Properties of Inductor and Applications


 Roger Todd
 1 years ago
 Views:
Transcription
1 LABORATORY Experiment 3 Properties of Inductor and Applications 1. Objectives To investigate the properties of inductor for different types of magnetic material To calculate the resonant frequency of a LC tuned circuit To investigate the operation principle of a relay 2. Apparatus and Components 1. Power Supply ( x 2) 2. Digital Multimeter (Fluke) ( x 1) 3. LCR Meter (LCR815B) ( x 1) 4. 40MHz Oscilloscope ( x 1) 5. Audio Signal Generator ( x 1) 6. Soldering Iron 1. Power Transformer ( x 1) 2. Audio Frequency Transformer ( x 1) 3. Antenna Coil with Ferrite Rod ( x 1) 4. Variable Capacitor ( x 1) 5. LED ( x 1) 6. 12V Relay ( x 1) 3. Background 3.1 Inductors A basic structure of ideal inductor, which has no internal resistance, is an aircore coil of wire or a solenoid with different magnetic material. Inductors of different core material will not have the same properties under the same conditions due to their different saturation point. Inductor will exhibit different properties under d.c. or a.c. conditions. Under d.c. condition, it becomes shortcircuited. However, under a.c. condition, it will induce back e.m.f. to oppose changes of a.c. current. The unit of inductance (L) is Henry (H). Core material Coil L Symbol of an Inductor Figure 1  Basic inductor and its symbol Laboratory Experiment 3 1
2 The value of inductance of coil is given as 2 µ AN L = (H) (Equation 1) l X L = 2 π fl (Ω) (Equation 2) Ferromagnetic material is one of the commonly used magnetic materials with a high permeability µ, which is defined as below: B µ = = µµ r o(a2) (Equation 3) H where µ o = permeability of free space permeability of air µ r = relative permeability of material B = flux density (Tesla) H = magnetic field strength (At/m) 3.2 Parallel Resonance of the LC Tank Circuit A LC tank circuit is shown in Figure 2. This tank circuit is used extensively in communications equipment such as AM, FM, and television transmitters and receivers. At resonant, the capacitive and inductive reactance of the circuits are equal, and the resonant frequency is given as: C L Figure 2  LC tank circuit 2 Experiment 3 Laboratory
3 F r = 1 2π LC (Equation 4) where F r = resonant frequency L = inductance (H) C = capacitance (F) In this experiment, you will study how to use a ferromagnetic material to change the resonant frequency by changing the inductive reactance. 3.2 Use of Relays One common application of magnetic effects is relay. Basically, relays are electromagnetically operated, remotely led switches, with one or more sets of contacts. The equivalent circuit of relay is shown in Figure A3. When the current is flowing through the coil, the internal switch change the contact position from NC to NO. ( NC stands for normally closed, NO stands for normally open. ) Common applications of relays include: remoteswitching, status indication and circuitprotection. The main advantage of relays is their ability to be operated from a remote location and can be operated with low DC voltage. relay pole NO NC coil NO = normally opened NC = normally closed Figure 3 Connection of relay Laboratory Experiment 3 3
4 4. Procedure 4.1 LC Tuned Circuit Inductor Movement of iron core LCR Meter Figure 4  Measurement of Inductance (a) Using the LCR meter, measure the inductance (L) and resistance (R) of the coil without the steel rod inserted. L = R = (b) Repeat step 2.1 with the steel rod fully inserted into the coil. L = R = (c) Calculate the frequencies of the LC tuned circuit if C = 10 µf Fmax. (with low inductance) = Fmin. (with high inductance) = 4.2 Measurement of Voltage Drops across the Inductors V1 Oscilloscope V2 Inductor 1 Inductor 2 L1 N=1000 L2 L=2500 Signal generator 5V, frequent = variable, sine wave Figure 5  Measurement of Voltage Drops across the Inductors 4 Experiment 3 Laboratory
5 (a) (b) Connect the circuit as shown above. Measure L 1 and L 2 of the inductors by LCR meter L 1 = and L 2 = (c) Adjust the frequency of the signal generator starting from 5 khz to 50 khz at a step of 5kHz. (d) Keep the output voltage of the signal generator constant at 5 V. (e) Calculate the relative permeability, µ r, of magnetic material of the inductors 1 and 2. µ r of inductor 1 = and µ r of inductor 2 = Frequency (khz) V 1 (V) V 2 (V) L 1 (calculated) L 2 (calculated) Applications of Relay R LED relay 10V pole NO switch NC 12V coil Figure 6 Laboratory Experiment 3 5
