What Is An SMU? SEP 2016

Size: px
Start display at page:

Download "What Is An SMU? SEP 2016"

Transcription

1 What Is An SMU? SEP 2016

2 Agenda SMU Introduction Theory of Operation (Constant Current/Voltage Sourcing + Measure) Cabling : Triax vs Coax Advantages in Resistance Applications (vs. DMMs) Advantages in I-V Applications (vs. Power Supplies) Concept of 4-Quadrant Operation (Sourcing and Sinking Modes) Concept of Pulse I-V Technique (Pulse mode vs DC mode) Summary and Q&A

3 SMU Introduction

4 Decades of Leadership in SMU Technology Series 23x SMUs 1989 Series 2600 System SourceMeter Instruments Series 2400 SourceMeter Instruments >20 patents issued for SMU-specific technology Numerous industry awards, including R&D 100, T&MW, and more Thousands and thousands of customers large and small in R&D and mfg. Serving Semiconductor, Electronic Components, Optoelectronics, Automotive, Mil/Aero, Medical, Research & Education, and many more electronics industries Series 2600A System SourceMeter Instruments 2012 Series 2450 SourceMeter Instruments 2014

5 SMU Applications Span Electronics R&D and Industry Resistivity of Materials Solar Cells Capacitor Leakage Open and Short Testing of Cables, Connectors Cell/Battery Charge and Discharge Profiling Optoelectronic Devices Including LEDs/Lasers Electrochemistry Applications such as Potentiometry and Galvanometry Nanotechnology Applications such as Nano Device Testing and Material Characterization DC to DC Converters and Regulators Semiconductor Devices: Transistors, Diodes, etc. (Wafer, chip, device level) Medical Implantable Devices such as Pacemakers, Defibrillator, Pain Mgt. Precision Resistor Calibration/Binning

6 SMU Theory of Operation

7 What is an SMU? SMU STANDS FOR SOURCE MEASURE UNIT. A precision instrument used for I-V characterization on a wide variety of devices and materials An SMU can source current or source voltage An SMU can measure both current and voltage

8 What is an SMU? An SMU is a single instrument that can source voltage or current and measurement voltage and current. Source V, Measure I Source I, Measure V

9 Simplified SMU Circuit One SMU can replace entire rack of equipment!

10 Feedback Ammeter RF is GΩ and greater to generate mv and higher voltages VB is <1mV (VB or Vin for an ideal op amp is 0V)

11 Shunt Ammeter if RS/Rshunt = 100, measurement error due to the shunt is 1%

12 Keithley SMU Simplifies I-V Testing Precision Power Supply (source) DMM (measure I, V, and R) Current Source Electronic Load Source Measure Unit (SMU)

13 Why is a Keithley SMU needed to Simplify Device Testing? Typical Equipment Rack for Device Testing Picoammeter Power Supply Current Source Digital Multimeter Electronic Load

14 Coaxial Cables Can Complete the Shield from DUT to the Meter

15 Positive: Coax Cables Shield the Signal Trade-Off: Leakage Current Reduces Accuracy For common applications, the cable insulation is near infinite so leakage current not significant. But when measuring pa or lower, the cable leakage can be significant

16 Eliminate Cable leakage with Triax Cable and Guarding Coax Cable Triax Triax Cable adds an Inner Conductor, the Inner Shield

17 Eliminate Cable leakage with Triax Cable and Guarding The guard amplifier maintains the inner shield V at same V as center conductor. Thus there is no leakage current in measurement path. Outer shield provides electrostatic shielding and also a safety shield Ground Leakage current thru RL2 exists but is supplied by guard and not in measurement path

18 Making Accurate Low Current Measurements: Eliminating Cable Leakage When measuring pa or lower, the cable leakage can be significant No cable leakage current: Guard applies VOUT to inner conductor so ΔV = 0V

19 When to Take the Measurement Stimulus Response Measure (Delay) Capacitance (and sometimes inductance) in the system often require that you delay measurements after a change in stimulus to let the system stabilize.

20 Making Accurate Measurements: Eliminating 50Hz Noise A/D Integrates over a PLC 1msec 116mV 50Hz noise DCV level 115.5mV 116mV 1msec 114mV 1msec Average = 0 DCV Level (115.5mV) 1 PLC 1/50 sec = 20 msec 50Hz noise

21 SMU Vs DMM

22 SMU vs. DMM VS. Model 2450 SourceMeter SMU Feature SMU Model 7510 DMM DMM Combines several functions into one unit DC Current, DC Voltage, Resistance Sources Current and Voltage Yes, user has full control of Sources Current or Voltage both current and voltage when measuring resistance, source including sweeping. but user has no control over output. Measures Low Current Yes, SMUs can usually measure in the picoamp range (10e-12) or less. DC and AC Current and Voltage, Resistance DMMs typically can measure in the microamp range (10e-6) or less.

23 DMM Resistance Measurements KEITHLEY MODEL 7510 OHMMETER SPECS DMM measures resistance at specified test current. User has no control of test current. Some applications require the user to have control of test current: - Device must be tested at specific current - DUTs prone to heating effects - Nano structures (too much current can damage) - Superconductors (causes device to heat up)

24 SMU vs. DMM: Measuring Resistance DMM Current Source VoltMeter Measuring Resistance as a function of Current DMMs usually measure resistance by sourcing a fixed current and measuring the voltage drop across the resistor: The user has no control over the test current.

25 SMU vs. DMM: Measuring Resistance AN SMU CAN MEASURE RESISTANCE BY SOURCING CURRENT OR VOLTAGE. The user has control over how much current or voltage to apply to device. Result of measuring the current as a function of a sweeping voltage: I Current V Variable Voltage Source R Resistance Ammeter Measuring Resistance as a function of Voltage An SMU can even measure resistance as a function of the applied current or voltage.

