) = 100m

16 SAET and POLITO TX & RX solution SIMPLE magnetic solution Same physical dimensions meaning similar coupling factors Same RECEIVER will be adopted but different solutions will be implemented on the transmitting side In both NO ferrite on ground No shielding on ground

17 SAET and POLITO RX solution Designed to cope with EMF ICNIRP 2010 guidelines

18 SAET and POLITO transmitting solutions Same physical dimensions meaning same Ampere-Turns Transformer-less Transformer-based Embedded Caps Separated Caps Multi-turn Single-turn Very High Voltage Lower Voltage Low currents High currents 40Arms 400Arms 1.5 x 0.5 m 4 cm down the level of the road

19 Power electronic transmitters Status: 2nd version: final boards, all pieces ready Devel.: Ended Scope: Fully validated in lab; to be validated on site SAET Peculiarity Same communication protocol for CAN interfacing RS485 for synchronization Reduced cost IP68 solution 1200V SiC based H-bridge

20 Agenda The Dynamic WPT The Goal and the Challenge The Susa Test Site POLITO and SAET Solutions The DWPT configuration adopted The precision problem The embedding problem First Tests Small prototypes At the test site POLITO vs SAET embedding solution Conclusions: Lesson learned

21 Transmitting Capacitors: the choice Among the different topologies we chose for the series-series compensation possible

22 Transmitting Capacitors: the choice Decrease of the VA rating of the power electronics Possibility to adopt soft-switching techniques Strong reduction of commutation losses Increase of the power transfer capability

23 Transmitting Capacitors: the sizing SAME VA RATING as THE RELATED INDUCTOR POLITO on L1 = 280uH and 12.5nF 5400Vrms SAET on L1 = 4uH and 875nF 1000Vrms Smaller Bigger Embeddable Maintainable Precise Less precise Very High Voltage High Voltage Easy cooling Difficult cooling Patented Commercial

24 Transmitting Capacitors: POLITO High voltage test Dedicate Connectors Thermal test 20% Load Mounting solution

25 IDEAL COUPLING PRIMARY AND SECONDARY CURRENTS VS Coupling factor Capacitors: PRECISION WHY? Transmitter current amplitude versus frequency Receiver current amplitude versus frequency Transmitter current phase versus frequency

26 Capacitors: PRECISION WHY? Current peaks for frequencies close to ω0 Transmitter current amplitude versus frequency Receiver current amplitude versus frequency Sharp variations of the equivalent behavior for frequencies close to ω0 Transmitter current phase versus frequency

27 Capacitors: PRECISION WHY? -10% -5% -1% +1% +5% +10% Variation of C1 Variation of C2

28 Capacitors: PRECISION WHY? Experimental on demo Transmitter current amplitude Transmitter current phase

29 Transmitting Capacitors: PRECISION WHY? It is impossible to assure the switching operations at pure resonant conditions (resistive behavior) The phase can change dependently on the coupling, the load or the tolerances on the components Transmitter current amplitude Transmitter current phase

30 TX and RX Capacitors: PRECISION WHY? The supplying power electronics has to be able to manage slight hard-switching The power electronics has to be able to manage capacitive commutations Operations at variable frequency needs for an over-rating of the power switches or a fast and robust control on the receiver side Transmitter current amplitude Transmitter current phase

31 TX and RX Capacitors: PRECISION how much? The proposed HW realization for POLITO let obtain a precision better than 1% on a single component Anyway a tuning or a selection is needed Adopting the parallel more smaller components let we reach higher statistic level of precision

32 Inductors PRECISION can be good POLITO solution Manufactured and tested before embedding

33 Agenda The Dynamic WPT The Goal and the Challenge The Susa Test Site POLITO and SAET Solutions The DWPT configuration adopted The precision problem The embedding problem First Tests Small prototypes At the test site POLITO vs SAET embedding solution Conclusions: Lesson learned

34 Coils Embedding POLITO solution First embedding trial

35 Coils Embedding first measurement HIOKI LCR HiTESTER Test conditions: Test voltage 5 V Test frequency 85 khz Measured coil parameters in laboratory conditions (before embedding) L = μh R = 303 mω Measured embedded coil parameters L = μh R = 17.2 Ω

36 Coils Embedding Hypothesis Hypothesis on the source of the unexpected behavior Capacitive coupling between the coil and the concrete

37 Coils Embedding capacitive coupling Hypothesis verification Coil of reduced dimension: 30x40 cm2 6 turns Replicated embedding conditions in laboratory

38 Coils Embedding capacitive coupling Hypothesis verification Parallel resonance appears Phase Ampl. Before embedding After embedding

39 Coils Embedding capacitive coupling Hypothesis verification Main concept Coil s copper Wire insulation Concrete Coil s copper Wire insulation Bitumen Additional layer of bituminous coating Concrete

40 Coils Embedding capacitive coupling Hypothesis verification Parallel resonance Disappears Phase Ampl. Before embedding After embedding with Bitumen

41 Coils Embedding capacitive coupling ON SITE Different resins have been tested OK KO!! OK Different - Resin HF - Resin Pre Bitumen Or in hole

42 Coils Embedding than a SOLUTION (!??!) OK OK OK BUT NOT SO EASY OK

43 Coils Embedding than a SOLUTION (!??!) MAPEI Mapegrount Cold asphalt

44 Coils embedding: and the SAET solution No problem with ground coupling whichever material is used WHY? Much lower inductance Coil itself need to be protected by a cover for simple handling Lower copper area exposition

45 Coils embedding: and the SAET solution BUT The INDUCTANCE value DEPENDS on the physical placement of the cable into ground The connection to the manhole strongly influence the inductance values. Different solution to the problem can anyway be foreseen

46 Agenda The Dynamic WPT The Goal and the Challenge The Susa Test Site POLITO and SAET Solutions The DWPT configuration adopted The precision problem The embedding problem First Tests Small prototypes At the test site POLITO vs SAET embedding solution Conclusions: Lesson learned

47 Lesson Learned 1. The capacitive problem is hard and need to be addressed at the DESIGN level In the transmitting and receiving resonators it is fundamental IT CAN STRONGLY LIMIT THE OUTPUT POWER IT LEAD TO UNPREDICTABLE CAPACITIVE AND INDUCTIVE COMMUTATION The main solution is PRECISION AND TUNING IN THE RESONATORS BETTER THAN 0.5% IN THE RESONANCE FREQUENCY In the embedding process materials vs solutions is the main issue. PHYSICAL COIL dimensions and ADOPTED MATERIALS for embedding can transform you inductor in resistor!