6 (a) Calculate the value of the resistance in series with the LED. Specification of the LED is as following: V d = 2 V I d = 5 ma R = (let your supervisor check the value before proceeding to step (b)) (b) Connect the circuit as shown in Figure 6 (c) (d) Use one LED as the load in the lighting fixture. Measure the current required to energized the coil when the switch is closed. (e) Based on the result of step (d), calculate the coil resistance. 5. Discussion 5.1 Based on the results of Part 4.1, calculate the relative permeability of the steel rod (µ r ). 5.2 Based on the results of 4.1, calculate the range of frequency covered by the LC tuned circuit. 5.3 Is the steel rod a good magnetic material? and why? 6 Experiment 3 Laboratory
7 5.4 If the steel rod is partially inserted, what will be the effect on the tuning frequency? Laboratory Experiment 3 7
Exercise 1: Series Resonant Circuits
Series Resonance AC 2 Fundamentals Exercise 1: Series Resonant Circuits EXERCISE OBJECTIVE When you have completed this exercise, you will be able to compute the resonant frequency, total current, and
More informationPHYSICS WORKSHEET CLASS : XII. Topic: Alternating current
PHYSICS WORKSHEET CLASS : XII Topic: Alternating current 1. What is mean by root mean square value of alternating current? 2. Distinguish between the terms effective value and peak value of an alternating
More informationThe SI unit of inductance is the henry, defined as:
Inductors A coil of wire, or solenoid, can be used in a circuit to store energy in the magnetic field. We define the inductance of a solenoid having N turns, length l and crosssection area A as: The SI
More informationInductors & Resonance
Inductors & Resonance The Inductor This figure shows a conductor carrying a current. A magnetic field is set up around the conductor as concentric circles. If a coil of wire has a current flowing through
More informationGeneral Physics (PHY 2140)
General Physics (PHY 2140) Lecture 11 Electricity and Magnetism AC circuits and EM waves Resonance in a Series RLC circuit Transformers Maxwell, Hertz and EM waves Electromagnetic Waves 6/18/2007 http://www.physics.wayne.edu/~alan/2140website/main.htm
More informationFilters And Waveform Shaping
Physics 3330 Experiment #3 Fall 2001 Purpose Filters And Waveform Shaping The aim of this experiment is to study the frequency filtering properties of passive (R, C, and L) circuits for sine waves, and
More informationELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment)
ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment) 1. In an A.C. circuit A ; the current leads the voltage by 30 0 and in circuit B, the current lags behind the voltage by 30 0. What is the
More informationEXPERIMENT FREQUENCY RESPONSE OF AC CIRCUITS. Structure. 8.1 Introduction Objectives
EXPERIMENT 8 FREQUENCY RESPONSE OF AC CIRCUITS Frequency Response of AC Circuits Structure 81 Introduction Objectives 8 Characteristics of a SeriesLCR Circuit 83 Frequency Responses of a Resistor, an
More informationEE301 ELECTRONIC CIRCUITS CHAPTER 2 : OSCILLATORS. Lecturer : Engr. Muhammad Muizz Bin Mohd Nawawi
EE301 ELECTRONIC CIRCUITS CHAPTER 2 : OSCILLATORS Lecturer : Engr. Muhammad Muizz Bin Mohd Nawawi 2.1 INTRODUCTION An electronic circuit which is designed to generate a periodic waveform continuously at
More informationExercise 9. Electromagnetism and Inductors EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Magnetism, magnets, and magnetic field
Exercise 9 Electromagnetism and Inductors EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the concepts of magnetism, magnets, and magnetic field, as well as electromagnetism
More informationStudy of Inductive and Capacitive Reactance and RLC Resonance
Objective Study of Inductive and Capacitive Reactance and RLC Resonance To understand how the reactance of inductors and capacitors change with frequency, and how the two can cancel each other to leave
More informationCHAPTER 6: ALTERNATING CURRENT
CHAPTER 6: ALTERNATING CURRENT PSPM II 2005/2006 NO. 12(C) 12. (c) An ac generator with rms voltage 240 V is connected to a RC circuit. The rms current in the circuit is 1.5 A and leads the voltage by
More informationAP Physics C. Alternating Current. Chapter Problems. Sources of Alternating EMF
AP Physics C Alternating Current Chapter Problems Sources of Alternating EMF 1. A 10 cm diameter loop of wire is oriented perpendicular to a 2.5 T magnetic field. What is the magnetic flux through the
More informationDepartment of Electrical and Computer Engineering Lab 6: Transformers
ESE Electronics Laboratory A Department of Electrical and Computer Engineering 0 Lab 6: Transformers. Objectives ) Measure the frequency response of the transformer. ) Determine the input impedance of
More informationPHYS 1441 Section 001 Lecture #22 Wednesday, Nov. 29, 2017
PHYS 1441 Section 001 Lecture #22 Chapter 29:EM Induction & Faraday s Law Transformer Electric Field Due to Changing Magnetic Flux Chapter 30: Inductance Mutual and Self Inductance Energy Stored in Magnetic
More informationAC Circuit. What is alternating current? What is an AC circuit?