26 SMU vs. DMM: Ammeter Specs TYPICALLY, AN SMU HAS A MUCH MORE SENSITIVE DC AMMETER THAN A DMM Example: What instrument can measure 50nA more accurately, the Model 2450 SourceMeter or the Model 7510 DMM? Keithley Model 7510 DMM Specs: Uncertainty = 406pA Model 2450 SourceMeter Uncertainty = 130pA

27 SMU Vs Power Supply

28 SMU Compare to a Power Supply? IN GENERAL, SMUS HAVE GREATER SPEED AND PRECISION THAN POWER SUPPLIES. SMUs measure current and voltage as well as source current and voltage. Power supplies usually only source voltage. Function SMU Power Supply Source Voltage Yes Yes, Limited Ranges Source Current Yes Sometimes, Limited Ranges microseconds milliseconds Source Sweeping Yes Limited to list sweep Sweep through 0 Yes No must physically switch test leads Measure Voltage Yes No Measure Current Yes No 4 Quadrant 1 Quadrant Source Settling Time Quadrants of Operation

29 SMU vs. Power Supply: Precision IN GENERAL, SMUS ARE MORE PRECISE AND HAVE GREATER RESOLUTION THAN POWER SUPPLIES. Typical SMU Typical Power Supply

30 SMU vs. Power Supply: Speed IN GENERAL, THE VOLTAGE OUTPUT OF AN SMU CAN SETTLE MUCH FASTER THAN A POWER SUPPLY. Faster settling times. Typical SMU Typical Power Supply

31 SMU vs. Power Supply: Waveform Generation SMUS HAVE BUILT-IN WAVEFORM GENERATION (SWEEP) FUNCTIONALITY: DC Pulse Custom

32 SMU vs. Power Supply: 1 vs. 4 Quadrant SMUS HAVE TREMENDOUS FLEXIBILITY THAT A POWER SUPPLY DOES NOT HAVE: Power Supply 1 Quadrant Source Only SMU 4 Quadrant Source and Sink resistive devices semiconductors IR testing resistive devices semiconductors IR testing Reverse leakage tests SMUs can source and sink current and voltage. SMUs act as both power supply and electronic load. SMUs are useful for testing energy generating devices. solar cells batteries

33 SMU : Pulse mode vs DC mode

34 Joule Heating (Device Self Heating) In DC testing the device heats itself which changes it s electrical characteristics. + - DC V Use pulsing to minimize self-heating! Ω Temp

35 Self Heating in MOSFETs MOSFET Output Characteristics Current does not stay constant in the saturation region. 14 Ids (Amps) 12 Vgs = 4.5V Vgs = 5V 10 Vgs = 5.5V Vgs = 6V 8 Vgs = 6.5V Vds (Volts) 8 10 DC

36 Self Heating in MOSFETs VGS = 6.5V for both curves. MOSFET Output Characteristics current caused Drop in by heat16 from testing with more points. Vgs = 4.5V 14 Vgs = 5V Vgs = 5.5V Ids (Amps) 12 Vgs = 6V Vgs = 6.5V 10 Vgs = 4.5V 8 Vgs = 5V Vgs = 5.5V 6 Vgs = 6V Vgs = 6.5V Vds (Volts) DC 8 10 DC

37 Self Heating in MOSFETs MOSFET Output Characteristics 20 Higher max current Flat curves in the saturation region Vgs = 4.5V 14 Vgs = 5V Vgs = 5.5V Vgs = 4.5V Vgs = 6V Vgs = 5V Vgs = 6.5V Vgs = 5.5V Vgs = 4.5V Vgs = 6V Vgs = 5V Vgs = 6.5V Vgs = 5.5V Ids Ids (Amps) (Amps) Vgs = 6V Vgs = 6.5V Vds (Volts) (Volts) Vds DC Pulse

38 On-State Characterization Challenges TEST REQUIREMENTS Pulsed stimulus requires low resistance, low inductance cabling rated for the maximum test current Low inductance ensures good pulse fidelity Low resistance ensures desired voltage at the DUT For on-wafer testing, ensure wafer is adequately prepared so that there is low contact resistance to the chuck For best results, ensure high current signal lines are isolated to the device under test

39 On-State Characterization Challenges EXAMPLE: HIGH CURRENT FET TEST CONNECTIONS

40 On-State Characterization Challenges HIGH CURRENT PULSE STIMULUS On-state measurements frequently require pulsed stimulus but desire is DC measurement

41 On-State Characterization Challenges HIGH GAIN & OSCILLATION Use a resistor in series with the gate SMU to combat oscillation Tune resistance value to dampen oscillation without significantly impacting switching time of device

42 On-State Characterization Challenges HIGH GAIN & OSCILLATION High gain and high switching speed transistors often suffer from oscillation Can result in device destruction. Can result in inconsistent and erroneous measurements Large changes in device impedance when device changes state results in drain voltage variation.

43 SMU Applications

44 LED Testing LIGHT-EMITTING DIODES (LEDS) ARE BASICALLY P-N JUNCTIONS (DIODES) THAT ACT AS A LIGHT SOURCE. LEDs are used in many applications including: ü Consumer Electronics ü Electronic Instrumentation ü Lighting ü Displays ü Sensors I-V testing on LEDs is performed in all phases of the development process: Research and design Quality assurance On-wafer Production Test Flexible OLED Blue LEDs

45 LED Testing Researchers will want to measure the entire I-V curve. Production users will only want to measure specific points on the curve. Requires positive and negative sourcing Requires ability to sweep voltage through 0V Two points require sourcing a known current and measuring voltage: Forward Voltage: Vf Breakdown Voltage: VR One point requires sourcing a voltage and measuring current: Leakage Current: IL

46 LED I-V Testing Source Voltage, Measure I Current Source Voltage, Measure I Current This method used for the leakage current (IL) and the reverse breakdown voltage (VR) tests. This method used for the leakage current (IL) and the reverse breakdown voltage (VR) tests.