48 Thank you! Paolo GUGLIELMI Associate Professor, Politecnico di Torino DENERG Italy

A Novel Transformer Structure for High power, High Frequency converter

A Novel Transformer Structure for High power, High Frequency converter A Novel Transformer Structure for High power, High Frequency converter Chao Yan, Fan Li, Jianhong Zeng, Teng Liu, Jianping Ying Delta Power Electronics Center 238 Minxia Road, Caolu Industry Zone, Pudong,

More information

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions. Ji, Chao and Watson, Alan James and Clare, Jon C. and Johnson, Christopher Mark (216) A novel full softswitching resonant power converter for mid-feeder voltage regulation of low voltage distribution network.

More information

Successful Qi Transmitter Implementation (making things go right for a change) Dave Wilson 16November2017 v1.

Successful Qi Transmitter Implementation (making things go right for a change) Dave Wilson 16November2017 v1. Successful Qi Transmitter Implementation (making things go right for a change) Dave Wilson dwilson@kinet-ic.com 16November2017 v1.0 Overview Introduction Implementation Flow Design Tips and Tricks Important

More information

Testing & Calibration Lab, 204, Diamond Industrial Estate No. 2, Ketki Pada Road, (Near Dahisar Toll Naka), Dahisar (East), Mumbai, Maharashtra

Testing & Calibration Lab, 204, Diamond Industrial Estate No. 2, Ketki Pada Road, (Near Dahisar Toll Naka), Dahisar (East), Mumbai, Maharashtra Last Amended on - Page 1 of 5 SOURCE 1. DC VOLTAGE 1 mv to 32 mv 0.43 % to 0.02 % 32 mv to 32 V 0.02 % to 0.008 % 32 V to 1000 V 0.008 % to 0.02 % 2. DC CURRENT 10 µa to 320 µa 0.15 % to 0.03 % 32 µa to

More information

Operating Point Setting Method for Wireless Power Transfer with Constant Voltage Load

Operating Point Setting Method for Wireless Power Transfer with Constant Voltage Load Operating Point Setting Method for Wireless Power Transfer with Constant Voltage Daisuke Gunji The University of Tokyo / NSK Ltd. 5--5, Kashiwanoha, Kashiwa, Chiba, 77-856, Japan / -5-5, Kugenumashinmei,

More information

Methods for Reducing Leakage Electric Field of a Wireless Power Transfer System for Electric Vehicles

Methods for Reducing Leakage Electric Field of a Wireless Power Transfer System for Electric Vehicles Methods for Reducing Leakage Electric Field of a Wireless Power Transfer System for Electric Vehicles Masaki Jo, Yukiya Sato, Yasuyoshi Kaneko, Shigeru Abe Graduate School of Science and Engineering Saitama

More information

Title. Description. Date 16 th August, Revision 1.1 RD W Telecoms DC/DC PSU Input : 37Vdc to 60Vdc Output : 32V/10A

Title. Description. Date 16 th August, Revision 1.1 RD W Telecoms DC/DC PSU Input : 37Vdc to 60Vdc Output : 32V/10A Title Description RD008 320W Telecoms DC/DC PSU Input : 37Vdc to 60Vdc Output : 32V/10A Date 16 th August, 2007 Revision 1.1 WWW.ConverterTechnology.CO.UK RD008 320W Push-Pull Converter August 16, 2007

More information

Radio Frequency Electronics

Radio Frequency Electronics Radio Frequency Electronics Frederick Emmons Terman Transformers Masters degree from Stanford and Ph.D. from MIT Later a professor at Stanford His students include William Hewlett and David Packard Wrote

More information

Using the Latest Wolfspeed C3M TM SiC MOSFETs to Simplify Design for Level 3 DC Fast Chargers

Using the Latest Wolfspeed C3M TM SiC MOSFETs to Simplify Design for Level 3 DC Fast Chargers Using the Latest Wolfspeed C3M TM SiC MOSFETs to Simplify Design for Level 3 DC Fast Chargers Abstract This paper will examine the DC fast charger market and the products currently used in that market.

More information

AP Physics C. Alternating Current. Chapter Problems. Sources of Alternating EMF

AP Physics C. Alternating Current. Chapter Problems. Sources of Alternating EMF AP Physics C Alternating Current Chapter Problems Sources of Alternating EMF 1. A 10 cm diameter loop of wire is oriented perpendicular to a 2.5 T magnetic field. What is the magnetic flux through the

More information

Properties of Inductor and Applications

Properties of Inductor and Applications LABORATORY Experiment 3 Properties of Inductor and Applications 1. Objectives To investigate the properties of inductor for different types of magnetic material To calculate the resonant frequency of a

More information

Efficiency Improvement of High Frequency Inverter for Wireless Power Transfer System Using a Series Reactive Power Compensator

Efficiency Improvement of High Frequency Inverter for Wireless Power Transfer System Using a Series Reactive Power Compensator IEEE PEDS 27, Honolulu, USA 2-5 December 27 Efficiency Improvement of High Frequency Inverter for Wireless Power Transfer System Using a Series Reactive Power Compensator Jun Osawa Graduate School of Pure