Chapter 21 Alternating Current Circuits and Electromagnetic Waves 1. Alternating Current 2. Resistor in an AC circuit 3. Capacitor in an AC circuit 4. Inductor in an AC circuit 5. RLC series circuit 6.
More informationPractice problems for the 3 rd midterm (Fall 2010)
Practice problems for the 3 rd midterm (Fall 2010) 1. A video camera is set in an unknown liquid. When you change the angle to look up the liquidair boundary, at certain point, it looks like mirror on
More informationINDUCTOR. Inductors are electronic components that oppose a change in current. Air Core Inductor Symbol
BASIC ELECTRICAL INDUCTOR INTRODUCTION are used for their ability to lter high frequencies out of the audio in a sound system. As an introduction to the focus of this lesson will be to discuss the different
More information1. If the flux associated with a coil varies at the rate of 1 weber/min,the induced emf is
1. f the flux associated with a coil varies at the rate of 1 weber/min,the induced emf is 1 1. 1V 2. V 60 3. 60V 4. Zero 2. Lenz s law is the consequence of the law of conservation of 1. Charge 2. Mass
More informationImpedance, Resonance, and Filters. Al Penney VO1NO
Impedance, Resonance, and Filters A Quick Review Before discussing Impedance, we must first understand capacitive and inductive reactance. Reactance Reactance is the opposition to the flow of Alternating
More informationExam 3 Review Session
Exam 3 Review Session I will hold a review for Exam 3 which covers Chapters 27, 28, 29 and 30, on Wednesday November 7 th at 7:15pm in MPHY 205. Exam 3 will be given in class on Thursday, November 8 th.
More informationChapter 30 Inductance, Electromagnetic. Copyright 2009 Pearson Education, Inc.
Chapter 30 Inductance, Electromagnetic Oscillations, and AC Circuits 307 AC Circuits with AC Source Resistors, capacitors, and inductors have different phase relationships between current and voltage
More informationRadio Frequency Electronics
Radio Frequency Electronics Frederick Emmons Terman Transformers Masters degree from Stanford and Ph.D. from MIT Later a professor at Stanford His students include William Hewlett and David Packard Wrote
More informationChapter 21. Alternating Current Circuits and Electromagnetic Waves
Chapter 21 Alternating Current Circuits and Electromagnetic Waves AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source The output of an AC generator is sinusoidal
More informationGLOSSARY OF TERMS FLUX DENSITY:
ADSL: Asymmetrical Digital Subscriber Line. Technology used to transmit/receive data and audio using the pair copper telephone lines with speed up to 8 Mbps. AMBIENT TEMPERATURE: The temperature surrounding
More informationAn induced emf is the negative of a changing magnetic field. Similarly, a selfinduced emf would be found by
This is a study guide for Exam 4. You are expected to understand and be able to answer mathematical questions on the following topics. Chapter 32 SelfInduction and Induction While a battery creates an
More informationImpedance, Resonance, and Filters. Al Penney VO1NO
Impedance, Resonance, and Filters Al Penney VO1NO A Quick Review Before discussing Impedance, we must first understand capacitive and inductive reactance. Reactance Reactance is the opposition to the flow
More informationSeries and Parallel Resonant Circuits
Series and Parallel Resonant Circuits Aim: To obtain the characteristics of series and parallel resonant circuits. Apparatus required: Decade resistance box, Decade inductance box, Decade capacitance box
More informationPHYS 1444 Section 501 Lecture #20
