Black Box Modelling Of Hard Nonlinear Behavior In The Frequency Domain

Size: px
Start display at page:

Download "Black Box Modelling Of Hard Nonlinear Behavior In The Frequency Domain"

Transcription

1 Black Box Modelling Of Hard Nonlinear Behavior In The Frequency Domain 1 Jan Verspecht*, D. Schreurs*, A. Barel*, B. Nauwelaers* * Hewlett-Packard NMDG VUB-ELEC Pleinlaan Brussels Belgium fax tel janv@james.belgium.hp.com * Katholieke Universiteit Leuven B-3001 Leuven Belgium * Vrije Universiteit Brussel Pleinlaan Brussels Belgium

2 ABSTRACT 2 A black box model is proposed to describe nonlinear devices in the frequency domain. The approach is based upon the use of describing functions and allows a better description of hard nonlinearities than an approach based upon the Volterra theory. Simulations and experiments are described illustrating the mathematical theory.

3 Frequency Domain Black Box Modelling device-under-test OUTPUT INPUT 3 O I 1 I 2 I 1... O 5 3 freq. freq. O k = F k ( I 1, I 2,...) For a frequency domain black box model one assumes that every spectral output component is a function of the spectral input components, no further a priori knowledge is required.

4 Preexistent techniques 4 Volterra Theory: Multiple Input Components Multiple Output Components Hard Nonlinear Is A Problem Describing Functions: One Input Component One Output Component (Fund.) Hard Nonlinear OK What is new? New Describing Functions: Multiple Input Components Multiple Output Components Hard Nonlinear OK

5 Describing Functions With Multiple Inputs 5 O k = F I, I,...,I k α1 α2 αn with α i being the normalized frequency of the i th input component Identifying F k is simplified by expressing that the device-under-test is time-invariant. Delaying the input results in the same delay at the output. This results in the following transformed mathematical formulation: O = ( V ) k G ( A,...,A, V,..., V ) k N k 1 N 1 N 1 delay input amplitudes input phase relationships P e jϕ I with A A = I = α i i i and V i : i αi V N = P 1 m 1...PN m N α m α m = N N ( 1 i N 1) V i = P 1 s 1i...PN s Ni α s α s = 0 1 1i N Ni

6 Simple Examples 6 Harmonic Distortion O k = P k 1 G k ( A 1 ) For an harmonic distortion analysis one input spectral component is present. The A 1 variable corresponds to the amplitude and P 1 to the phase represented as a complex number on the unit circle. The k th harmonic O k at the output can be written as a function of the input as shown above, where G k represents an arbitrary describing function. Intermodulation Products 1 O k ( P 4 P 3 ) k 3 4 = G k ( A 3, A 4, P 4P3 ) Suppose there are two input components with normalized frequencies 3 and 4. Every intermodulation product O k can be written as shown above. The first two arguments of the describing function G k are the amplitudes of the input components, while the third argument represents the phase relationship between the two components.

7 Black Box Parametric Models 7 Volterra Approach (VIOMAP) O k ( P 1 ) k N 2i+ k = K i A 1 i = 0 Rational Describing Function N k O k ( P 1 ) k i A K i A 1 = k i = A 1 In practice, a parametric model for the describing functions G k is proposed. The parameters can be found by fitting measured data. In what follows two types of models are investigated and compared for an harmonic distortion measurement: one approach which corresponds to the Volterra theory, and one approach based upon rational describing functions. The model parameters are noted K i, they are extracted by a least squares technique.

8 VIOMAP vs. Describing Rational 8 Ideal Compressor Characteristic (7th harmonic) Harmonic amplitude (V) Model error (V) Input amplitude (V) VIOMAP Input amplitude (V) The rational describing function and the VIOMAP parametric models are fitted on the simulated 7th harmonic generation of an ideal compressor. The number of parameters used is in both cases equal to 5. The describing rational does a much better job to fit the ideal curve, with an error which is typically only one tenth of the error made with the Volterra approach. Modelling Errors (with 5 parameters used) Model error (V) Describing Rational Input amplitude (V)

9 The Resistive Mixer Experiment LO 3GHz HEMT transistor (no bias) RF 4GHz IF 1GHz 7GHz... 9 The same approach is also tested on measured data. A resistive mixer experiment is performed for this purpose. With a resistive mixer experiment the local oscillator (LO) signal is applied to the gate of a microwave FET transistor, while the radio frequency (RF) signal is a voltage wave incident at the transistor drain. The intermediate frequency (IF) signals are the spectral components of the voltage wave scattered at the drain. Measurements are performed with a prototype Vectorial Nonlinear Network Analyzer (VNNA).

10 Resistive Mixer Time Domain Waveforms 10 Voltage waves (V) LO/2 RF IF Time (ns) Shown above are the measured time domain waveforms at the signal ports of the FET transistor used as a resistive mixer. The LO signal is applied to the gate. The RF signal is the voltage wave incident to the drain, the IF signal is the reflected voltage wave. While the gate voltage is high the drain represents a low impedance, such that the IF and RF are in opposite phase, while the gate voltage is low the drain represents a high impedance, such that the IF and RF are in phase.

11 Intermod 1 peak amplitude (V) VIOMAP and Describing Rational HEMT Resistive Mixer: IF vs. LO (RF fixed peak amplitude of 0.2V) Local oscillator peak amplitude (V) : rational model : VIOMAP model 11 Measured data is captured sweeping the amplitude of RF and LO from 0V to 0.8V, for different RF-LO phase relationships. Two models are fit on the data (same number of parameters): a rational describing function and a VIOMAP. As an example, the first intermod (1GHz) peak amplitude is plotted versus the LO peak amplitude, with the RF having a peak amplitude of 0.2V. The rational model is smoother than the VIOMAP, corresponding better to what one physically expects.