More information

Design and implementation of a LLC-ZCS Converter for Hybrid/Electric Vehicles

Design and implementation of a LLC-ZCS Converter for Hybrid/Electric Vehicles Design and implementation of a LLC-ZCS Converter for Hybrid/Electric Vehicles Davide GIACOMINI Principal, Automotive HVICs Infineon Italy s.r.l. ATV division Need for clean Hybrid and Full Electric vehicles

More information

Electric Grid Modernization Enabled by SiC Device based Solid State Transformers and Innovations in Medium Frequency Magnetics

Electric Grid Modernization Enabled by SiC Device based Solid State Transformers and Innovations in Medium Frequency Magnetics 1/31 Electric Grid Modernization Enabled by SiC Device based Solid State Transformers and Innovations in Medium Frequency Magnetics Dr. Subhashish Bhattacharya Department of Electrical and Computer Engineering

More information

Qi Developer Forum. Circuit Design Considerations. Dave Wilson 16-February-2017

Qi Developer Forum. Circuit Design Considerations. Dave Wilson 16-February-2017 WPC1701 Qi Developer Forum Circuit Design Considerations Dave Wilson 16-February-2017 Overview Getting Started Basics The Qi Advantage for Circuit Design Practical Design Issues Practical Implementation

More information

RFID. LF Training. Installation and Set-up. J.A.G 7 March, 2008 Texas Instruments Proprietary Information 1

RFID. LF Training. Installation and Set-up. J.A.G 7 March, 2008 Texas Instruments Proprietary Information 1 RFID LF Training Installation and Set-up J.A.G 7 March, 2008 Texas Instruments Proprietary Information 1 S2000 Readers Radio Frequency Module (RFM) Control Module (CTL) Series 2000 Reader 3/28/2008 TI

More information

Calsytech, # 38 North Mada Street Nandambakkam, Chennai, Tamil Nadu. Discipline Electro-Technical Calibration Issue Date

Calsytech, # 38 North Mada Street Nandambakkam, Chennai, Tamil Nadu. Discipline Electro-Technical Calibration Issue Date Last Amended on 23.11.2016 Page 1 of 7 SOURCE 1. DC VOLTAGE $ 1mV to 10 mv 10 mv to100 mv 100 mv to1000 V 0.43% to 0.05% 0.05% to 0.01% 0.01% to 0.004% Calibrator, Calibrator by DC VOLTAGE 1mV to 20 mv

More information

CHAPTER 6: ALTERNATING CURRENT

CHAPTER 6: ALTERNATING CURRENT CHAPTER 6: ALTERNATING CURRENT PSPM II 2005/2006 NO. 12(C) 12. (c) An ac generator with rms voltage 240 V is connected to a RC circuit. The rms current in the circuit is 1.5 A and leads the voltage by

More information

Keywords Wireless power transfer, Magnetic resonance, Electric vehicle, Parameter estimation, Secondary-side control

Keywords Wireless power transfer, Magnetic resonance, Electric vehicle, Parameter estimation, Secondary-side control Efficiency Maximization of Wireless Power Transfer Based on Simultaneous Estimation of Primary Voltage and Mutual Inductance Using Secondary-Side Information Katsuhiro Hata, Takehiro Imura, and Yoichi

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 2 BASIC CIRCUIT ELEMENTS OBJECTIVES The purpose of this experiment is to familiarize the student with

More information

LPU-Laguna Journal of Engineering and Computer Studies Vol. 3 No.3 October 2016

LPU-Laguna Journal of Engineering and Computer Studies Vol. 3 No.3 October 2016 Wireless Charging System for KILOBOTs Using Inductive Power Transfer with Management System Melchizedek S. Concepcion 1, Ira Oliver C. Fernando 2, Gian Lorenzo G. Mendoza 3, Kyle G. Reyes 4, and Reggie

More information

Technical Report. Zero Reactive Power Passive Current Harmonic Filter (ZRPPCHF) (In House Case Study) Prepared by. Dr. V. R. Kanetkar.

Technical Report. Zero Reactive Power Passive Current Harmonic Filter (ZRPPCHF) (In House Case Study) Prepared by. Dr. V. R. Kanetkar. Technical Report on Zero Reactive Power Passive Current Harmonic Filter (ZRPPCHF) (In House Case Study) Prepared by Dr. V. R. Kanetkar (February 2015) Shreem Electric Limited (Plot No. 43-46, L. K. Akiwate

More information

CATALOG including...

CATALOG including... 2002 CATALOG including... http://www.hioki.co.jp/ HIOKI company overview, new products, environmental considerations and other information are available on our website. 1 Advanced Instruments to Meet International

More information

CONTENTS 2/ /7 8/9 10/11 12/13 14/15 16/17 18/19 20/21 22/23 24/25 26/27 28/29 30/31 32/ Contact Us 38

CONTENTS 2/ /7 8/9 10/11 12/13 14/15 16/17 18/19 20/21 22/23 24/25 26/27 28/29 30/31 32/ Contact Us 38 CONTENTS Market Sectors Company Profile Planar Technology Product Range Overview Size 10 MAX 1kW Size 195 MAX 1.5kW Size 225 MAX 2kW Size 20 MAX 2kW Size 50 MAX 6.5kW Size 500 MAX 10kW Size 510 MAX 10kW

More information

Understanding and Optimizing Electromagnetic Compatibility in Switchmode Power Supplies

Understanding and Optimizing Electromagnetic Compatibility in Switchmode Power Supplies Understanding and Optimizing Electromagnetic Compatibility in Switchmode Power Supplies 1 Definitions EMI = Electro Magnetic Interference EMC = Electro Magnetic Compatibility (No EMI) Three Components

More information

SELECTION GUIDE. Nominal Input Voltage Output Voltage. Output Current

SELECTION GUIDE. Nominal Input Voltage Output Voltage. Output Current www.murata-ps.com CRV2 Series SELECTION GUIDE Order Code Nominal Input Voltage Output Voltage Output Current Input Current at Rated Load Load Regulation (Typ) Load Regulation (Max) Ripple & Noise (Typ)