PHYS 1444 Section 501 Lecture #0 Monday, Apr. 17, 006 Transformer Generalized Faraday s Law Inductance Mutual Inductance Self Inductance Inductor Energy Stored in the Magnetic Field 1 Announcements Quiz
More informationTransformers. Dr. Gamal Sowilam
Transformers Dr. Gamal Sowilam OBJECTIVES Become familiar with the flux linkages that exist between the coils of a transformer and how the voltages across the primary and secondary are established. Understand
More informationNo Brain Too Small PHYSICS
ELECTRICITY: AC QUESTIONS No Brain Too Small PHYSICS MEASURING IRON IN SAND (2016;3) Vivienne wants to measure the amount of iron in ironsand mixtures collected from different beaches. The diagram below
More informationFGJTCFWP"KPUVKVWVG"QH"VGEJPQNQI[" FGRCTVOGPV"QH"GNGEVTKECN"GPIKPGGTKPI" VGG"246"JKIJ"XQNVCIG"GPIKPGGTKPI
FGJTFWP"KPUKWG"QH"GEJPQNQI[" FGRTOGP"QH"GNGETKEN"GPIKPGGTKPI" GG"46"JKIJ"XQNIG"GPIKPGGTKPI Resonant Transformers: The fig. (b) shows the equivalent circuit of a high voltage testing transformer (shown
More informationJEFFERSON COLLEGE COURSE SYLLABUS ETC104 AC CIRCUITS. 5 Credit Hours. Prepared by: Ronald S. Krive. Revised Date: October 2007 by Dennis Eimer
JEFFERSON COLLEGE COURSE SYLLABUS ETC104 AC CIRCUITS 5 Credit Hours Prepared by: Ronald S. Krive Revised Date: October 2007 by Dennis Eimer Division of Technology Dr. John Keck, Dean Ms. Brenda Russell,
More informationANADOLU UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING
ANADOLU UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEM 206 ELECTRICAL CIRCUITS LABORATORY EXPERIMENT#3 RESONANT CIRCUITS 1 RESONANT CIRCUITS
More informationInductance of solenoids with Cobra3
Inductance of solenoids with Cobra3 TEP Related topics Law of inductance, Lenz s law, selfinductance, solenoids, transformer, oscillatory circuit, resonance, damped oscillation, logarithmic decrement,
More informationBasic Electronics. Chapter 2 Basic Electrical Principles and the Functions of Components. PHYS 401 Physics of Ham Radio
Basic Electronics Chapter 2 Basic Electrical Principles and the Functions of Components Figures in this course book are reproduced with the permission of the American Radio Relay League. This booklet was
More informationElectromagnetic Induction  A
Electromagnetic Induction  A APPARATUS 1. Two 225turn coils 2. Table Galvanometer 3. Rheostat 4. Iron and aluminum rods 5. Large circular loop mounted on board 6. AC ammeter 7. Variac 8. Search coil
More informationSaturable Inductors For Superior Reflexive Field Containment in Inductive Power Transfer Systems
Saturable Inductors For Superior Reflexive Field Containment in Inductive Power Transfer Systems Alireza Dayerizadeh, Srdjan Lukic Department of Electrical and Computer Engineering North Carolina State
More informationIron Powder Cores for High Q Inductors By: Jim Cox  Micrometals, Inc.
HOME APPLICATION NOTES Iron Powder Cores for High Q Inductors By: Jim Cox  Micrometals, Inc. SUBJECT: A brief overview will be given of the development of carbonyl iron powders. We will show how the magnetic
More informationElectromagnetic Induction
Chapter 16 Electromagnetic Induction In This Chapter: Electromagnetic Induction Faraday s Law Lenz s Law The Transformer SelfInductance Inductors in Combination Energy of a CurrentCarrying Inductor Electromagnetic
More informationSIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE) UNIT I INTRODUCTION
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Electrical Circuits(16EE201) Year & Sem: IB.Tech & IISem
More informationAligarh College of Engineering & Technology (College Code: 109) Affiliated to UPTU, Approved by AICTE Electrical Engg.