12 Conclusion 12 The describing functions approach developed allows to construct better black box parametric models for hard nonlinear devices than an approach based upon the Volterra theory. Vectorial Nonlinear Network Analyzer measurements can be used in order to extract the model parameters.

Black Box Modelling of Hard Nonlinear Behavior in the Frequency Domain

Black Box Modelling of Hard Nonlinear Behavior in the Frequency Domain Jan Verspecht bvba Gertrudeveld 15 1840 Steenhuffel Belgium email: contact@janverspecht.com web: http://www.janverspecht.com Black Box Modelling of Hard Nonlinear Behavior in the Frequency Domain Jan Verspecht,

More information

Recent Advances in the Measurement and Modeling of High-Frequency Components

Recent Advances in the Measurement and Modeling of High-Frequency Components Jan Verspecht bvba Gertrudeveld 15 184 Steenhuffel Belgium email: contact@janverspecht.com web: http://www.janverspecht.com Recent Advances in the Measurement and Modeling of High-Frequency Components

More information

Waveform Measurements on a HEMT Resistive Mixer

Waveform Measurements on a HEMT Resistive Mixer Jan Verspecht bvba Gertrudeveld 15 1840 Steenhuffel Belgium email: contact@janverspecht.com web: http://www.janverspecht.com Waveform Measurements on a HEMT Resistive Mixer D. Schreurs, J. Verspecht, B.

More information

Easy and Accurate Empirical Transistor Model Parameter Estimation from Vectorial Large-Signal Measurements

Easy and Accurate Empirical Transistor Model Parameter Estimation from Vectorial Large-Signal Measurements Jan Verspecht bvba Gertrudeveld 1 184 Steenhuffel Belgium email: contact@janverspecht.com web: http://www.janverspecht.com Easy and Accurate Empirical Transistor Model Parameter Estimation from Vectorial

More information

CALIBRATED MEASUREMENTS OF NONLINEARITIES IN NARROWBAND AMPLIFIERS APPLIED TO INTERMODULATION AND CROSS MODULATION COMPENSATION

CALIBRATED MEASUREMENTS OF NONLINEARITIES IN NARROWBAND AMPLIFIERS APPLIED TO INTERMODULATION AND CROSS MODULATION COMPENSATION 995 IEEE MTT-S International Microwave Symposium Digest TH2C-6 CALIBRATED MEASUREMENTS OF NONLINEARITIES IN NARROWBAND AMPLIFIERS APPLIED TO INTERMODULATION AND CROSS MODULATION COMPENSATION Tom Van den

More information

Switching amplifier design with S-functions, using a ZVA-24 network analyzer

Switching amplifier design with S-functions, using a ZVA-24 network analyzer ESA Microw ave Technology and Techniques Workshop 2010, 10-12 May 2010 Switching amplifier design with S-functions, using a ZVA-24 network analyzer Marc Vanden Bossche NMDG N.V., Fountain Business Center

More information

Large-Signal Measurements Going beyond S-parameters

Large-Signal Measurements Going beyond S-parameters Large-Signal Measurements Going beyond S-parameters Jan Verspecht, Frans Verbeyst & Marc Vanden Bossche Network Measurement and Description Group Innovating the HP Way Overview What is Large-Signal Network

More information

A Simplified Extension of X-parameters to Describe Memory Effects for Wideband Modulated Signals

A Simplified Extension of X-parameters to Describe Memory Effects for Wideband Modulated Signals Jan Verspecht bvba Mechelstraat 17 B-1745 Opwijk Belgium email: contact@janverspecht.com web: http://www.janverspecht.com A Simplified Extension of X-parameters to Describe Memory Effects for Wideband

More information

Spurious and Stability Analysis under Large-Signal Conditions using your Vector Network Analyser

Spurious and Stability Analysis under Large-Signal Conditions using your Vector Network Analyser Spurious and Stability Analysis under Large-Signal Conditions using your Vector Network Analyser An application of ICE June 2012 Outline Why combining Large-Signal and Small-Signal Measurements Block Diagram

More information

Introduction. In the frequency domain, complex signals are separated into their frequency components, and the level at each frequency is displayed

Introduction. In the frequency domain, complex signals are separated into their frequency components, and the level at each frequency is displayed SPECTRUM ANALYZER Introduction A spectrum analyzer measures the amplitude of an input signal versus frequency within the full frequency range of the instrument The spectrum analyzer is to the frequency

More information

Extension of X-parameters to Include Long-Term Dynamic Memory Effects

Extension of X-parameters to Include Long-Term Dynamic Memory Effects Jan Verspecht bvba Mechelstraat 17 B-1745 Opwijk Belgium email: contact@janverspecht.com web: http://www.janverspecht.com Extension of X-parameters to Include Long-Term Dynamic Memory Effects Jan Verspecht,

More information

Using Large-Signal Measurements for Transistor Characterization and Model Verification in a Device Modeling Program

Using Large-Signal Measurements for Transistor Characterization and Model Verification in a Device Modeling Program Using Large-Signal Measurements for Transistor Characterization and Model Verification in a Device Modeling Program Maciej Myśliński1, Giovanni Crupi2, Marc Vanden Bossche3, Dominique Schreurs1, and Bart

More information

SmartSpice RF Harmonic Balance Based RF Simulator. Advanced RF Circuit Simulation

SmartSpice RF Harmonic Balance Based RF Simulator. Advanced RF Circuit Simulation SmartSpice RF Harmonic Balance Based RF Simulator Advanced RF Circuit Simulation SmartSpice RF Overview Uses harmonic balance approach to solve system equations in frequency domain Well suited for RF and

More information

Broad-Band Poly-Harmonic Distortion (PHD) Behavioral Models From Fast Automated Simulations and Large-Signal Vectorial Network Measurements