More information

Electronics Design Laboratory Lecture #10. ECEN 2270 Electronics Design Laboratory

Electronics Design Laboratory Lecture #10. ECEN 2270 Electronics Design Laboratory Electronics Design Laboratory Lecture #10 Electronics Design Laboratory 1 Lessons from Experiment 4 Code debugging: use print statements and serial monitor window Circuit debugging: Re check operation

More information

Examples Paper 3B3/4 DC-AC Inverters, Resonant Converter Circuits. dc to ac converters

Examples Paper 3B3/4 DC-AC Inverters, Resonant Converter Circuits. dc to ac converters Straightforward questions are marked! Tripos standard questions are marked * Examples Paper 3B3/4 DC-AC Inverters, Resonant Converter Circuits dc to ac converters! 1. A three-phase bridge converter using

More information

86 chapter 2 Transformers

86 chapter 2 Transformers 86 chapter 2 Transformers Wb 1.2x10 3 0 1/60 2/60 3/60 4/60 5/60 6/60 t (sec) 1.2x10 3 FIGURE P2.2 2.3 A single-phase transformer has 800 turns on the primary winding and 400 turns on the secondary winding.

More information

Lab 1. Resonance and Wireless Energy Transfer Physics Enhancement Programme Department of Physics, Hong Kong Baptist University

Lab 1. Resonance and Wireless Energy Transfer Physics Enhancement Programme Department of Physics, Hong Kong Baptist University Lab 1. Resonance and Wireless Energy Transfer Physics Enhancement Programme Department of Physics, Hong Kong Baptist University 1. OBJECTIVES Introduction to the concept of resonance Observing resonance

More information

Spark-Gap Tesla Transformer

Spark-Gap Tesla Transformer Spark-Gap Tesla Transformer 1 Introduction I built two secondary coils: Small coil D25.4/H119 (Diameter=25.4mm and Height=119mm) and Medium coil D73/H228. I experimented with the spark gap, and observed

More information

The Tuned Circuit. Aim of the experiment. Circuit. Equipment and components. Display of a decaying oscillation. Dependence of L, C and R.

The Tuned Circuit. Aim of the experiment. Circuit. Equipment and components. Display of a decaying oscillation. Dependence of L, C and R. The Tuned Circuit Aim of the experiment Display of a decaying oscillation. Dependence of L, C and R. Circuit Equipment and components 1 Rastered socket panel 1 Resistor R 1 = 10 Ω, 1 Resistor R 2 = 1 kω

More information

High voltage engineering

High voltage engineering High voltage engineering Overvoltages power frequency switching surges lightning surges Overvoltage protection earth wires spark gaps surge arresters Insulation coordination Overvoltages power frequency

More information

Designing High density Power Solutions with GaN Created by: Masoud Beheshti Presented by: Xaver Arbinger

Designing High density Power Solutions with GaN Created by: Masoud Beheshti Presented by: Xaver Arbinger Designing High density Power Solutions with GaN Created by: Masoud Beheshti Presented by: Xaver Arbinger Topics Why GaN? Integration for Higher System Performance Application Examples Taking GaN beyond

More information

2.8 Gen4 Medium Voltage SST Development

2.8 Gen4 Medium Voltage SST Development 2.8 Gen4 Medium Voltage SST Development Project Number Year 10 Projects and Participants Project Title Participants Institution Y10ET3 Gen4 Medium Voltage SST Development Yu, Husain NCSU 2.8.1 Intellectual

More information

Improvements of LLC Resonant Converter

Improvements of LLC Resonant Converter Chapter 5 Improvements of LLC Resonant Converter From previous chapter, the characteristic and design of LLC resonant converter were discussed. In this chapter, two improvements for LLC resonant converter

More information

MER1 Series 1kVDC Isolated 1W Single Output DC/DC Converters

MER1 Series 1kVDC Isolated 1W Single Output DC/DC Converters www.murata-ps.com MER1 Series SELECTION GUIDE Order Code Nominal Input Voltage Output Voltage Output Current Input Current at Rated Load Load Regulation (Typ) Load Regulation (Max) Ripple & Noise (Typ)

More information

Methodology for testing a regulator in a DC/DC Buck Converter using Bode 100 and SpCard

Methodology for testing a regulator in a DC/DC Buck Converter using Bode 100 and SpCard Methodology for testing a regulator in a DC/DC Buck Converter using Bode 100 and SpCard J. M. Molina. Abstract Power Electronic Engineers spend a lot of time designing their controls, nevertheless they

More information

10 kw Contactless Power Transfer System. for Rapid Charger of Electric Vehicle

10 kw Contactless Power Transfer System. for Rapid Charger of Electric Vehicle EVS6 Los Angeles, California, May 6-9, 0 0 kw Contactless Power Transfer System for Rapid Charger of Electric Vehicle Tomohiro Yamanaka, Yasuyoshi Kaneko, Shigeru Abe, Tomio Yasuda, Saitama University,

More information

ACTIVE POWER ELECTRONIC TRANSFORMER A STANDARD BUILDING BLOCK FOR SMART GRID

ACTIVE POWER ELECTRONIC TRANSFORMER A STANDARD BUILDING BLOCK FOR SMART GRID INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) ISSN 0976 6545(Print) ISSN 0976

More information

GF 467F FUNCTION GENERATOR. PROTECTED RS232 + (USB OR LAN)* LabVIEW 0,01 Hz to 5 MHz CMos. Specifications. Other specifications

GF 467F FUNCTION GENERATOR. PROTECTED RS232 + (USB OR LAN)* LabVIEW 0,01 Hz to 5 MHz CMos. Specifications. Other specifications FUNCTION GENERATOR EAN CODE : 3760244880468 5 MHZ+RS232++(USB or LAN)* GF 467F COMPLETE : Reciprocal frequency counter 50 MHz. - Internal linear or logarithmic sweep, and external VCF or FM modulation.