Aligarh College of Engineering & Technology (College Code: 19) Electrical Engg. (EE11/21) UnitI DC Network Theory 1. Distinguish the following terms: (a) Active and passive elements (b) Linearity and
More informationClass XII Chapter 7 Alternating Current Physics
Question 7.1: A 100 Ω resistor is connected to a 220 V, 50 Hz ac supply. (a) What is the rms value of current in the circuit? (b) What is the net power consumed over a full cycle? Resistance of the resistor,
More informationIntroduction. Inductors in AC Circuits.
Module 3 AC Theory What you ll learn in Module 3. Section 3.1 Electromagnetic Induction. Magnetic Fields around Conductors. The Solenoid. Section 3.2 Inductance & Back e.m.f. The Unit of Inductance. Factors
More informationChapter Moving Charges and Magnetism
100 Chapter Moving Charges and Magnetism 1. The power factor of an AC circuit having resistance (R) and inductance (L) connected in series and an angular velocity ω is [2013] 2. [2002] zero RvB vbl/r vbl
More informationProject: Electromagnetic Ring Launcher
Project: Electromagnetic Ring Launcher Introduction: In science museums and physicsclassrooms an experiment is very commonly demonstrated called the Jumping Ring or Electromagnetic Ring Launcher. The
More informationGenerator Power [kw]
PW325SA/80 PW350SA/80 PW3100SA/80 0 25 50 75 100 Generator Power [kw] 100SA/80 Generator Overall Dimensions 25SA/80 and 50SA/80 Generator PWH22 PWH20 PWH24 Capacity Output Power Dimensions
More informationPHASES IN A SERIES LRC CIRCUIT
PHASES IN A SERIES LRC CIRCUIT Introduction: In this lab, we will use a computer interface to analyze a series circuit consisting of an inductor (L), a resistor (R), a capacitor (C), and an AC power supply.
More informationLab E2: Bfield of a Solenoid. In the case that the Bfield is uniform and perpendicular to the area, (1) reduces to
E2.1 Lab E2: Bfield of a Solenoid In this lab, we will explore the magnetic field created by a solenoid. First, we must review some basic electromagnetic theory. The magnetic flux over some area A is
More informationIron Powder Core Selection For RF Power Applications. Jim Cox Micrometals, Inc. Anaheim, CA
HOME APPLICATION NOTES Iron Powder Core Selection For RF Power Applications Jim Cox Micrometals, Inc. Anaheim, CA Purpose: The purpose of this article is to present new information that will allow the
More informationLab 1. Resonance and Wireless Energy Transfer Physics Enhancement Programme Department of Physics, Hong Kong Baptist University
Lab 1. Resonance and Wireless Energy Transfer Physics Enhancement Programme Department of Physics, Hong Kong Baptist University 1. OBJECTIVES Introduction to the concept of resonance Observing resonance
More informationRadio Frequency Electronics
Radio Frequency Electronics Preliminaries II Guglielmo Giovanni Maria Marconi Thought off by many people as the inventor of radio Pioneer in longdistance radio communications Shared Nobel Prize in 1909
More informationInductors and Transformers
MEHRAN UNIVERSITY OF ENGINEERING AND TECHNOLOGY, JAMSHORO DEPARTMENT OF ELECTRONIC ENGINEERING ELECTRONIC WORKSHOP # 05 Inductors and Transformers Roll. No: Checked by: Date: Grade: Object: To become familiar
More informationExercise 2: Q and Bandwidth of a Series RLC Circuit
Series Resonance AC 2 Fundamentals Exercise 2: Q and Bandwidth of a Series RLC Circuit EXERCISE OBJECTIVE When you have completed this exercise, you will be able to calculate the bandwidth and Q of a series
More informationLCR CIRCUITS Institute of Lifelong Learning, University of Delhi
L UTS nstitute of Lifelong Learning, University of Delhi L UTS PHYSS (LAB MANUAL) nstitute of Lifelong Learning, University of Delhi PHYSS (LAB MANUAL) L UTS ntroduction ircuits containing an inductor
More informationElectromagnetic Oscillations and Currents. March 23, 2014 Chapter 30 1
Electromagnetic Oscillations and Currents March 23, 2014 Chapter 30 1 Driven LC Circuit! The voltage V can be thought of as the projection of the vertical axis of the phasor V m representing the timevarying
More informationFigure 1a Three small inductors are show what inductors look like. Figure 1b Three large inductors
A Series RLC Circuit This lab will let you learn the characteristics of both amplitude and phase of a series RLC circuit. Theory nductors and Capacitors Resistors (R), inductors (L) and capacitors (C)
More informationPhysics Jonathan Dowling. Lecture 35: MON 16 NOV Electrical Oscillations, LC Circuits, Alternating Current II
hysics 2113 Jonathan Dowling Lecture 35: MON 16 NOV Electrical Oscillations, LC Circuits, Alternating Current II Damped LCR Oscillator Ideal LC circuit without resistance: oscillations go on forever; ω
More informationName: Lab Partner: Section: The purpose of this lab is to study induction. Faraday s law of induction and Lenz s law will be explored. B = B A (8.