Broad-Band Poly-Harmonic Distortion (PHD) Behavioral Models From Fast Automated Simulations and Large-Signal Vectorial Network Measurements Jan Verspecht bvba Gertrudeveld 15 1840 Steenhuffel Belgium email: contact@janverspecht.com web: http://www.janverspecht.com Broad-Band Poly-Harmonic Distortion (PHD) Behavioral Models From Fast Automated

More information

SmartSpice RF Harmonic Balance Based and Shooting Method Based RF Simulation

SmartSpice RF Harmonic Balance Based and Shooting Method Based RF Simulation SmartSpice RF Harmonic Balance Based and Shooting Method Based RF Simulation Silvaco Overview SSRF Attributes Harmonic balance approach to solve system of equations in frequency domain Well suited for

More information

Large-Signal Network Analysis Technology for HF analogue and fast switching components

Large-Signal Network Analysis Technology for HF analogue and fast switching components Large-Signal Network Analysis Technology for HF analogue and fast switching components Applications This slide set introduces the large-signal network analysis technology applied to high-frequency components.

More information

Load Pull Validation of Large Signal Cree GaN Field Effect Transistor (FET) Model

Load Pull Validation of Large Signal Cree GaN Field Effect Transistor (FET) Model APPLICATION NOTE Load Pull Validation of Large Signal Cree GaN Field Effect Transistor (FET) Model Introduction Large signal models for RF power transistors, if matched well with measured performance,

More information

Keysight Technologies Nonlinear Vector Network Analyzer (NVNA) Breakthrough technology for nonlinear vector network analysis from 10 MHz to 67 GHz

Keysight Technologies Nonlinear Vector Network Analyzer (NVNA) Breakthrough technology for nonlinear vector network analysis from 10 MHz to 67 GHz Keysight Technologies Nonlinear Vector Network Analyzer (NVNA) Breakthrough technology for nonlinear vector network analysis from 1 MHz to 67 GHz 2 Keysight Nonlinear Vector Network Analyzer (NVNA) - Brochure

More information

LARGE-SIGNAL NETWORK ANALYSER MEASUREMENTS APPLIED TO BEHAVIOURAL MODEL EXTRACTION

LARGE-SIGNAL NETWORK ANALYSER MEASUREMENTS APPLIED TO BEHAVIOURAL MODEL EXTRACTION LARGE-SIGNAL NETWORK ANALYSER MEASUREMENTS APPLIED TO BEHAVIOURAL MODEL EXTRACTION Maciej Myslinski, K.U.Leuven, Div. ESAT-TELEMIC, Kasteelpark Arenberg 1, B-31 Leuven, Belgium, e-mail: maciej.myslinski@esat.kuleuven.be

More information

A GHz MICROWAVE UP CONVERSION MIXERS USING THE CONCEPTS OF DISTRIBUTED AND DOUBLE BALANCED MIXING FOR OBTAINING LO AND RF (LSB) REJECTION

A GHz MICROWAVE UP CONVERSION MIXERS USING THE CONCEPTS OF DISTRIBUTED AND DOUBLE BALANCED MIXING FOR OBTAINING LO AND RF (LSB) REJECTION A 2-40 GHz MICROWAVE UP CONVERSION MIXERS USING THE CONCEPTS OF DISTRIBUTED AND DOUBLE BALANCED MIXING FOR OBTAINING LO AND RF (LSB) REJECTION M. Mehdi, C. Rumelhard, J. L. Polleux, B. Lefebvre* ESYCOM

More information

5.8 GHz Single-Balanced Hybrid Mixer

5.8 GHz Single-Balanced Hybrid Mixer Single-Balanced Hybrid Mixer James McKnight MMIC Design EE 525.787 JHU Fall 200 Professor John Penn Abstract This report details the design of a C-Band monolithic microwave integrated circuit (MMIC) single-balanced

More information

Direct-Conversion I-Q Modulator Simulation by Andy Howard, Applications Engineer Agilent EEsof EDA

Direct-Conversion I-Q Modulator Simulation by Andy Howard, Applications Engineer Agilent EEsof EDA Direct-Conversion I-Q Modulator Simulation by Andy Howard, Applications Engineer Agilent EEsof EDA Introduction This article covers an Agilent EEsof ADS example that shows the simulation of a directconversion,

More information

Agilent Technologies Gli analizzatori di reti della serie-x

Agilent Technologies Gli analizzatori di reti della serie-x Agilent Technologies Gli analizzatori di reti della serie-x Luigi Fratini 1 Introducing the PNA-X Performance Network Analyzer For Active Device Test 500 GHz & beyond! 325 GHz 110 GHz 67 GHz 50 GHz 43.5

More information

Pulsed IV analysis. Performing and Analyzing Pulsed Current-Voltage Measurements PULSED MEASUREMENTS. methods used for pulsed

Pulsed IV analysis. Performing and Analyzing Pulsed Current-Voltage Measurements PULSED MEASUREMENTS. methods used for pulsed From May 2004 High Frequency Electronics Copyright 2004 Summit Technical Media, LLC Performing and Analyzing Pulsed Current-Voltage Measurements By Charles P. Baylis II, Lawrence P. Dunleavy University

More information

Chapter VII. MIXERS and DETECTORS

Chapter VII. MIXERS and DETECTORS Class Notes, 31415 RF-Communication Circuits Chapter VII MIXERS and DETECTORS Jens Vidkjær NB235 ii Contents VII Mixers and Detectors... 1 VII-1 Mixer Basics... 2 A Prototype FET Mixer... 2 Example VII-1-1

More information

This novel simulation method effectively analyzes a 2-GHz oscillator to better understand and optimize its noise performance.

