Laboratory 7: Active Filters

Size: px
Start display at page:

Download "Laboratory 7: Active Filters"

Transcription

1 EGR 224L - Spring Introduction Laboratory 7: Active Filters During this lab, you are going to use data files produced by two different low-pass filters to examine MATLAB s ability to predict transfer functions based on voltages collected at the input and output of the filter. You will get to hear the difference between the original signals and their filtered version, hear how aliasing can be reduced by using a good low pass filter, and see just how accurate estimates of the transfer function can be. For each circuit, you will be using two different input signals - one is a chirp signal that spans a broad range of frequencies while another is an actual song. 7.2 Getting Started Because you are using sound, you will need to run MATLAB on the PC in the lab. To log in, use the FROSHNN\Michael account (the password is empty). You will then need to start the 32-bit version of MATLAB on the local PC - not remotely. Single-click the icon to make sure it explicitly states it is the 32-bit version before double-clicking it to start it. Once started, make sure the working directory is empty. 7.3 Background 7.3. Passive Low-Pass Filter In a previous lab, you generated an experimental version of a Bode plot for an RC circuit by examining amplitude ratios and phase shifts between a sinusoidal input and the output across the capacitor. A unity-gain, first-order low-pass filter can thus be built as follows: R v in v out C The transfer function between the input and output voltages is: V out V in = sc sc + R = + src As a Fourier transform, the transfer function and its magnitude are given as: + jωrc + ω2 R 2 C 2 The maximum magnitude is, when ω = 0, and the half-power frequency is where (H(jω hp )) 2 = 2, so: + ωhp 2 R2 C 2 = 2 ω hp = RC Copyright 208, Gustafson et al. Lab 7

2 EGR 224L - Spring Sallen-Key Low-Pass Filter While the filter above is simple and provides a means for diminishing signal components at frequencies higher than the half-power frequency, it is not a particularly sharp filter. That is, the rate of attenuation as a function of frequency is such that elements past the half-power frequency remain with some non-negligible amplitude. There are several methods available for obtaining a sharper cutoff. One simple active circuit that provides such properties is a Sallen and Key Filter. The specific configuration for a unity gain, second-order low-pass filter with a sharper cutoff than a simple first-order low pass filter is: C 2 v in R R 2 + v out C The transfer function between the input and output voltages is: If R = R 2 = R, C = C, and C 2 = 2C, this simplifies to: V out V in = V out = V in R R 2 C C 2 s 2 + (R + R 2 )C s + 2R 2 C 2 s 2 + 2RCs + = 2R 2 C 2 s 2 + RC s + From this, the natural frequency and damping ratio can be determined: 2R 2 C 2 ω n = RC 2 As a Fourier transform, the transfer function is given as: ζ = 2RCω n = 2 and the magnitude of the Fourier transform is: 2R 2 C 2 (jω) 2 + 2RC(jω) + = ( 2R 2 C 2 ω 2 ) 2 + (2RCω) 2 + 4ω4 R 4 C 4 The maximum magnitude is, when ω = 0, and the half-power frequencies are where (H(jω c )) 2 = 2, so: + 4ω 4 hp R4 C 4 = 2 4ωhpR 4 4 C 4 = ω hp = RC Sallen, R. P.; E. L. Key ). A Practical Method of Designing RC Active Filters. IRE Transactions on Circuit Theory 2 ): Copyright 208, Gustafson et al. Lab 7 2

3 EGR 224L - Spring 208 For this filter, then, the half-power frequency is the same as the natural frequency. Note that this is a repeated root, so there are actually two corners here - they just happen to be on top of each other. This is what leads to a sharper drop after the half-power frequency than is the case for a first-order filter. To compare, look at the following transfer functions and Bode plots. The first - represented by a solid line - is for a first-order filter with a half-power frequency of 20 krad/s - this can be generated with an RC series circuit with a kω resistor and a 50 nf capacitor. The second - represented by a dashed line - is for a second-order Sallen-Key filter with a half-power frequency of krad/s - this can be generated with R=680 Ω and C= 50 nf. H st (s) = s + H 2nd (s) = s s + Bode Diagram 0 0 First order Second order 0 Magnitude (db) Frequency (rad/sec) Copyright 208, Gustafson et al. Lab 7 3