Chapter 8 Induction  Faraday s Law Name: Lab Partner: Section: 8.1 Purpose The purpose of this lab is to study induction. Faraday s law of induction and Lenz s law will be explored. 8.2 Introduction It
More informationBasic Electronics. Chapter 2, 3A (test T5, T6) Basic Electrical Principles and the Functions of Components. PHYS 401 Physics of Ham Radio
Basic Electronics Chapter 2, 3A (test T5, T6) Basic Electrical Principles and the Functions of Components Figures in this course book are reproduced with the permission of the American Radio Relay League.
More informationLesson 3: Electronics & Circuits
Lesson 3: Electronics & Circuits Preparation for Amateur Radio Technician Class Exam Topics Review Ohm s Law Energy & Power Circuits Inductors & Inductance Capacitors & Capacitance Analog vs Digital Exam
More informationAC Circuits INTRODUCTION DISCUSSION OF PRINCIPLES. Resistance in an AC Circuit
AC Circuits INTRODUCTION The study of alternating current 1 (AC) in physics is very important as it has practical applications in our daily lives. As the name implies, the current and voltage change directions
More informationThe Tuned Circuit. Aim of the experiment. Circuit. Equipment and components. Display of a decaying oscillation. Dependence of L, C and R.
The Tuned Circuit Aim of the experiment Display of a decaying oscillation. Dependence of L, C and R. Circuit Equipment and components 1 Rastered socket panel 1 Resistor R 1 = 10 Ω, 1 Resistor R 2 = 1 kω
More informationELECTRONICS AND ELECTRICITY
INTRODUCTION ELECTRONICS ND ELECTRICITY The science of Electronics and Electricity makes a very important contribution to our everyday existence. Electricity is concerned with the generation, transmission
More informationInvestigation of a Voltage Probe in Microstrip Technology
Investigation of a Voltage Probe in Microstrip Technology (Specifically in 7tesla MRI System) By : Mona ParsaMoghadam Supervisor : Prof. Dr. Ing Klaus Solbach April 2015 Introduction  Thesis work scope
More informationSECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM. Unit Objectives. Unit Objectives 2/29/2012
SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM Unit Objectives Describe the structure of an atom. Identify atoms with a positive charge and atoms with a negative charge. Explain
More informationAntenna? What s That? Chet Thayer WA3I
Antenna? What s That? Chet Thayer WA3I Space: The Final Frontier Empty Space (Time) Four dimensional region that holds everything Is Permeable : It requires energy to set up a magnetic field within it.
More informationAlternating Current. Slide 1 / 69. Slide 2 / 69. Slide 3 / 69. Topics to be covered. Sources of Alternating EMF. Sources of alternating EMF
Slide 1 / 69 lternating urrent Sources of alternating EMF Transformers ircuits and Impedance Topics to be covered Slide 2 / 69 LR Series ircuits Resonance in ircuit Oscillations Sources of lternating EMF
More informationExam 3 Solutions. ! r, the ratio is ( N ) ( ) ( )( ) 2. PHY2054 Spring Prof. Pradeep Kumar Prof. Paul Avery Prof. Yoonseok Lee Mar.
PHY054 Spring 009 Prof. Pradeep Kumar Prof. Paul Avery Prof. Yoonseok Lee Mar. 7, 009 Exam 3 Solutions 1. Two coils (A and B) made out of the same wire are in a uniform magnetic field with the coil axes
More informationAlternating Current. Slide 2 / 69. Slide 1 / 69. Slide 3 / 69. Slide 4 / 69. Slide 6 / 69. Slide 5 / 69. Topics to be covered
Slide 1 / 69 lternating urrent Sources of alternating EMF ircuits and Impedance Slide 2 / 69 Topics to be covered LR Series ircuits Resonance in ircuit Oscillations Slide 3 / 69 Sources of lternating EMF
More informationAlternating current circuits Series RLC circuits
FISI30 Física Universitaria II Professor J.. ersosimo hapter 8 Alternating current circuits Series circuits 8 Introduction A loop rotated in a magnetic field produces a sinusoidal voltage and current.