47 LED Testing ONE SMU SIMPLIFIES TESTING: sources both current and voltage source either polarity without switching leads measures both current and voltage simplifies test set-up and programming since only one instrument is required

48 Solar Cell Testing Solar Cells convert the energy of light into Electricity.

49 Solar Cell Testing I-V CHARACTERIZATION OF THE SOLAR CELL IS USED TO DETERMINE IT S EFFICIENCY. Test: Source V, Measure I Determine: Maximum Current, Imax Maximum Voltage, Vmax Maximum Power, Pmax Open Circuit Voltage, Voc Short Circuit Current, Isc

50 Solar Cell Testing The solar cell is basically a diode which has a large area. When light hits the solar cell, photons are absorbed and electrons are released. When a Load is connected to the output of the cell, a current will flow.

51 Solar Cell Testing When the illuminated photovoltaic cell is connected to the output of the SMU, the SMU will sink the current. The measured current is negative.

52 Solar Cell Testing I-V Characteristics of Solar Cell Measured by Keithley SMU Dark Cell Illuminated Cell (SMU sinks current)

53 Thank You

Application Overview: Simplified I/V Characterization of DC-DC Converters

Application Overview: Simplified I/V Characterization of DC-DC Converters Application Overview: Simplified I/V Characterization of DC-DC Converters What is a SMU? Source measure units (SMUs) are an all-in-one solution for current voltage (I/V) characterization with the combined

More information

Solving Connection Challenges in On-Wafer Power Semiconductor Device Test. Application Note Series. Introduction

Solving Connection Challenges in On-Wafer Power Semiconductor Device Test. Application Note Series. Introduction Number 3276 pplication Note Series Solving Connection Challenges in On-Wafer Power Semiconductor Device Test Introduction Measuring DC and capacitance parameters for high power semiconductor devices requires

More information

Applications Overview

Applications Overview Applications Overview Galvanic Cycling of Rechargeable Batteries I-V Characterization of Solar Cells and Panels Making Low Resistance Measurements Using High Current DC I-V Characterization of Transistors

More information

Next Generation Curve Tracing & Measurement Tips for Power Device. Kim Jeong Tae RF/uW Application Engineer Keysight Technologies

Next Generation Curve Tracing & Measurement Tips for Power Device. Kim Jeong Tae RF/uW Application Engineer Keysight Technologies Next Generation Curve Tracing & Measurement Tips for Power Device Kim Jeong Tae RF/uW Application Engineer Keysight Technologies Agenda Page 2 Conventional Analog Curve Tracer & Measurement Challenges

More information

Welcome! Device Characterization with the Keithley Model 4200-SCS Characterization System.

Welcome! Device Characterization with the Keithley Model 4200-SCS Characterization System. Welcome! Device Characterization with the Keithley Model 4200-SCS Characterization System Speed and Timing Considerations 1 Factors Affecting Measurement Time Internal to 4200: Settings in the Timing Window:

More information

Welcome! Device Characterization with the Keithley Model 4200-SCS Characterization System.

Welcome! Device Characterization with the Keithley Model 4200-SCS Characterization System. Welcome! Device Characterization with the Keithley Model 4200-SCS Characterization System Low Current and High Resistance Measurement Techniques 1 Low Current and High Resistance Measurements Sources of

More information

Fallstricke präziser DC- Messungen

Fallstricke präziser DC- Messungen Fallstricke präziser DC- Messungen Sascha Egger, Applications Engineer Group Leader National Instruments Switzerland GmbH Agenda Overview of Precision Test Systems Techniques for: Low-voltage measurements

More information

Welcome! Device Characterization with the Keithley Model 4200-SCS Characterization System.

Welcome! Device Characterization with the Keithley Model 4200-SCS Characterization System. Welcome! Device Characterization with the Keithley Model 4200-SCS Characterization System Safety Precautions Working with Electricity Before starting, check cables for cracks or wear. Get new cables if

More information

of High Power Semiconductor Device Testing

of High Power Semiconductor Device Testing Tips, Tricks, and Traps of High Power Semiconductor Device Testing 张卫华 KEITHLEY INSTRUMENTS 1 8/20/2012 2012 Keithley Instruments, Inc. 2012 Keithley Instruments, Inc. Overview The goal of this seminar

More information

APPLICATION NOTE. Wide Range of Resistance Measurement Solutions from μω to PΩ

APPLICATION NOTE. Wide Range of Resistance Measurement Solutions from μω to PΩ APPLICATION NOTE Wide Range of Resistance Measurement Solutions from μω to PΩ Introduction Resistance measurement is one of the fundamental characterizations of materials, electronic devices, and circuits.

More information

Techniques for Proper and Efficient Characterization, Validation, and Reliability Testing of Power Semiconductor Devices. applications guide

Techniques for Proper and Efficient Characterization, Validation, and Reliability Testing of Power Semiconductor Devices. applications guide D I S C O V E R S E R I E S www.keithley.com I T H L E Y K E applications guide Techniques for Proper and Efficient Characterization, Validation, and Reliability Testing of Power Semiconductor Devices

More information

Field Effect Transistors

Field Effect Transistors Field Effect Transistors Purpose In this experiment we introduce field effect transistors (FETs). We will measure the output characteristics of a FET, and then construct a common-source amplifier stage,

More information

5 th. Low Level Measurements. Handbook. Precision DC Current, Voltage and Resistance Measurements. Edition A GREATER MEASURE OF CONFIDENCE

5 th. Low Level Measurements. Handbook. Precision DC Current, Voltage and Resistance Measurements. Edition A GREATER MEASURE OF CONFIDENCE A GREATER MEASURE OF CONFIDENCE Low Level Measurements Handbook Precision DC Current, Voltage and Resistance Measurements 5 th Edition www.keithley.com LOW LEVEL MEASUREMENTS Precision DC Current,Voltage,

More information

SOURCE-MEASURE UNITS INCREASE PRODUCTIVITY AND ACCURACY IN AUTOMATED TESTING. Lee Stauffer. Keithley Instruments, Inc.