More information

Shielded SMD Power Inductor

Shielded SMD Power Inductor 101 Features Dimensions Unit: mm -Directly connected electrode on ferrite core -Available in magnetically shielded -Low DC resistance -Suitable for large current -Available on tape and reel for auto surface

More information

Annual Meeting. Task 4.8: DC Data Center with High Voltage isolation Virginia Tech Fred C Lee, Qiang Li and Shishuo Zhao.

Annual Meeting. Task 4.8: DC Data Center with High Voltage isolation Virginia Tech Fred C Lee, Qiang Li and Shishuo Zhao. Annual Meeting Task 4.8: DC Data Center with High Voltage isolation Virginia Tech Fred C Lee, Qiang Li and Shishuo Zhao January 17-19-2017 December 8 2015 1 MV Utility Power Distribution in Data Center

More information

Class XII Chapter 7 Alternating Current Physics

Class XII Chapter 7 Alternating Current Physics Question 7.1: A 100 Ω resistor is connected to a 220 V, 50 Hz ac supply. (a) What is the rms value of current in the circuit? (b) What is the net power consumed over a full cycle? Resistance of the resistor,

More information

ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment)

ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment) ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment) 1. In an A.C. circuit A ; the current leads the voltage by 30 0 and in circuit B, the current lags behind the voltage by 30 0. What is the

More information

Chapter 21. Alternating Current Circuits and Electromagnetic Waves

Chapter 21. Alternating Current Circuits and Electromagnetic Waves Chapter 21 Alternating Current Circuits and Electromagnetic Waves AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source The output of an AC generator is sinusoidal

More information

7. EMV Fachtagung. EMV-gerechtes Filterdesign. 23. April 2009, TU-Graz. Dr. Gunter Winkler (TU Graz) Dr. Bernd Deutschmann (Infineon Technologies AG)

7. EMV Fachtagung. EMV-gerechtes Filterdesign. 23. April 2009, TU-Graz. Dr. Gunter Winkler (TU Graz) Dr. Bernd Deutschmann (Infineon Technologies AG) 7. EMV Fachtagung 23. April 2009, TU-Graz EMV-gerechtes Filterdesign Dr. Gunter Winkler (TU Graz) Dr. Bernd Deutschmann (Infineon Technologies AG) Page 1 Agenda Filter design basics Filter Attenuation

More information

ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION

ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION Objectives: ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION The primary goal of this laboratory is to study the operation and limitations of several commonly used pieces of instrumentation:

More information

PE Electrical Machine / Power Electronics. Power Electronics Training System. ufeatures. } List of Experiments

PE Electrical Machine / Power Electronics. Power Electronics Training System. ufeatures. } List of Experiments Electrical Machine / Power Electronics PE-5000 Power Electronics Training System The PE-5000 Power Electronics Training System consists of 28 experimental modules, a three-phase squirrel cage motor, load,

More information

Saturable Inductors For Superior Reflexive Field Containment in Inductive Power Transfer Systems

Saturable Inductors For Superior Reflexive Field Containment in Inductive Power Transfer Systems Saturable Inductors For Superior Reflexive Field Containment in Inductive Power Transfer Systems Alireza Dayerizadeh, Srdjan Lukic Department of Electrical and Computer Engineering North Carolina State

More information

The Amazing MFJ 269 Author Jack Tiley AD7FO

The Amazing MFJ 269 Author Jack Tiley AD7FO The Amazing MFJ 269 Author Jack Tiley AD7FO ARRL Certified Emcomm and license class Instructor, Volunteer Examiner, EWA Technical Coordinator and President of the Inland Empire VHF Club What Can be Measured?

More information

SELECTION GUIDE. Nominal Input Voltage Output Voltage. Output Current

SELECTION GUIDE. Nominal Input Voltage Output Voltage. Output Current www.murata-ps.com SELECTION GUIDE Order Code Nominal Input Voltage Output Current Input Current at Rated Load Load Regulation (Typ) Load Regulation (Max) Ripple & Noise (Typ) 1 Ripple & Noise (Max) 1 Efficiency

More information

LECTURE 19. Alternating Current Generators (DEMO)

LECTURE 19. Alternating Current Generators (DEMO) ETURE 9 A Generators A ircuits Start by considering simple circuits with one element (R,, or ) in addition to the driving emf. It will lead to Oscillations and Driven R circuits Alternating urrent Generators

More information

A Novel Dual-Band Scheme for Magnetic Resonant Wireless Power Transfer

A Novel Dual-Band Scheme for Magnetic Resonant Wireless Power Transfer Progress In Electromagnetics Research Letters, Vol. 80, 53 59, 2018 A Novel Dual-Band Scheme for Magnetic Resonant Wireless Power Transfer Keke Ding 1, 2, *, Ying Yu 1, 2, and Hong Lin 1, 2 Abstract In

More information

Reduction in Radiation Noise Level for Inductive Power Transfer System with Spread Spectrum

Reduction in Radiation Noise Level for Inductive Power Transfer System with Spread Spectrum 216963 Reduction in Radiation Noise Level for Inductive Power Transfer System with Spread Spectrum 16mm Keisuke Kusaka 1) Kent Inoue 2) Jun-ichi Itoh 3) 1) Nagaoka University of Technology, Energy and

More information

ELECTRICAL POWER TRANSMISSION TRAINER

ELECTRICAL POWER TRANSMISSION TRAINER ELECTRICAL POWER TRANSMISSION TRAINER ELECTRICAL POWER TRANSMISSION TRAINER This training system has been designed to provide the students with a fully comprehensive knowledge in Electrical Power Engineering

More information

Real Cycler. Available for charge-discharge evaluation tests for all kinds of batteries from single cells, modules to packs.