More informationElectrical Fundamentals and Basic Components Chapters T2, T3, G4
Electrical Fundamentals and Basic Components Chapters T2, T3, G4 Some Basic Math, Electrical Fundamentals, AC Power, The Basics of Basic Components, A Little More Component Detail, Reactance and Impedance
More information15. the power factor of an a.c circuit is.5 what will be the phase difference between voltage and current in this
1 1. In a series LCR circuit the voltage across inductor, a capacitor and a resistor are 30 V, 30 V and 60 V respectively. What is the phase difference between applied voltage and current in the circuit?
More informationExercises of resistors 1. Calculate the resistance of a 10 m long Copper wire with diameter d = 1.0 mm.
Exercises of resistors 1. Calculate the resistance of a 10 m long Copper wire with diameter d = 1.0 mm. 2. Calculate the resistances of following equipment: using 220V AC a) a 1000 W electric heater b)
More informationElectronic Instrumentation
10/1/014 1 Electronic Instrumentation Experiment 3 Part A: Making an Inductor Part B: Measurement of Inductance Part C: imulation of a Transformer Part D: Making a Transformer Inductors & Transformers
More informationElectronic Measurements & Instrumentation. 1. Draw the Maxwell s Bridge Circuit and derives the expression for the unknown element at balance?
UNIT 6 1. Draw the Maxwell s Bridge Circuit and derives the expression for the unknown element at balance? Ans: Maxwell's bridge, shown in Fig. 1.1, measures an unknown inductance in of standard arm offers
More informationLevel 3 Physics, 2018
91526 915260 3SUPERVISOR S Level 3 Physics, 2018 91526 Demonstrate understanding of electrical systems 2.00 p.m. Tuesday 20 November 2018 Credits: Six Achievement Achievement with Merit Achievement with
More informationUniversity of Pittsburgh
University of Pittsburgh Experiment #11 Lab Report Inductance/Transformers Submission Date: 12/04/2017 Instructors: Dr. Minhee Yun John Erickson Yanhao Du Submitted By: Nick Haver & Alex Williams Station
More informationElectrical Theory 2 Lessons for Fall Semester:
Electrical Theory 2 Lessons for Fall Semester: Lesson 1 Magnetism Lesson 2 Introduction to AC Theory Lesson 3 Lesson 4 Capacitance and Capacitive Reactance Lesson 5 Impedance and AC Circuits Lesson 6 AC
More informationET1210: Module 5 Inductance and Resonance
Part 1 Inductors Theory: When current flows through a coil of wire, a magnetic field is created around the wire. This electromagnetic field accompanies any moving electric charge and is proportional to
More informationExercise 1: Series RLC Circuits
RLC Circuits AC 2 Fundamentals Exercise 1: Series RLC Circuits EXERCISE OBJECTIVE When you have completed this exercise, you will be able to analyze series RLC circuits by using calculations and measurements.
More informationAny wave shape can be reproduced by the sum of sine waves of the appropriate magnitude and frequency.
How do we use an oscilloscope? Measure signals with unknown wave shapes and frequency other than 60 Hz sine waves and dc. To get a picture of the waveform. Distortion? Phase duration? Magnitude Any wave
More informationExercise 9: inductorresistorcapacitor (LRC) circuits
Exercise 9: inductorresistorcapacitor (LRC) circuits Purpose: to study the relationship of the phase and resonance on capacitor and inductor reactance in a circuit driven by an AC signal. Introduction
More informationVE7CNF  630m Antenna Matching Measurements Using an Oscilloscope
VE7CNF  630m Antenna Matching Measurements Using an Oscilloscope Toby Haynes October, 2016 1 Contents VE7CNF  630m Antenna Matching Measurements Using an Oscilloscope... 1 Introduction... 1 References...