SOURCE-MEASURE UNITS INCREASE PRODUCTIVITY AND ACCURACY IN AUTOMATED TESTING. Lee Stauffer. Keithley Instruments, Inc. SOURCE-MEASURE UNITS INCREASE PRODUCTIVITY AND ACCURACY IN AUTOMATED TESTING Lee Stauffer Keithley Instruments, Inc. Introduction Source-Measure Units (SMUs) are more than the next generation of power

More information

Class #9: Experiment Diodes Part II: LEDs

Class #9: Experiment Diodes Part II: LEDs Class #9: Experiment Diodes Part II: LEDs Purpose: The objective of this experiment is to become familiar with the properties and uses of LEDs, particularly as a communication device. This is a continuation

More information

Transient Current Measurement for Advance Materials & Devices

Transient Current Measurement for Advance Materials & Devices & Devices 8 May 2017 Brian YEO Application Engineer Keysight Technologies Agenda 2 High speed data acquisition basics Challenges & solutions for transient current measurement. Considerations when making

More information

2520 Pulsed Laser Diode Test System

2520 Pulsed Laser Diode Test System Complete pulse test of laser diode bars and chips with dual photocurrent measurement channels 0 Pulsed Laser Diode Test System Simplifies laser diode L-I-V testing prior to packaging or active temperature

More information

ECE 2274 MOSFET Voltmeter. Richard Cooper

ECE 2274 MOSFET Voltmeter. Richard Cooper ECE 2274 MOSFET Voltmeter Richard Cooper Pre-Lab for MOSFET Voltmeter Voltmeter design: Build a MOSFET (2N7000) voltmeter in LTspice. The MOSFETs in the voltmeter act as switches. To turn on the MOSFET.

More information

Entry Level Assessment Blueprint Electronics Technology

Entry Level Assessment Blueprint Electronics Technology Blueprint Test Code: 4135 / Version: 01 Specific Competencies and Skills Tested in this Assessment: Safety Practices Demonstrate safe working procedures Explain the purpose of OSHA and how it promotes

More information

Application Note Series. Solutions for Production Testing of Connectors

Application Note Series. Solutions for Production Testing of Connectors Number 2208 Application Note Series Solutions for Production Testing of Connectors Introduction As electronics have become increasingly pervasive, the importance of electrical connectors has increased

More information

Electronic Circuits II - Revision

Electronic Circuits II - Revision Electronic Circuits II - Revision -1 / 16 - T & F # 1 A bypass capacitor in a CE amplifier decreases the voltage gain. 2 If RC in a CE amplifier is increased, the voltage gain is reduced. 3 4 5 The load

More information

USER MANUAL FOR THE LM2901 QUAD VOLTAGE COMPARATOR FUNCTIONAL MODULE

USER MANUAL FOR THE LM2901 QUAD VOLTAGE COMPARATOR FUNCTIONAL MODULE USER MANUAL FOR THE LM2901 QUAD VOLTAGE COMPARATOR FUNCTIONAL MODULE LM2901 Quad Voltage Comparator 1 5/18/04 TABLE OF CONTENTS 1. Index of Figures....3 2. Index of Tables. 3 3. Introduction.. 4-5 4. Theory

More information

DC Current Source AC and DC Current Source

DC Current Source AC and DC Current Source AC and 6220 and Source and sink (programmable load) 100fA to 100mA 10 14 Ω output impedance ensures stable current sourcing into variable loads 65000-point source memory allows executing comprehensive

More information

AE53/AC53/AT53/AE103 ELECT. DEVICES & CIRCUITS DEC 2015

AE53/AC53/AT53/AE103 ELECT. DEVICES & CIRCUITS DEC 2015 Q.2 a. By using Norton s theorem, find the current in the load resistor R L for the circuit shown in Fig.1. (8) Fig.1 IETE 1 b. Explain Z parameters and also draw an equivalent circuit of the Z parameter

More information

Fast IC Power Transistor with Thermal Protection

Fast IC Power Transistor with Thermal Protection Fast IC Power Transistor with Thermal Protection Introduction Overload protection is perhaps most necessary in power circuitry. This is shown by recent trends in power transistor technology. Safe-area,

More information

Power Consumption Measurement Techniques

Power Consumption Measurement Techniques Power Consumption Measurement Techniques Maximize the Battery Life of Your Internet of Things Device Jonathan Chang Internet of Things IoT : Internet of Things : Disruption & Potential for high growth

More information

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier TL082 Wide Bandwidth Dual JFET Input Operational Amplifier General Description These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage

More information

APPENDIX D DISCUSSION OF ELECTRONIC INSTRUMENTS

APPENDIX D DISCUSSION OF ELECTRONIC INSTRUMENTS APPENDIX D DISCUSSION OF ELECTRONIC INSTRUMENTS DC POWER SUPPLIES We will discuss these instruments one at a time, starting with the DC power supply. The simplest DC power supplies are batteries which

More information

Simplifying FET Testing with 2600B System SourceMeter SMU Instruments APPLICATION NOTE

Simplifying FET Testing with 2600B System SourceMeter SMU Instruments APPLICATION NOTE Simplifying FET Testing with 2600B System SourceMeter SMU Instruments Introduction Field effect transistors (FETs) are important semiconductor devices with many applications because they are fundamental

More information

Calibration Techniques for the Home Lab

Calibration Techniques for the Home Lab Calibration Techniques for the Home Lab Jacques Audet VE2AZX jacaudet@videotron.ca Web: ve2azx.net September 2018 ve2azx.net 1 Summary - Using a reference multimeter as a calibrator for less accurate instruments.

More information

COLLECTOR DRAIN BASE GATE EMITTER. Applying a voltage to the Gate connection allows current to flow between the Drain and Source connections.