Real Cycler. Available for charge-discharge evaluation tests for all kinds of batteries from single cells, modules to packs. Real Cycler Available for charge-discharge evaluation tests for all kinds of batteries from single cells, modules to packs. Smallest size in the industry/ Less than ±0.02% current monitor accuracy/ Less

More information

Wireless Laptop Charging System ECE 445 Mock Design Review

Wireless Laptop Charging System ECE 445 Mock Design Review Wireless Laptop Charging System ECE 445 Mock Design Review Onur Cam, Jason Kao, Enrique Ramirez Group 37 TA: Zhen Qin 2/20/18 1.1 Diagrams The block diagram below shows how the modules will connect to

More information

LoopBack Relay. LB363 Series. With Built-in AC Bypass Capacitors. LoopBack Relay, Sensitive Coil, thru-hole with AC Bypass Capacitors

LoopBack Relay. LB363 Series. With Built-in AC Bypass Capacitors. LoopBack Relay, Sensitive Coil, thru-hole with AC Bypass Capacitors LB363 Series With Built-in AC Bypass Capacitors SERIES DESIGNATION LB363 RELAY TYPE, Sensitive Coil, thru-hole with AC Bypass Capacitors DESCRIPTION The LoopBack Series relay combines two DPDT electromechanical

More information

GaN in Practical Applications

GaN in Practical Applications in Practical Applications 1 CCM Totem Pole PFC 2 PFC: applications and topology Typical AC/DC PSU 85-265 V AC 400V DC for industrial, medical, PFC LLC 12, 24, 48V DC telecomm and server applications. PFC

More information

Magnetic Loop Antenna - Topbands

Magnetic Loop Antenna - Topbands Magnetic Loop Antenna - Topbands Instruction Manual Thank you for purchasing this new product small Magnetic Loop Antenna Topbands. Manual contains important information. Please read all instructions carefully

More information

Improved Battery Charger Circuit Utilizing Reduced DC-link Capacitors

Improved Battery Charger Circuit Utilizing Reduced DC-link Capacitors Improved Battery Charger Circuit Utilizing Reduced DC-link Capacitors Vencislav Valchev 1, Plamen Yankov 1, Orlin Stanchev 1 1 Department of Electronics and Microelectronics, Technical University of Varna,

More information

A Large Air Gap 3 kw Wireless Power Transfer System for Electric Vehicles

A Large Air Gap 3 kw Wireless Power Transfer System for Electric Vehicles A Large Air Gap 3 W Wireless Power Transfer System for Electric Vehicles Hiroya Taanashi*, Yuiya Sato*, Yasuyoshi Kaneo*, Shigeru Abe*, Tomio Yasuda** *Saitama University, Saitama, Japan ** Technova Inc.,

More information

Ariadna CI MV & LV cable identifier

Ariadna CI MV & LV cable identifier Ariadna CI MV & LV cable identifier In electrical maintenance works, in order to cope with safety standards, it becomes necessary to identify de-energized cables unambiguously prior to its manipulation.

More information

ABB September Slide 1

ABB September Slide 1 Magdalena Puskarczyk, Radoslaw Jez, ABB Corporate Research Center, Krakow, Poland The Design of a Multilayer Planar Transformer for a DC/DC Converter with a Resonant Inverter Slide 1 The Design of a Multilayer

More information

EEE 202 ELECTRO-TECHNIC LAB. PART 7 THEORY

EEE 202 ELECTRO-TECHNIC LAB. PART 7 THEORY EEE 0 ELECTRO-TECHNIC LAB. PART 7 THEORY Yrd. Doç. Dr. Serhan Yarkan Arş. Gör. Dilara Albayrak İSTANBUL COMMERCE UNIVERSITY Contents EXAMINATION OF LC FILTERS... 0.1 INTRODUCTION... EXAMINATION OF TRANSFORMER...

More information

Tens kilowatts power supply based on half-bridge inverter with zero current commutation

Tens kilowatts power supply based on half-bridge inverter with zero current commutation Tens kilowatts power supply based on half-bridge inverter with zero current commutation A.V. Akimov,, A.A. Pachkov For the pulse power supply of the VEPP- 5 injector klystrons the 40 kw, 50 kv modulators

More information

M.Tech in Industrial Electronics, SJCE, Mysore, 2 Associate Professor, Dept. of ECE, SJCE, Mysore

M.Tech in Industrial Electronics, SJCE, Mysore, 2 Associate Professor, Dept. of ECE, SJCE, Mysore Implementation of Five Level Buck Converter for High Voltage Application Manu.N.R 1, V.Nattarasu 2 1 M.Tech in Industrial Electronics, SJCE, Mysore, 2 Associate Professor, Dept. of ECE, SJCE, Mysore Abstract-

More information

Wireless Power Transfer. CST COMPUTER SIMULATION TECHNOLOGY

Wireless Power Transfer. CST COMPUTER SIMULATION TECHNOLOGY Wireless Power Transfer Some History 1899 - Tesla 1963 - Schuder 1964 - Brown from Garnica et al. (2013) from Schuder et al. (1963) from Brown (1964) Commercialization 1990s onward: mobile device charging

More information

Handy LCZ Chips Smart Tweezer latest/improved Model ST5S

Handy LCZ Chips Smart Tweezer latest/improved Model ST5S Handy LCZ Chips Smart Tweezer latest/improved Model ST5S Siborg is also a re-seller like Inde, they are not manufacturer of Smart Tweezers Additional Features in latest ST5S Smart Tweezers LCR meter allows

More information

Harmonic Filtering in Variable Speed Drives

Harmonic Filtering in Variable Speed Drives Harmonic Filtering in Variable Speed Drives Luca Dalessandro, Xiaoya Tan, Andrzej Pietkiewicz, Martin Wüthrich, Norbert Häberle Schaffner EMV AG, Nordstrasse 11, 4542 Luterbach, Switzerland luca.dalessandro@schaffner.com