More informationChapter 11. Alternating Current
Unit2 ECE131 BEEE Chapter 11 Alternating Current Objectives After completing this chapter, you will be able to: Describe how an AC voltage is produced with an AC generator (alternator) Define alternation,
More informationUNIT _ III MCQ. Ans : C. Ans : C. Ans : C
UNIT _ III MCQ Ans : C Ans : C Ans : C Ans : A Ans : B Multiple Choice Questions and Answers on Transistor Tuned Amplifiers Q1. A tuned amplifier uses. load 1. Resistive 2. Capacitive 3. LC tank 4. Inductive
More information11. ACresistances of capacitor and inductors: Reactances.
11. ACresistances of capacitor and inductors: Reactances. Purpose: To study the behavior of the AC voltage signals across elements in a simple series connection of a resistor with an inductor and with
More informationEE2022 Electrical Energy Systems
EE0 Electrical Energy Systems Lecture : Transformer and Per Unit Analysis 700 Panida Jirutitijaroen Department of Electrical and Computer Engineering /9/0 EE0: Transformer and Per Unit Analysis by P.
More information10 Electromagnetic Interactions
Lab 10 Electromagnetic Interactions What You Need To Know: The Physics Electricity and magnetism are intrinsically linked and not separate phenomena. A changing magnetic field can create an electric field
More information3. What is hysteresis loss? Also mention a method to minimize the loss. (N11, N12)
DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE 6401 ELECTRICAL MACHINES I UNIT I : MAGNETIC CIRCUITS AND MAGNETIC MATERIALS Part A (2 Marks) 1. List
More informationTECHNICAL BULLETIN 004a Ferroresonance
May 29, 2002 TECHNICAL BULLETIN 004a Ferroresonance Abstract  This paper describes the phenomenon of ferroresonance, the conditions under which it may appear in electric power systems, and some techniques
More informationThe RLC Series Circuit with an AC Source
The R Series ircuit with an A Source Introduction Ohm s law and R circuit labs use a steady current. However, this lab uses a different power supply, which is alternating current (A). The previous electronics
More informationUniversity of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab
University of Jordan School of Engineering Electrical Engineering Department EE 219 Electrical Circuits Lab EXPERIMENT 4 TRANSIENT ANALYSIS Prepared by: Dr. Mohammed Hawa EXPERIMENT 4 TRANSIENT ANALYSIS
More informationREQUIRED SKILLS AND KNOWLEDGE UEENEEG101A. Electromagnetic devices and circuits. Topic and Description NIDA Lesson CARD # Magnetism encompassing:
REQUIRED SKILLS AND KNOWLEDGE UEENEEG101A KS01EG101A Electromagnetic devices and circuits T1 Magnetism encompassing: Topic and Description NIDA Lesson CARD # magnetic field pattern of bar and horseshoe
More informationPHYS 1442 Section 004 Lecture #15
PHYS 1442 Section 004 Lecture #15 Monday March 17, 2014 Dr. Andrew Brandt Chapter 21 Generator Transformer Inductance 3/17/2014 1 PHYS 1442004, Dr. Andrew Brandt Announcements HW8 on Ch 2122 will be
More informationCornerstone Electronics Technology and Robotics I Week 17 Magnetism Tutorial
Cornerstone Electronics Technology and Robotics I Week 17 Magnetism Tutorial Administration: o Prayer o Voltage Divider Review: Divide +9 V source in half using 1K resistors. Solve for current. Electricity
More informationInductance of solenoids
Inductance of solenoids LEP 01 Related topics Law of inductance, Lenz s law, selfinductance, solenoids, transformer, oscillatory circuit, resonance, damped oscillation, logarithmic decrement, Q factor.
More informationEE12: Laboratory Project (Part2) AM Transmitter
EE12: Laboratory Project (Part2) AM Transmitter ECE Department, Tufts University Spring 2008 1 Objective This laboratory exercise is the second part of the EE12 project of building an AM transmitter in
More informationPhysics Class 12 th NCERT Solutions
Chapter.7 Alternating Current Class XII Subject Physics 7.1. A 100 Ω resistor is connected to a 220 V, 50 Hz ac supply. a) What is the rms value of current in the circuit? b) What is the net power consumed
More informationDefinitions of Technical Terms
Definitions of Technical Terms Terms Ammeter Amperes, Amps Band Capacitor Carrier Squelch Diode Dipole Definitions How is an ammeter usually connected = In series with the circuit What instrument is used
More information