COLLECTOR DRAIN BASE GATE EMITTER. Applying a voltage to the Gate connection allows current to flow between the Drain and Source connections. MOSFETS Although the base current in a transistor is usually small (< 0.1 ma), some input devices (e.g. a crystal microphone) may be limited in their output. In order to overcome this, a Field Effect Transistor

More information

LM2900 LM3900 LM3301 Quad Amplifiers

LM2900 LM3900 LM3301 Quad Amplifiers LM2900 LM3900 LM3301 Quad Amplifiers General Description The LM2900 series consists of four independent dual input internally compensated amplifiers which were designed specifically to operate off of a

More information

Photovoltaic testing for R&D, DV, and manufacturing

Photovoltaic testing for R&D, DV, and manufacturing Photovoltaic testing for R&D, DV, and manufacturing Neil Forcier Application Engineer Agilent Technologies Jim Freese President Freese Enterprises Inc. www.agilent.com/find/solarcell Page 1 Agenda Introduction

More information

Electronic Principles Eighth Edition

Electronic Principles Eighth Edition Part 1 Electronic Principles Eighth Edition Chapter 1 Introduction SELF-TEST 1. a 7. b 13. c 19. b 2. c 8. c 14. d 20. c 3. a 9. b 15. b 21. b 4. b 10. a 16. b 22. b 5. d 11. a 17. a 23. c 6. d 12. a 18.

More information

Op Amp Booster Designs

Op Amp Booster Designs Op Amp Booster Designs Although modern integrated circuit operational amplifiers ease linear circuit design, IC processing limits amplifier output power. Many applications, however, require substantially

More information

LF353 Wide Bandwidth Dual JFET Input Operational Amplifier

LF353 Wide Bandwidth Dual JFET Input Operational Amplifier LF353 Wide Bandwidth Dual JFET Input Operational Amplifier General Description These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage

More information

I-V, C-V and AC Impedance Techniques and Characterizations of Photovoltaic Cells

I-V, C-V and AC Impedance Techniques and Characterizations of Photovoltaic Cells I-V, C-V and AC Impedance Techniques and Characterizations of Photovoltaic Cells John Harper 1, Xin-dong Wang 2 1 AMETEK Advanced Measurement Technology, Southwood Business Park, Hampshire,GU14 NR,United

More information

EE 230 Lab Lab 9. Prior to Lab

EE 230 Lab Lab 9. Prior to Lab MOS transistor characteristics This week we look at some MOS transistor characteristics and circuits. Most of the measurements will be done with our usual lab equipment, but we will also use the parameter

More information

Electronics 1 Lab (CME 2410) School of Informatics & Computing German Jordanian University Laboratory Experiment (10) Junction FETs

Electronics 1 Lab (CME 2410) School of Informatics & Computing German Jordanian University Laboratory Experiment (10) Junction FETs Electronics 1 Lab (CME 2410) School of Informatics & Computing German Jordanian University Laboratory Experiment (10) 1. Objective: Junction FETs - the operation of a junction field-effect transistor (J-FET)

More information

Experiment (1) Principles of Switching

Experiment (1) Principles of Switching Experiment (1) Principles of Switching Introduction When you use microcontrollers, sometimes you need to control devices that requires more electrical current than a microcontroller can supply; for this,

More information

LF442 Dual Low Power JFET Input Operational Amplifier

LF442 Dual Low Power JFET Input Operational Amplifier LF442 Dual Low Power JFET Input Operational Amplifier General Description The LF442 dual low power operational amplifiers provide many of the same AC characteristics as the industry standard LM1458 while

More information

Made of semiconducting materials: silicon, gallium arsenide, indium phosphide, gallium nitride, etc. (EE 332 stuff.)

Made of semiconducting materials: silicon, gallium arsenide, indium phosphide, gallium nitride, etc. (EE 332 stuff.) Diodes Simple two-terminal electronic devices. Made of semiconducting materials: silicon, gallium arsenide, indium phosphide, gallium nitride, etc. (EE 332 stuff.) Semiconductors are interesting because

More information

Achieving 3000 V test at the wafer level

Achieving 3000 V test at the wafer level Achieving 3000 V test at the wafer level Bryan Root 1, Alex Pronin 2, Seng Yang 1,Bill Funk 1, K. Armendariz 1 1 Celadon Systems Inc., 2 Keithley September 2016 Outline Introduction Si, SiC and GaN Power

More information

NON-AMPLIFIED PHOTODETECTOR USER S GUIDE

NON-AMPLIFIED PHOTODETECTOR USER S GUIDE NON-AMPLIFIED PHOTODETECTOR USER S GUIDE Thank you for purchasing your Non-amplified Photodetector. This user s guide will help answer any questions you may have regarding the safe use and optimal operation

More information

Glossary + - A BNC plug that shorts the inner wire in a coax cable to the outer shield through a

Glossary + - A BNC plug that shorts the inner wire in a coax cable to the outer shield through a 50Ω Terminator AC Active Alligator Clip Back Bias Base Battery Bias + - Bipolar Transistor BJT Black Box BNC BNC Cable A BNC plug that shorts the inner wire in a coax cable to the outer shield through

More information

Op Amp Technology Overview. Developed by Art Kay, Thomas Kuehl, and Tim Green Presented by Ian Williams Precision Analog Op Amps

Op Amp Technology Overview. Developed by Art Kay, Thomas Kuehl, and Tim Green Presented by Ian Williams Precision Analog Op Amps Op Amp Technology Overview Developed by Art Kay, Thomas Kuehl, and Tim Green Presented by Ian Williams Precision Analog Op Amps 1 Bipolar vs. CMOS / JFET Transistor technologies Bipolar, CMOS and JFET

More information

Curve Tracer Laboratory Assistant Using the Analog Discovery Module as A Curve Tracer

Curve Tracer Laboratory Assistant Using the Analog Discovery Module as A Curve Tracer Curve Tracer Laboratory Assistant Using the Analog Discovery Module as A Curve Tracer The objective of this lab is to become familiar with methods to measure the dc current-voltage (IV) behavior of diodes

More information

GLOSSARY. A connector used to T together two BNC coax cables and a BNC jack. The transfer function vs. frequency plotted on Log Log axis.