More information

University of Pennsylvania Moore School of Electrical Engineering ESE319 Electronic Circuits - Modeling and Measurement Techniques

University of Pennsylvania Moore School of Electrical Engineering ESE319 Electronic Circuits - Modeling and Measurement Techniques University of Pennsylvania Moore School of Electrical Engineering ESE319 Electronic Circuits - Modeling and Measurement Techniques 1. Introduction. Students are often frustrated in their attempts to execute

More information

EE12: Laboratory Project (Part-2) AM Transmitter

EE12: Laboratory Project (Part-2) AM Transmitter EE12: Laboratory Project (Part-2) AM Transmitter ECE Department, Tufts University Spring 2008 1 Objective This laboratory exercise is the second part of the EE12 project of building an AM transmitter in

More information

LCR Parallel Circuits

LCR Parallel Circuits Module 10 AC Theory Introduction to What you'll learn in Module 10. The LCR Parallel Circuit. Module 10.1 Ideal Parallel Circuits. Recognise ideal LCR parallel circuits and describe the effects of internal

More information

Power Electronics for Inductive Power Transfer Systems

Power Electronics for Inductive Power Transfer Systems Power Electronics for Inductive Power Transfer Systems George Kkelis g.kkelis13@imperial.ac.uk Power Electronics Centre Imperial Open Day, July 2015 System Overview Transmitting End Inductive Link Receiving

More information

User-selectable output bus voltages for optimized voltage/current matching to load requirements.

User-selectable output bus voltages for optimized voltage/current matching to load requirements. Three Axis Gradient Amplifier 3-Axis 700A Precision Gradient Amplifier System 1500 VDC (OEM adjustable down to 800V) 100% Digital D-SERIES Technology Hi-Speed, Single Fiber-Optic Digital Command Universal

More information

The Quest for High Power Density

The Quest for High Power Density The Quest for High Power Density Welcome to the GaN Era Power Conversion Technology Drivers Key design objectives across all applications: High power density High efficiency High reliability Low cost 2

More information

SELECTION GUIDE. Nominal Input Voltage. Voltage. Output. Order Code. V V ma ma. Voltage range

SELECTION GUIDE. Nominal Input Voltage. Voltage. Output. Order Code. V V ma ma. Voltage range www.murata-ps.com SELECTION GUIDE FEATURES Short circuit protection options UL 60950 recognised Single Isolated output 1kVDC or 3kVDC option Hi Pot Test Wide temperature performance at full 0.75W load

More information

Power of GaN. Enabling designers to create smaller, more efficient and higher-performing AC/DC power supplies

Power of GaN. Enabling designers to create smaller, more efficient and higher-performing AC/DC power supplies Power of GaN Enabling designers to create smaller, more efficient and higher-performing AC/DC power supplies Steve Tom Product Line Manager, GaN Products stom@ti.com Solving power and energy-management

More information

10 Mb/s Single Twisted Pair Ethernet PHY Coupling Network Steffen Graber Pepperl+Fuchs

10 Mb/s Single Twisted Pair Ethernet PHY Coupling Network Steffen Graber Pepperl+Fuchs 10 Mb/s Single Twisted Pair Ethernet PHY Coupling Network Steffen Graber Pepperl+Fuchs IEEE P802.3cg 10 Mb/s Single Twisted Pair Ethernet Task Force 6/21/2017 1 Overview Coupling Network Coupling Network

More information

I p = V s = N s I s V p N p

I p = V s = N s I s V p N p UNIT G485 Module 1 5.1.3 Electromagnetism 11 For an IDEAL transformer : electrical power input = electrical power output to the primary coil from the secondary coil Primary current x primary voltage =

More information

Exercise 1: Inductors

Exercise 1: Inductors Exercise 1: Inductors EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe the effect an inductor has on dc and ac circuits by using measured values. You will verify your

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 11 Electricity and Magnetism AC circuits and EM waves Resonance in a Series RLC circuit Transformers Maxwell, Hertz and EM waves Electromagnetic Waves 6/18/2007 http://www.physics.wayne.edu/~alan/2140website/main.htm

More information

MTP-NT INSTRUCTIONS FOR QUALIFIED PERSONNEL ONLY!

MTP-NT INSTRUCTIONS FOR QUALIFIED PERSONNEL ONLY! KMT - Kraus Messtechnik GmbH Gewerbering 9, D-83624 Otterfing, Germany, +49-8024-48737, Fax.-5532 Home Page http://www.kmt-telemetry.com, Email: info@kmt-telemetry.com MTP-NT Preliminary version (0XX)

More information

University of Florida Non-Contact Energy Delivery for PV System and Wireless Charging Applications

University of Florida Non-Contact Energy Delivery for PV System and Wireless Charging Applications University of Florida Non-Contact Energy Delivery for PV System and Wireless Charging Applications PI: Jenshan Lin Description: Innovative non-contact energy delivery method will be used in photovoltaic

More information

CRL2 Series. Isolated 2W Single Output DC/DC Converters FEATURES PRODUCT OVERVIEW

CRL2 Series.   Isolated 2W Single Output DC/DC Converters FEATURES PRODUCT OVERVIEW www.murata-ps.com CRL2 Series SELECTION GUIDE Order Code Nominal Input Voltage Output Voltage Output Current Input Current at Rated Load Load Regulation (Typ) Load Regulation (Max) Ripple & Noise (Typ)

More information

Power Electronics Laboratory-2 Uncontrolled Rectifiers

Power Electronics Laboratory-2 Uncontrolled Rectifiers Roll. No: Checked By: Date: Grade: Power Electronics Laboratory-2 and Uncontrolled Rectifiers Objectives: 1. To analyze the working and performance of a and half wave uncontrolled rectifier. 2. To analyze