This novel simulation method effectively analyzes a 2-GHz oscillator to better understand and optimize its noise performance. 1 of 8 12/29/2015 12:53 PM print close Microwaves and RF Mark Scott Logue Tue, 2015-12-29 12:19 This novel simulation method effectively analyzes a 2-GHz oscillator to better understand and optimize its

More information

Title: New High Efficiency Intermodulation Cancellation Technique for Single Stage Amplifiers.

Title: New High Efficiency Intermodulation Cancellation Technique for Single Stage Amplifiers. Title: New High Efficiency Intermodulation Cancellation Technique for Single Stage Amplifiers. By: Ray Gutierrez Micronda LLC email: ray@micronda.com February 12, 2008. Introduction: This article provides

More information

Design of a Broadband HEMT Mixer for UWB Applications

Design of a Broadband HEMT Mixer for UWB Applications Indian Journal of Science and Technology, Vol 9(26), DOI: 10.17485/ijst/2016/v9i26/97253, July 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Design of a Broadband HEMT Mixer for UWB Applications

More information

Analysis and Design of Autonomous Microwave Circuits

Analysis and Design of Autonomous Microwave Circuits Analysis and Design of Autonomous Microwave Circuits ALMUDENA SUAREZ IEEE PRESS WILEY A JOHN WILEY & SONS, INC., PUBLICATION Contents Preface xiii 1 Oscillator Dynamics 1 1.1 Introduction 1 1.2 Operational

More information

Efficiently simulating a direct-conversion I-Q modulator

Efficiently simulating a direct-conversion I-Q modulator Efficiently simulating a direct-conversion I-Q modulator Andy Howard Applications Engineer Agilent Eesof EDA Overview An I-Q or vector modulator is a commonly used integrated circuit in communication systems.

More information

Power Amplifier Design Utilizing the NVNA and X-parameters

Power Amplifier Design Utilizing the NVNA and X-parameters IMS2011 Power Amplifier Design Utilizing the NVNA and X-parameters Loren Betts 1, Dylan T. Bespalko 2, Slim Boumaiza 2 1 Agilent Technologies, Santa Rosa CA, USA 2 University of Waterloo, Waterloo ON,

More information

Design and Simulation of RF CMOS Oscillators in Advanced Design System (ADS)

Design and Simulation of RF CMOS Oscillators in Advanced Design System (ADS) Design and Simulation of RF CMOS Oscillators in Advanced Design System (ADS) By Amir Ebrahimi School of Electrical and Electronic Engineering The University of Adelaide June 2014 1 Contents 1- Introduction...

More information

Appendix. Harmonic Balance Simulator. Page 1

Appendix. Harmonic Balance Simulator. Page 1 Appendix Harmonic Balance Simulator Page 1 Harmonic Balance for Large Signal AC and S-parameter Simulation Harmonic Balance is a frequency domain analysis technique for simulating distortion in nonlinear

More information

CHAPTER 4 LARGE SIGNAL S-PARAMETERS

CHAPTER 4 LARGE SIGNAL S-PARAMETERS CHAPTER 4 LARGE SIGNAL S-PARAMETERS 4.0 Introduction Small-signal S-parameter characterization of transistor is well established. As mentioned in chapter 3, the quasi-large-signal approach is the most

More information

print close Chris Bean, AWR Group, NI

print close Chris Bean, AWR Group, NI 1 of 12 3/28/2016 2:42 PM print close Microwaves and RF Chris Bean, AWR Group, NI Mon, 2016-03-28 10:44 The latest version of an EDA software tool works directly with device load-pull data to develop the

More information

A Simplified Extension of X-parameters to Describe Memory Effects for Wideband Modulated Signals

A Simplified Extension of X-parameters to Describe Memory Effects for Wideband Modulated Signals A Simplified Extension of X-parameters to Describe Memory Effects for Wideband Modulated Signals Jan Verspecht*, Jason Horn** and David E. Root** * Jan Verspecht b.v.b.a., Opwijk, Vlaams-Brabant, B-745,

More information

How do I optimize desired Amplifier Specifications?

How do I optimize desired Amplifier Specifications? How do I optimize desired Amplifier Specifications? PAE (accuracy

More information

AWR. White Paper. Nonlinear Modeling AWR S SUPPORT OF POLYHARMONIC DISTORTION AND NONLINEAR BEHAVIORAL MODELS

AWR. White Paper. Nonlinear Modeling AWR S SUPPORT OF POLYHARMONIC DISTORTION AND NONLINEAR BEHAVIORAL MODELS AWR S SUPPORT OF POLYHARMONIC DISTORTION AND NONLINEAR BEHAVIORAL MODELS Linear and nonlinear device models are the building blocks of most RF and microwave designs. S-parameters are often used to represent

More information

CONSTRUCTION OF BEHAVIOURAL MODELS FOR MICROWAVE DEVICES FROM TIME-DOMAIN LARGE-SIGNAL MEASUREMENTS TO SPEED-UP HIGH-LEVEL DESIGN SIMULATIONS

CONSTRUCTION OF BEHAVIOURAL MODELS FOR MICROWAVE DEVICES FROM TIME-DOMAIN LARGE-SIGNAL MEASUREMENTS TO SPEED-UP HIGH-LEVEL DESIGN SIMULATIONS CONSTRUCTION OF BEHAVIOURAL MODELS FOR MICROWAVE DEVICES FROM TIME-DOMAIN LARGE-SIGNAL MEASUREMENTS TO SPEED-UP HIGH-LEVEL DESIGN SIMULATIONS D. Schreurs, J. Wood, N. Tufillaro, L. Barford, and D.E. Root

More information

Using Enhanced Load-Pull Measurements for the Design of Base Station Power Amplifiers

Using Enhanced Load-Pull Measurements for the Design of Base Station Power Amplifiers Application Note Using Enhanced Load-Pull Measurements for the Design of Base Station Power Amplifiers Overview Load-pull simulation is a very simple yet powerful concept in which the load or source impedance