GLOSSARY. A connector used to T together two BNC coax cables and a BNC jack. The transfer function vs. frequency plotted on Log Log axis. GLOSSARY 50ΩTerminator AC Active Alligator Clip Back Bias Base Battery Bias + - Bipolar Transistor BJT Black Box BNC BNC Cable A BNC plug that shorts the inner wire in a coax cable to the outer shield

More information

Ultra-Fast I-V Module for the Model 4200-SCS

Ultra-Fast I-V Module for the Model 4200-SCS Provides voltage outputs with programmable timing from 60ns to DC in 10ns steps Measure I and V simultaneously, at acquisition rates of up to 200 megasamples/second (MS/s) Choose from two voltage source

More information

Calhoon MEBA Engineering School. Study Guide for Proficiency Testing Industrial Electronics

Calhoon MEBA Engineering School. Study Guide for Proficiency Testing Industrial Electronics Calhoon MEBA Engineering School Study Guide for Proficiency Testing Industrial Electronics January 0. Which factors affect the end-to-end resistance of a metallic conductor?. A waveform shows three complete

More information

1.2Vdc 1N4002. Anode V+

1.2Vdc 1N4002. Anode V+ ECE 2274 Pre-Lab for MOSFET Night Light and Voltmeter 1. Night Light The purpose of this part of experiment is to use the switching characteristics of the MOSFET to design a Night Light using a LED, MOSFET,

More information

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier TL082 Wide Bandwidth Dual JFET Input Operational Amplifier General Description These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage

More information

I-V, C-V and Impedance Characterization of Photovoltaic Cells using Solartron Instrumentation

I-V, C-V and Impedance Characterization of Photovoltaic Cells using Solartron Instrumentation MTSAP1 I-V, C-V and Impedance Characterization of Photovoltaic Cells using Solartron Instrumentation Introduction Harnessing energy from the sun offers an alternative to fossil fuels. Photovoltaic cells

More information

Objective: To study and verify the functionality of a) PN junction diode in forward bias. Sl.No. Name Quantity Name Quantity 1 Diode

Objective: To study and verify the functionality of a) PN junction diode in forward bias. Sl.No. Name Quantity Name Quantity 1 Diode Experiment No: 1 Diode Characteristics Objective: To study and verify the functionality of a) PN junction diode in forward bias Components/ Equipments Required: b) Point-Contact diode in reverse bias Components

More information

NON-AMPLIFIED HIGH SPEED PHOTODETECTOR USER S GUIDE

NON-AMPLIFIED HIGH SPEED PHOTODETECTOR USER S GUIDE NON-AMPLIFIED HIGH SPEED PHOTODETECTOR USER S GUIDE Thank you for purchasing your Non-amplified High Speed Photodetector. This user s guide will help answer any questions you may have regarding the safe

More information

LM2925 Low Dropout Regulator with Delayed Reset

LM2925 Low Dropout Regulator with Delayed Reset LM2925 Low Dropout Regulator with Delayed Reset General Description The LM2925 features a low dropout, high current regulator. Also included on-chip is a reset function with an externally set delay time.

More information

ENEE 307 Laboratory#2 (n-mosfet, p-mosfet, and a single n-mosfet amplifier in the common source configuration)

ENEE 307 Laboratory#2 (n-mosfet, p-mosfet, and a single n-mosfet amplifier in the common source configuration) Revised 2/16/2007 ENEE 307 Laboratory#2 (n-mosfet, p-mosfet, and a single n-mosfet amplifier in the common source configuration) *NOTE: The text mentioned below refers to the Sedra/Smith, 5th edition.

More information

Laboratory #5 BJT Basics and MOSFET Basics

Laboratory #5 BJT Basics and MOSFET Basics Laboratory #5 BJT Basics and MOSFET Basics I. Objectives 1. Understand the physical structure of BJTs and MOSFETs. 2. Learn to measure I-V characteristics of BJTs and MOSFETs. II. Components and Instruments

More information

Precision, Low Power, Micropower Dual Operational Amplifier OP290

Precision, Low Power, Micropower Dual Operational Amplifier OP290 a FEATURES Single-/Dual-Supply Operation, 1. V to 3 V,. V to 1 V True Single-Supply Operation; Input and Output Voltage Ranges Include Ground Low Supply Current (Per Amplifier), A Max High Output Drive,

More information

ENGR4300 Test 4A Spring 2005

ENGR4300 Test 4A Spring 2005 Question 1 Diodes Assume that the forward bias threshold voltage for the diode in the circuit is 0.7V. A. Consider the following circuit a) What type of diode circuit is the circuit above? (1 pt) half

More information

PB63 PB63A. Dual Power Booster Amplifier PB63

PB63 PB63A. Dual Power Booster Amplifier PB63 Dual Power Booster Amplifier A FEATURES Wide Supply Range ± V to ±75 V High Output Current Up to 2 A Continuous Programmable Gain High Slew Rate 1 V/µs Typical Programmable Output Current Limit High Power

More information

OBSOLETE. High Performance, BiFET Operational Amplifiers AD542/AD544/AD547 REV. B

OBSOLETE. High Performance, BiFET Operational Amplifiers AD542/AD544/AD547 REV. B a FEATURES Ultralow Drift: 1 V/ C (AD547L) Low Offset Voltage: 0.25 mv (AD547L) Low Input Bias Currents: 25 pa max Low Quiescent Current: 1.5 ma Low Noise: 2 V p-p High Open Loop Gain: 110 db High Slew

More information

Built-In OVP White LED Step-up Converter in Tiny Package

Built-In OVP White LED Step-up Converter in Tiny Package Built-In White LED Step-up Converter in Tiny Package Description The is a step-up DC/DC converter specifically designed to drive white LEDs with a constant current. The device can drive up to 4 LEDs in

More information

Special-Purpose Operational Amplifier Circuits

Special-Purpose Operational Amplifier Circuits Special-Purpose Operational Amplifier Circuits Instrumentation Amplifier An instrumentation amplifier (IA) is a differential voltagegain device that amplifies the difference between the voltages existing

More information

Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. LM2900 LM3900 LM3301 Quad Amplifiers General Description The LM2900 series

More information

Nanovoltmeter 2182A. Low noise measurements for research, metrology, Side Text and other low voltage testing applications LOW LEVEL MEASURE & SOURCE