More information

Magnetic Loop Antenna - Top Bands

Magnetic Loop Antenna - Top Bands Magnetic Loop Antenna - Top Bands Instruction Manual Thank you for purchasing this new product small Magnetic Loop Antenna Top Bands. Manual contains important information. Please read all instructions

More information

Preliminary Data Sheet Single-Channel, High Power IGBT Gate Driver for Applications from 1.7kV to 6.5kV

Preliminary Data Sheet Single-Channel, High Power IGBT Gate Driver for Applications from 1.7kV to 6.5kV Preliminary Data Sheet Single-Channel, High Power IGBT Gate Driver for Applications from 1.7kV to 6.5kV Abstract The IGBT Driver 1KD21114_4.0 is a low power consumption driver with V CE-desat detection

More information

Conventional Paper-II-2011 Part-1A

Conventional Paper-II-2011 Part-1A Conventional Paper-II-2011 Part-1A 1(a) (b) (c) (d) (e) (f) (g) (h) The purpose of providing dummy coils in the armature of a DC machine is to: (A) Increase voltage induced (B) Decrease the armature resistance

More information

TR CRITERIA FOR LABORATORY ACCREDITATION IN THE FIELD OF ELECTRICAL DCLF METROLOGY. Approved By: Senior Manager: Mpho Phaloane Revised By:

TR CRITERIA FOR LABORATORY ACCREDITATION IN THE FIELD OF ELECTRICAL DCLF METROLOGY. Approved By: Senior Manager: Mpho Phaloane Revised By: CRITERIA FOR LABORATORY ACCREDITATION IN THE FIELD OF ELECTRICAL LF METROLOGY Approved By: Senior Manager: Mpho Phaloane Revised By: Specialist Technical Committee Date of Approval: 2015-08-26 Date of

More information

Real-time Coupling Coefficient Estimation and Maximum Efficiency Control on Dynamic Wireless Power Transfer Using Secondary DC-DC Converter

Real-time Coupling Coefficient Estimation and Maximum Efficiency Control on Dynamic Wireless Power Transfer Using Secondary DC-DC Converter Real-time Coupling Coefficient Estimation and Maximum Efficiency Control on Dynamic Wireless Power Transfer Using Secondary DC-DC Converter Daita Kobayashi, Takehiro Imura, Yoichi Hori The University of

More information

SELECTION GUIDE - SINGLE OUTPUT 1. Nominal Input Voltage Output Voltage

SELECTION GUIDE - SINGLE OUTPUT 1. Nominal Input Voltage Output Voltage www.murata-ps.com MEV1 Series SELECTION GUIDE - SINGLE OUTPUT 1 Order Code Nominal Input Voltage Output Voltage Output Current Input Current at Rated Load Load Regulation (Typ) Load Regulation (Max) Ripple

More information

Maximum Power Transfer versus Efficiency in Mid-Range Wireless Power Transfer Systems

Maximum Power Transfer versus Efficiency in Mid-Range Wireless Power Transfer Systems 97 Maximum Power Transfer versus Efficiency in Mid-Range Wireless Power Transfer Systems Paulo J. Abatti, Sérgio F. Pichorim, and Caio M. de Miranda Graduate School of Electrical Engineering and Applied

More information

Hybrid Impedance Matching Strategy for Wireless Charging System

Hybrid Impedance Matching Strategy for Wireless Charging System Hybrid Impedance Matching Strategy for Wireless Charging System Ting-En Lee Automotive Research and Testing Center Research and Development Division Changhua County, Taiwan(R.O.C) leetn@artc.org.tw Tzyy-Haw

More information

A New ZVS Bidirectional DC-DC Converter With Phase-Shift Plus PWM Control Scheme

A New ZVS Bidirectional DC-DC Converter With Phase-Shift Plus PWM Control Scheme A New ZVS Bidirectional DC-DC Converter With Phase-Shift Plus PWM Control Scheme Huafeng Xiao, Liang Guo, Shaojun Xie College of Automation Engineering,Nanjing University of Aeronautics and Astronautics

More information

Vishay Siliconix AN724 Designing A High-Frequency, Self-Resonant Reset Forward DC/DC For Telecom Using Si9118/9 PWM/PSM Controller.

Vishay Siliconix AN724 Designing A High-Frequency, Self-Resonant Reset Forward DC/DC For Telecom Using Si9118/9 PWM/PSM Controller. AN724 Designing A High-Frequency, Self-Resonant Reset Forward DC/DC For Telecom Using Si9118/9 PWM/PSM Controller by Thong Huynh FEATURES Fixed Telecom Input Voltage Range: 30 V to 80 V 5-V Output Voltage,

More information

AS Benson Liu 2016/12/28 Ryan Liu 2016/12/28 Welson Tan 2016/12/28. 1 of 5. Product Name

AS Benson Liu 2016/12/28 Ryan Liu 2016/12/28 Welson Tan 2016/12/28. 1 of 5. Product Name 10W Rx COIL FOR LOW FREQUENCY WIRELESS POWER TRANSFER Product Name Wireless Charging Antenna Coil -10w low frequency receive Molex PN Part Description 1461790001 Wireless Charging Coil - 10w low frequency

More information

Generator Power [kw]

Generator Power [kw] PW3-25-SA/80 PW3-50-SA/80 PW3-100-SA/80 0 25 50 75 100 Generator Power [kw] 100-SA/80 Generator Overall Dimensions 25-SA/80 and 50-SA/80 Generator PWH-22 PWH-20 PWH-24 Capacity Output Power Dimensions

More information

MER1 Series 1kVDC Isolated 1W Single Output DC-DC Converters

MER1 Series 1kVDC Isolated 1W Single Output DC-DC Converters www.murata-ps.com MER1 Series SELECTION GUIDE Order Code Nominal Input Voltage Output Voltage Output Current Input Current at Rated Load Load Regulation (Typ) Load Regulation (Max) Ripple & Noise (Typ)

More information