More information

Agilent Nonlinear Vector Network Analyzer (NVNA)

Agilent Nonlinear Vector Network Analyzer (NVNA) Agilent Nonlinear Vector Network Analyzer (NVNA) Breakthrough technology for nonlinear vector network analysis from 1 MHz to 67 GHz I know my amplifier gain is changing with output match, but Hot S22 measurements

More information

Design of Class F Power Amplifiers Using Cree GaN HEMTs and Microwave Office Software to Optimize Gain, Efficiency, and Stability

Design of Class F Power Amplifiers Using Cree GaN HEMTs and Microwave Office Software to Optimize Gain, Efficiency, and Stability White Paper Design of Class F Power Amplifiers Using Cree GaN HEMTs and Microwave Office Software to Optimize Gain, Efficiency, and Stability Overview This white paper explores the design of power amplifiers

More information

HP Archive. This vintage Hewlett Packard document was preserved and distributed by www. hparchive.com Please visit us on the web!

HP Archive. This vintage Hewlett Packard document was preserved and distributed by www. hparchive.com Please visit us on the web! HP Archive This vintage Hewlett Packard document was preserved and distributed by www. hparchive.com Please visit us on the web! On-line curator: Glenn Robb This document is for FREE distribution only!

More information

Figure 12-1 (p. 578) Block diagram of a sinusoidal oscillator using an amplifier with a frequencydependent

Figure 12-1 (p. 578) Block diagram of a sinusoidal oscillator using an amplifier with a frequencydependent Figure 12-1 (p. 578) Block diagram of a sinusoidal oscillator using an amplifier with a frequencydependent feedback path. Figure 12-2 (p. 579) General circuit for a transistor oscillator. The transistor

More information

Experiment 12 - Measuring X-Parameters Using Nonlinear Vector Netowrk Analyzer

Experiment 12 - Measuring X-Parameters Using Nonlinear Vector Netowrk Analyzer ECE 451 Automated Microwave Measurements Laboratory Experiment 12 - Measuring X-Parameters Using Nonlinear Vector Netowrk Analyzer 1 Introduction In this experiment, rstly, we will be measuring X-parameters

More information

Load Pull with X-Parameters

Load Pull with X-Parameters Load Pull with X-Parameters A New Paradigm for Modeling and Design Gary Simpson, CTO Maury Microwave March 2009 For a more detailed version of this presentation, go to www.maurymw.com/presentations 1 Outline

More information

ONE OF THE major issues in a power-amplifier design

ONE OF THE major issues in a power-amplifier design 2364 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 47, NO. 12, DECEMBER 1999 Large- and Small-Signal IMD Behavior of Microwave Power Amplifiers Nuno Borges de Carvalho, Student Member, IEEE,

More information

What s inside. Highlights. Welcome. Mixer test third in a series. New time-domain technique for measuring mixer group delay

What s inside. Highlights. Welcome. Mixer test third in a series. New time-domain technique for measuring mixer group delay What s inside 2 New time-domain technique for measuring mixer group delay 3 Uncertainty in mixer group-delay measurements 5 Isolation a problem? Here s how to measure mixer group delay 6 Low-power mixer

More information

Tour Agilent ADS EMPro 2011 Stability Analysis of Microwave Circuits

Tour Agilent ADS EMPro 2011 Stability Analysis of Microwave Circuits Tour Agilent ADS EMPro 2011 Stability Analysis of Microwave Circuits S. Dellier, PhD AMCAD Engineering Introduction to AMCAD s products and services AMCAD is a provider of new RF & Microwave solutions

More information

RF, Microwave & Wireless. All rights reserved

RF, Microwave & Wireless. All rights reserved RF, Microwave & Wireless All rights reserved 1 Non-Linearity Phenomenon All rights reserved 2 Physical causes of nonlinearity Operation under finite power-supply voltages Essential non-linear characteristics

More information

Ansys Designer RF Training Lecture 3: Nexxim Circuit Analysis for RF

Ansys Designer RF Training Lecture 3: Nexxim Circuit Analysis for RF Ansys Designer RF Solutions for RF/Microwave Component and System Design 7. 0 Release Ansys Designer RF Training Lecture 3: Nexxim Circuit Analysis for RF Designer Overview Ansoft Designer Advanced Design

More information

Behavioral Modeling and Digital Predistortion of Radio Frequency Power Amplifiers

Behavioral Modeling and Digital Predistortion of Radio Frequency Power Amplifiers Signal Processing and Speech Communication Laboratory 1 / 20 Behavioral Modeling and Digital Predistortion of Radio Frequency Power Amplifiers Harald Enzinger PhD Defense 06.03.2018 u www.spsc.tugraz.at

More information

Understanding the Fundamental Principles of Vector Network Analysis. Application Note

Understanding the Fundamental Principles of Vector Network Analysis. Application Note Understanding the Fundamental Principles of Vector Network Analysis Application Note Table of Contents Introduction... 3 Measurements in Communications Systems... 3 Importance of Vector Measurements...

More information

Preface Introduction p. 1 History and Fundamentals p. 1 Devices for Mixers p. 6 Balanced and Single-Device Mixers p. 7 Mixer Design p.

Preface Introduction p. 1 History and Fundamentals p. 1 Devices for Mixers p. 6 Balanced and Single-Device Mixers p. 7 Mixer Design p. Preface Introduction p. 1 History and Fundamentals p. 1 Devices for Mixers p. 6 Balanced and Single-Device Mixers p. 7 Mixer Design p. 9 Monolithic Circuits p. 10 Schottky-Barrier Diodes p. 11 Schottky-Diode

More information

915 MHz Power Amplifier. EE172 Final Project. Michael Bella

915 MHz Power Amplifier. EE172 Final Project. Michael Bella 915 MHz Power Amplifier EE17 Final Project Michael Bella Spring 011 Introduction: Radio Frequency Power amplifiers are used in a wide range of applications, and are an integral part of many daily tasks.