Nanovoltmeter 2182A. Low noise measurements for research, metrology, Side Text and other low voltage testing applications LOW LEVEL MEASURE & SOURCE Make low noise measurements at high speeds, typically just 15nV p-p noise at 1s response time, 40 50nV p-p noise at 60ms Delta mode coordinates measurements with a reversing current source at up to 24Hz

More information

AE103 ELECTRONIC DEVICES & CIRCUITS DEC 2014

AE103 ELECTRONIC DEVICES & CIRCUITS DEC 2014 Q.2 a. State and explain the Reciprocity Theorem and Thevenins Theorem. a. Reciprocity Theorem: If we consider two loops A and B of network N and if an ideal voltage source E in loop A produces current

More information

Concepts to be Covered

Concepts to be Covered Introductory Medical Device Prototyping Analog Circuits Part 2 Semiconductors, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Covered Semiconductors

More information

New Wide Band Gap High-Power Semiconductor Measurement Techniques Accelerate your emerging material device development

New Wide Band Gap High-Power Semiconductor Measurement Techniques Accelerate your emerging material device development New Wide Band Gap High-Power Semiconductor Measurement Techniques Accelerate your emerging material device development Alan Wadsworth Americas Market Development Manager Semiconductor Test Division July

More information

2) The larger the ripple voltage, the better the filter. 2) 3) Clamping circuits use capacitors and diodes to add a dc level to a waveform.

2) The larger the ripple voltage, the better the filter. 2) 3) Clamping circuits use capacitors and diodes to add a dc level to a waveform. TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) A diode conducts current when forward-biased and blocks current when reverse-biased. 1) 2) The larger the ripple voltage,

More information

Production Testing of High-Intensity, Visible LEDs. By Doug Rathburn, Keithley Instruments, Inc.

Production Testing of High-Intensity, Visible LEDs. By Doug Rathburn, Keithley Instruments, Inc. Production Testing of High-Intensity, Visible LEDs By Doug Rathburn, Keithley Instruments, Inc. Visible light emitting diodes (LEDs) offer long life and high reliability, and thus are finding their way

More information

Optimizing Low Current Measurements with the 4200A-SCS Parameter Analyzer APPLICATION NOTE

Optimizing Low Current Measurements with the 4200A-SCS Parameter Analyzer APPLICATION NOTE Optimizing Low Current Measurements with the 4200A-SCS Parameter Analyzer ntroduction Many critical applications demand the ability to measure very low currents such as picoamps or less. These applications

More information

2401 Low Voltage SourceMeter Instrument

2401 Low Voltage SourceMeter Instrument 1μV 20V and 10pA 1A precision voltage and current sourcing and measurement capabilities Five instruments in one (IV Source, IVR Measure) Source and sink (4-quadrant) operation 0.012% basic measure accuracy

More information

6. The Operational Amplifier

6. The Operational Amplifier 1 6. The Operational Amplifier This chapter introduces a new component which, although technically nonlinear, can be treated effectively with linear models This element known as the operational amplifier

More information

Basic Electronics: Diodes and Transistors. October 14, 2005 ME 435

Basic Electronics: Diodes and Transistors. October 14, 2005 ME 435 Basic Electronics: Diodes and Transistors Eşref Eşkinat E October 14, 2005 ME 435 Electric lectricity ity to Electronic lectronics Electric circuits are connections of conductive wires and other devices

More information

Single Channel Linear Controller

Single Channel Linear Controller Single Channel Linear Controller Description The is a low dropout linear voltage regulator controller with IC supply power (VCC) under voltage lockout protection, external power N-MOSFET drain voltage

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab University of Jordan School of Engineering Electrical Engineering Department EE 204 Electrical Engineering Lab EXPERIMENT 1 MEASUREMENT DEVICES Prepared by: Prof. Mohammed Hawa EXPERIMENT 1 MEASUREMENT

More information

the reactance of the capacitor, 1/2πfC, is equal to the resistance at a frequency of 4 to 5 khz.

the reactance of the capacitor, 1/2πfC, is equal to the resistance at a frequency of 4 to 5 khz. EXPERIMENT 12 INTRODUCTION TO PSPICE AND AC VOLTAGE DIVIDERS OBJECTIVE To gain familiarity with PSPICE, and to review in greater detail the ac voltage dividers studied in Experiment 14. PROCEDURE 1) Connect

More information

Super Junction MOSFET

Super Junction MOSFET APT77N6BC6 APT77N6SC6 6V 77A.4Ω CO LMOS Power Semiconductors Super Junction MOSFET Ultra Low R DS(ON) TO-247 Low Miller Capacitance D 3 PAK Ultra Low Gate Charge, Q g Avalanche Energy Rated Extreme dv

More information

LAB 4 : FET AMPLIFIERS

LAB 4 : FET AMPLIFIERS LEARNING OUTCOME: LAB 4 : FET AMPLIFIERS In this lab, students design and implement single-stage FET amplifiers and explore the frequency response of the real amplifiers. Breadboard and the Analog Discovery

More information

Dimensions in inches (mm) .268 (6.81).255 (6.48) .390 (9.91).379 (9.63) .045 (1.14).030 (.76) 4 Typ. Figure 1. Typical application circuit.

Dimensions in inches (mm) .268 (6.81).255 (6.48) .390 (9.91).379 (9.63) .045 (1.14).030 (.76) 4 Typ. Figure 1. Typical application circuit. LINEAR OPTOCOUPLER FEATURES Couples AC and DC signals.% Servo Linearity Wide Bandwidth, > KHz High Gain Stability, ±.%/C Low Input-Output Capacitance Low Power Consumption, < mw Isolation Test Voltage,

More information

FCC Technician License Course

FCC Technician License Course FCC Technician License Course 2014-2018 FCC Element 2 Technician Class Question Pool Presented by: Tamiami Amateur Radio Club (TARC) WELCOME To the SECOND of 4, 3-hour classes presented by TARC to prepare

More information

Shankersinh Vaghela Bapu Institute of Technology INDEX

Shankersinh Vaghela Bapu Institute of Technology INDEX Shankersinh Vaghela Bapu Institute of Technology Diploma EE Semester III 3330905: ELECTRONIC COMPONENTS AND CIRCUITS INDEX Sr. No. Title Page Date Sign Grade 1 Obtain I-V characteristic of Diode. 2 To

More information

Figure 1 Figure 3 Figure 2

Figure 1 Figure 3 Figure 2 Number 3224 Application Note Series I-V Characterization of Photovoltaic Cells Using the Model 2450 SourceMeter Source Measure Unit (SMU) Instrument Introduction Solar or photovoltaic (PV) cells are devices

More information

LF412 Low Offset, Low Drift Dual JFET Input Operational Amplifier

LF412 Low Offset, Low Drift Dual JFET Input Operational Amplifier LF412 Low Offset, Low Drift Dual JFET Input Operational Amplifier General Description These devices are low cost, high speed, JFET input operational amplifiers with very low input offset voltage and guaranteed

More information

ENEE307 Lab 7 MOS Transistors 2: Small Signal Amplifiers and Digital Circuits

ENEE307 Lab 7 MOS Transistors 2: Small Signal Amplifiers and Digital Circuits ENEE307 Lab 7 MOS Transistors 2: Small Signal Amplifiers and Digital Circuits In this lab, we will be looking at ac signals with MOSFET circuits and digital electronics. The experiments will be performed

More information

High Current, High Power OPERATIONAL AMPLIFIER

High Current, High Power OPERATIONAL AMPLIFIER High Current, High Power OPERATIONAL AMPLIFIER FEATURES HIGH OUTPUT CURRENT: A WIDE POWER SUPPLY VOLTAGE: ±V to ±5V USER-SET CURRENT LIMIT SLEW RATE: V/µs FET INPUT: I B = pa max CLASS A/B OUTPUT STAGE

More information

hij Teacher Resource Bank GCE Electronics Exemplar Examination Questions ELEC2 Further Electronics

hij Teacher Resource Bank GCE Electronics Exemplar Examination Questions ELEC2 Further Electronics hij Teacher Resource Bank GCE Electronics Exemplar Examination Questions ELEC2 Further Electronics The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England

More information

LM6118/LM6218 Fast Settling Dual Operational Amplifiers

LM6118/LM6218 Fast Settling Dual Operational Amplifiers Fast Settling Dual Operational Amplifiers General Description The LM6118/LM6218 are monolithic fast-settling unity-gain-compensated dual operational amplifiers with ±20 ma output drive capability. The

More information

ESMT Preliminary EMD2080

ESMT Preliminary EMD2080 Constant Current LED Lighting Driver With PWM Dimming Control General Description The EMD2080 was designed with high efficiency step up DC/DC converter with constant current source for driving lighting

More information

High Input Voltage, Low Quiescent Current, Low-Dropout Linear Regulator. Applications

High Input Voltage, Low Quiescent Current, Low-Dropout Linear Regulator. Applications High Input Voltage, Low Quiescent Current, Low-Dropout Linear Regulator General Description The is a high voltage, low quiescent current, low dropout regulator with 150mA output driving capacity. The,

More information

Model 6517B Electrometer / High Resistance Meter Specifications

Model 6517B Electrometer / High Resistance Meter Specifications VOLTS Accuracy (1 Year) 1 / C 2V 10µV 0.025+4 0.003+2 20V 100µV 0.025+3 0.002+1 200V 1mV 0.06+3 0.002+1 NMRR: 2V and 20V range > 60dB, 200V range > 55dB. 50Hz or 60Hz 2 CMRR: >120dB at DC, 50Hz or 60Hz.

More information

Keithley Instruments, Inc.

Keithley Instruments, Inc. Choosing the Optimal Source Measurement Unit Instrument for Your Test and Measurement Application by Mark A. Cejer, Marketing Director Jonathan L. Tucker, Sr. Marketing Manager Lishan Weng, Applications

More information

The Common Source JFET Amplifier

The Common Source JFET Amplifier The Common Source JFET Amplifier Small signal amplifiers can also be made using Field Effect Transistors or FET's for short. These devices have the advantage over bipolar transistors of having an extremely

More information

LF411 Low Offset, Low Drift JFET Input Operational Amplifier

LF411 Low Offset, Low Drift JFET Input Operational Amplifier Low Offset, Low Drift JFET Input Operational Amplifier General Description These devices are low cost, high speed, JFET input operational amplifiers with very low input offset voltage and guaranteed input

More information

applications guide DC I-V Testing for Components and Semiconductor Devices a greater measure of confidence

applications guide DC I-V Testing for Components and Semiconductor Devices a greater measure of confidence www.keithley.com applications guide DC I-V Testing for Components and Semiconductor Devices a greater measure of confidence DC I-V Testing for Components and Semiconductor Devices DC I-V measurements are

More information

Fast Buffer LH0033 / LH0033C. CALOGIC LLC, 237 Whitney Place, Fremont, California 94539, Telephone: , FAX:

Fast Buffer LH0033 / LH0033C. CALOGIC LLC, 237 Whitney Place, Fremont, California 94539, Telephone: , FAX: Fast Buffer / C FEATURES Slew rate............................... V/µs Wide range single or dual supply operation Bandwidth.............................. MHz High output drive............... ±V with Ω

More information

Application Note Se ries

Application Note Se ries Number 3089 Application Note Se ries Designing a High Throughput Switch System for Semiconductor Measurements with the Model 707B or 708B Semiconductor Switch Matrix Mainframe Semiconductor characterization

More information

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820 a FEATURES True Single Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single Supply Capability from + V to + V Dual Supply Capability from. V to 8 V Excellent Load

More information

DLVP A OPERATOR S MANUAL

DLVP A OPERATOR S MANUAL DLVP-50-300-3000A OPERATOR S MANUAL DYNALOAD DIVISION 36 NEWBURGH RD. HACKETTSTOWN, NJ 07840 PHONE (908) 850-5088 FAX (908) 908-0679 TABLE OF CONTENTS INTRODUCTION...3 SPECIFICATIONS...5 MODE SELECTOR

More information