More information

LF to 4 GHz High Linearity Y-Mixer ADL5350

LF to 4 GHz High Linearity Y-Mixer ADL5350 LF to GHz High Linearity Y-Mixer ADL535 FEATURES Broadband radio frequency (RF), intermediate frequency (IF), and local oscillator (LO) ports Conversion loss:. db Noise figure:.5 db High input IP3: 25

More information

Pulsed VNA Measurements:

Pulsed VNA Measurements: Pulsed VNA Measurements: The Need to Null! January 21, 2004 presented by: Loren Betts Copyright 2004 Agilent Technologies, Inc. Agenda Pulsed RF Devices Pulsed Signal Domains VNA Spectral Nulling Measurement

More information

Practical RF Circuit Design for Modern Wireless Systems

Practical RF Circuit Design for Modern Wireless Systems Practical RF Circuit Design for Modern Wireless Systems Volume II Active Circuits and Systems Rowan Gilmore Les Besser Artech House Boston " London www.artechhouse.com Contents Preface Acknowledgments

More information

Modeling Nonlinear Memory Effects on the AM/AM, AM/PM and Two-Tone IMD in Microwave PA Circuits

Modeling Nonlinear Memory Effects on the AM/AM, AM/PM and Two-Tone IMD in Microwave PA Circuits Modeling Nonlinear Memory Effects on the AM/AM, AM/PM and Two-Tone IMD in Microwave PA Circuits Pedro M. Cabral, José C. Pedro, Nuno B. Carvalho Instituto de Telecomunicações, Universidade de Aveiro, Campus

More information

Silicon Beam Lead Schottky Barrier Mixer Diodes

Silicon Beam Lead Schottky Barrier Mixer Diodes ilicon chottky Barrier Mixer Diodes Features Ideal for MIC Low 1/f Noise Low Intermodulation Distortion Low Turn On Hermetically ealed Packages PC Controlled Wafer Fabrication Description Alpha beam lead

More information

DOUBLE-SIDEBAND MIXER CIRCUITS

DOUBLE-SIDEBAND MIXER CIRCUITS DOUBLE-SIDEBAND MIXER CIRCUITS SBW SERIES Waveguide, SMA / SBB SERIES DC Biasable, Low Power DB, DM SERIES General Purpose SBE SERIES Even Harmonic (1/2 ) TB, TBR SERIES Best Spurs, Overlap / W Y W Y Z

More information

TECH BRIEF Addressing Phase Noise Challenges in Radar and Communication Systems

TECH BRIEF Addressing Phase Noise Challenges in Radar and Communication Systems Addressing Phase Noise Challenges in Radar and Communication Systems Phase noise is rapidly becoming the most critical factor addressed in sophisticated radar and communication systems. This is because

More information

Understanding Mixers Terms Defined, and Measuring Performance

Understanding Mixers Terms Defined, and Measuring Performance Understanding Mixers Terms Defined, and Measuring Performance Mixer Terms Defined Statistical Processing Applied to Mixers Today's stringent demands for precise electronic systems place a heavy burden

More information

Negative Input Resistance and Real-time Active Load-pull Measurements of a 2.5GHz Oscillator Using a LSNA

Negative Input Resistance and Real-time Active Load-pull Measurements of a 2.5GHz Oscillator Using a LSNA Negative Input Resistance and Real-time Active Load-pull Measurements of a.5ghz Oscillator Using a LSNA Inwon Suh*, Seok Joo Doo*, Patrick Roblin* #, Xian Cui*, Young Gi Kim*, Jeffrey Strahler +, Marc

More information

DEVICE DISPERSION AND INTERMODULATION IN HEMTs

DEVICE DISPERSION AND INTERMODULATION IN HEMTs DEVICE DISPERSION AND INTERMODULATION IN HEMTs James Brinkhoff and Anthony E. Parker Department of Electronics, Macquarie University, Sydney AUSTRALIA 2109, mailto: jamesb@ics.mq.edu.au ABSTRACT It has

More information

Instrument Controllers

Instrument Controllers Instrument Controllers September 2002 Notice The information contained in this document is subject to change without notice. Agilent Technologies makes no warranty of any kind with regard to this material,

More information

Keysight Technologies Network Analyzer Measurements: Filter and Amplifier Examples. Application Note

Keysight Technologies Network Analyzer Measurements: Filter and Amplifier Examples. Application Note Keysight Technologies Network Analyzer Measurements: Filter and Amplifier Examples Application Note Introduction Both the magnitude and phase behavior of a component are critical to the performance of

More information

Module 1B RF Test & Measurement

Module 1B RF Test & Measurement 1 EECE 411 Antennas and Propagation Module 1B RF Test & Measurement Introduction to Spectrum Analyzers 2 Why Measure the Spectrum of a Signal? to characterize noise and interference to measure distortion

More information

A GHz MONOLITHIC GILBERT CELL MIXER. Andrew Dearn and Liam Devlin* Introduction

A GHz MONOLITHIC GILBERT CELL MIXER. Andrew Dearn and Liam Devlin* Introduction A 40 45 GHz MONOLITHIC GILBERT CELL MIXER Andrew Dearn and Liam Devlin* Introduction Millimetre-wave mixers are commonly realised using hybrid fabrication techniques, with diodes as the nonlinear mixing

More information

RF IV Waveform Measurement and Engineering

RF IV Waveform Measurement and Engineering RF IV Waveform Measurement and Engineering - Emerging Multi-Tone Systems - Centre for High Frequency Engineering School of Engineering Cardiff University Contact information Prof. Paul J Tasker tasker@cf.ac.uk

More information

Experiment 5 Single-Stage MOS Amplifiers

Experiment 5 Single-Stage MOS Amplifiers Experiment 5 Single-Stage MOS Amplifiers B. Cagdaser, H. Chong, R. Lu, and R. T. Howe UC Berkeley EE 105 Fall 2005 1 Objective This is the first lab dealing with the use of transistors in amplifiers. We

More information

A 600 GHz Varactor Doubler using CMOS 65nm process

A 600 GHz Varactor Doubler using CMOS 65nm process A 600 GHz Varactor Doubler using CMOS 65nm process S.H. Choi a and M.Kim School of Electrical Engineering, Korea University E-mail : hyperleonheart@hanmail.net Abstract - Varactor and active mode doublers

More information

Texas A&M University Electrical Engineering Department ECEN 665. Laboratory #3: Analysis and Simulation of a CMOS LNA

Texas A&M University Electrical Engineering Department ECEN 665. Laboratory #3: Analysis and Simulation of a CMOS LNA Texas A&M University Electrical Engineering Department ECEN 665 Laboratory #3: Analysis and Simulation of a CMOS LNA Objectives: To learn the use of s-parameter and periodic steady state (pss) simulation

More information

NI AWR Design Environment Load-Pull Simulation Supports the Design of Wideband High-Efficiency Power Amplifiers

NI AWR Design Environment Load-Pull Simulation Supports the Design of Wideband High-Efficiency Power Amplifiers Design NI AWR Design Environment Load-Pull Simulation Supports the Design of Wideband High-Efficiency Power Amplifiers The design of power amplifiers (PAs) for present and future wireless systems requires

More information

SHF Communication Technologies AG

SHF Communication Technologies AG SHF Communication Technologies AG Wilhelm-von-Siemens-Str. 23 Aufgang D 2277 Berlin Marienfelde Germany Phone ++49 30 / 772 05 0 Fax ++49 30 / 753 0 78 E-Mail: sales@shf.biz Web: http://www.shf.biz Tutorial

More information

Keysight Technologies Amplifier and CW Swept Intermodulation - Distortion Measurements using the PNA Microwave Network Analyzers.

Keysight Technologies Amplifier and CW Swept Intermodulation - Distortion Measurements using the PNA Microwave Network Analyzers. Keysight Technologies Amplifier and CW Swept Intermodulation - Distortion Measurements using the PNA Microwave Network Analyzers Application Note Introduction This application note covers testing of an

More information

Introduction to Surface Acoustic Wave (SAW) Devices

Introduction to Surface Acoustic Wave (SAW) Devices May 31, 2018 Introduction to Surface Acoustic Wave (SAW) Devices Part 7: Basics of RF Circuits Ken-ya Hashimoto Chiba University k.hashimoto@ieee.org http://www.te.chiba-u.jp/~ken Contents Noise Figure

More information

The Cambridge RF and Microwave Engineering Series. Series Editor Steve C. Cripps, Distinguished Research Professor, Cardiff University

The Cambridge RF and Microwave Engineering Series. Series Editor Steve C. Cripps, Distinguished Research Professor, Cardiff University X-Parameters This is the definitive guide to X-parameters, written by the original inventors and developers of this powerful new paradigm for nonlinear RF and microwave components and systems. Learn how

More information

New Ultra-Fast Noise Parameter System... Opening A New Realm of Possibilities in Noise Characterization

New Ultra-Fast Noise Parameter System... Opening A New Realm of Possibilities in Noise Characterization New Ultra-Fast Noise Parameter System... Opening A New Realm of Possibilities in Noise Characterization David Ballo Application Development Engineer Agilent Technologies Gary Simpson Chief Technology Officer

More information

Measuring Non-linear Amplifiers

Measuring Non-linear Amplifiers Measuring Non-linear Amplifiers Transceiver Components & Measuring Techniques MM3 Jan Hvolgaard Mikkelsen Radio Frequency Integrated Systems and Circuits Division Aalborg University 27 Agenda Non-linear

More information

T he noise figure of a

T he noise figure of a LNA esign Uses Series Feedback to Achieve Simultaneous Low Input VSWR and Low Noise By ale. Henkes Sony PMCA T he noise figure of a single stage transistor amplifier is a function of the impedance applied

More information

RF Power Amplifier Design

RF Power Amplifier Design RF Power Amplifier esign Markus Mayer & Holger Arthaber epartment of Electrical Measurements and Circuit esign Vienna University of Technology June 11, 21 Contents Basic Amplifier Concepts Class A, B,

More information

PROJECT ON MIXED SIGNAL VLSI

PROJECT ON MIXED SIGNAL VLSI PROJECT ON MXED SGNAL VLS Submitted by Vipul Patel TOPC: A GLBERT CELL MXER N CMOS AND BJT TECHNOLOGY 1 A Gilbert Cell Mixer in CMOS and BJT technology Vipul Patel Abstract This paper describes a doubly

More information

Focus Microwaves Inc. 970 Montee de Liesse, Ste. 308 Ville St-Laurent, Quebec H4T-1W7, Canada Tel Fax

Focus Microwaves Inc. 970 Montee de Liesse, Ste. 308 Ville St-Laurent, Quebec H4T-1W7, Canada Tel Fax Focus Microwaves Inc. 970 Montee de Liesse, Ste. 308 Ville St-Laurent, Quebec H4T-1W7, Canada Tel 514-335-6227 Fax 514-335-6287 Product Note No 12A Measurement Software for the Computer Controlled Microwave

More information

6.976 High Speed Communication Circuits and Systems Lecture 20 Performance Measures of Wireless Communication

6.976 High Speed Communication Circuits and Systems Lecture 20 Performance Measures of Wireless Communication 6.976 High Speed Communication Circuits and Systems Lecture 20 Performance Measures of Wireless Communication Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott

More information

Keysight Technologies Making Accurate Intermodulation Distortion Measurements with the PNA-X Network Analyzer, 10 MHz to 26.5 GHz

Keysight Technologies Making Accurate Intermodulation Distortion Measurements with the PNA-X Network Analyzer, 10 MHz to 26.5 GHz Keysight Technologies Making Accurate Intermodulation Distortion Measurements with the PNA-X Network Analyzer, 10 MHz to 26.5 GHz Application Note Overview This application note describes accuracy considerations

More information

In an ideal world there would be no

In an ideal world there would be no by Lance Lascari, Microwave Data Systems 29 Simulating a discrete GaAs FET power amplifier The last decade has brought great improvements in non-linear circuit simulation software and economical desktop

More information

C. Mixers. frequencies? limit? specifications? Perhaps the most important component of any receiver is the mixer a non-linear microwave device.

C. Mixers. frequencies? limit? specifications? Perhaps the most important component of any receiver is the mixer a non-linear microwave device. 9/13/2007 Mixers notes 1/1 C. Mixers Perhaps the most important component of any receiver is the mixer a non-linear microwave device. HO: Mixers Q: How efficient is a typical mixer at creating signals

More information

Product Note 75 DLPS, a Differential Load Pull System

Product Note 75 DLPS, a Differential Load Pull System 63 St-Regis D.D.O, Quebec H9B 3H7, Canada Tel 54-684-4554 Fax 54-684-858 E-mail: info@ focus-microwaves.com Website: http://www.focus-microwaves.com Product Note 75 DLPS, a Differential Load Pull System

More information

3D Intermodulation Distortion Measurement AN 8

3D Intermodulation Distortion Measurement AN 8 3D Intermodulation Distortion Measurement AN 8 Application Note to the R&D SYSTEM The modulation of a high frequency tone f (voice tone and a low frequency tone f (bass tone is measured by using the 3D

More information

Characteristics of InP HEMT Harmonic Optoelectronic Mixers and Their Application to 60GHz Radio-on-Fiber Systems

Characteristics of InP HEMT Harmonic Optoelectronic Mixers and Their Application to 60GHz Radio-on-Fiber Systems . TU6D-1 Characteristics of Harmonic Optoelectronic Mixers and Their Application to 6GHz Radio-on-Fiber Systems Chang-Soon Choi 1, Hyo-Soon Kang 1, Dae-Hyun Kim 2, Kwang-Seok Seo 2 and Woo-Young Choi 1

More information

Introduction to Measurements for Power Transistor Characterization

Introduction to Measurements for Power Transistor Characterization Jan Verspecht bvba Mechelstraat 17 B-1745 Opwijk Belgium email: contact@janverspecht.com web: http://www.janverspecht.com Introduction to Measurements for Power Transistor Characterization Fabien De Groote,

More information

Termination Insensitive Mixers By Howard Hausman President/CEO, MITEQ, Inc. 100 Davids Drive Hauppauge, NY

Termination Insensitive Mixers By Howard Hausman President/CEO, MITEQ, Inc. 100 Davids Drive Hauppauge, NY Termination Insensitive Mixers By Howard Hausman President/CEO, MITEQ, Inc. 100 Davids Drive Hauppauge, NY 11788 hhausman@miteq.com Abstract Microwave mixers are non-linear devices that are used to translate

More information

New System Simulator Includes Spectral Domain Analysis

New System Simulator Includes Spectral Domain Analysis New System Simulator Includes Spectral Domain Analysis By Dale D. Henkes, ACS Figure 1: The ACS Visual System Architect s System Schematic With advances in RF and wireless technology, it is often the case

More information

RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand

RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand Advanced VNA Measurements Agenda Overview of the PXIe-5632 Architecture SW Experience Overview of VNA Calibration

More information

Application Note. STAN Tool. Selecting the Node. Understanding and overcoming pole-zero quasi-cancellations

Application Note. STAN Tool. Selecting the Node. Understanding and overcoming pole-zero quasi-cancellations Application Note STAN Tool Selecting the Node Understanding and overcoming pole-zero quasi-cancellations 1 Selecting the Node Sometimes the result of an identification provides a pole-zero map in which

More information

Highly Linear GaN Class AB Power Amplifier Design

Highly Linear GaN Class AB Power Amplifier Design 1 Highly Linear GaN Class AB Power Amplifier Design Pedro Miguel Cabral, José Carlos Pedro and Nuno Borges Carvalho Instituto de Telecomunicações Universidade de Aveiro, Campus Universitário de Santiago

More information

HF Receivers, Part 2

HF Receivers, Part 2 HF Receivers, Part 2 Superhet building blocks: AM, SSB/CW, FM receivers Adam Farson VA7OJ View an excellent tutorial on receivers NSARC HF Operators HF Receivers 2 1 The RF Amplifier (Preamp)! Typical

More information

Very small duty cycles for pulsed time domain transistor characterization

Very small duty cycles for pulsed time domain transistor characterization EUROPEAN MICROWAVE ASSOCIATION Very small duty cycles for pulsed time domain transistor characterization Fabien De Groote 1, Olivier Jardel 2, Tibault Reveyrand 2, Jean-Pierre Teyssier 1, 2 and Raymond

More information

Linearizing an Intermodulation Radar Transmitter by Filtering Switched Tones

Linearizing an Intermodulation Radar Transmitter by Filtering Switched Tones 12-Apr-2017 Linearizing an Intermodulation Radar Transmitter by Filtering Switched Tones Gregory J. Mazzaro The Citadel, The Military College of South Carolina Charleston, SC 29409 Andrew J. Sherbondy,

More information