4 EGR 224L - Spring Numerical Estimation of Transfer Function In a previous lab, you generated an experimental companion to a theoretical Bode magnitude plot by recording a circuit s response to eight single-frequency inputs then taking the amplitude ratio for each frequency. While this method works, it is quite inefficient. For this week, you will be using the concept of the transfer function: V out(jω) V in (jω) to generate a magnitude plot and a phase plot of an experimentally determined transfer function. MATLAB has a function called tfestimate that will produce a numerical estimate of the magnitude and phase of a transfer function given an input signal, an output signal, and possibly other information. The specific form of this command used for this lab is: [Hest, Fvals ] = tfestimate (Vin, Vout, [], [], [], Fs) where: 0 Vin - vector containing the input voltage values 0 Vout - vector containing the output voltage values 0 Fs - the sampling frequency for the voltage values, in Hz 0 Hest - vector containing complex numbers that contain the amplitudes and phases of the estimate of the transfer function 0 Fvals - vector containing the corresponding frequencies, in Hz, for the magnitudes and phases stored in Hest The square brackets in the third through fifth arguments are placeholders for parameters whose default values are fine for this experiment. Essentially, this command will determine the frequency content of the input and of the output using subsections of the data; it will then compute the magnitude ratio and phase difference between the input and the output and provide an approximation of the transfer function at particular frequencies contained in Fvals. One issue that comes into play is you must make sure the input signal has energy at as many frequencies as possible to give tfestimate values to work with. Using a single-frequency cosine as an input, for example, might lead to a disaster - if that frequency happens to exactly hit one of the frequencies tfestimate is using - since there would only be one input frequency on which to base an estimate for the response to all frequencies. This would be similar to estimating the acoustics of a concert hall by hitting a single tuning fork. It is important to note, however, that what MATLAB is really doing is assuming that your input is one period s worth of some periodic input - meaning T is t end t start and ω 0 = 2π T. Furthermore, the tfestimate command breaks the signal up into several windows, further reducing the possibility that a problem of this nature will occur. If, however, the input signal does not have any energy in the higher frequency ranges, the tfestimate program will not be able to compensate. You should therefore make sure that whatever signal gets used contains a wide range of frequencies. Ideally, the input signal would be an impulse function since that contains all frequencies at equal amounts. Barring that 2, generating a noise signal or a sweeping frequency signal with energy in the bands of interest works well. You will investigate the latter possibility in this lab. 2..and the Laws of Nature do a pretty nice job o barring that. Copyright 208, Gustafson et al. Lab 7 4

5 EGR 224L - Spring Experimental Procedure 7.4. Downloading Data Files For this lab, you will need to download four data files. Open a web browser and point it to: http :// classes. pratt. duke. edu / FILES / EGR224 / DAQS / FilterFiles Right-click and save each of the files to MATLAB s working directory. These files contain four vectors each: 0 SoundIn - the voltages collected at the input of the signal 0 SoundOut - the voltages collected at the output of the filter 0 duration - the duration, in seconds, of the signal 0 samplerate - the sample rate, in samples per second, for the signals In each case, the sample rate was set to 40 khz, fast enough to capture signals below 20 khz. The volumes of the signals are such that the measured voltages are between - V and V; this is so the voltage measurements themselves can be sent directly to the sound command in MATLAB Let s Go Duke The first file you are going to analyze is in the DukeFightSong.m file. Start a new script and add the lines: clear load DukeFightSong sound ( SoundIn, samplerate ) pause sound ( SoundOut, samplerate ) then save this script as HearDuke.m. Run the script - the first time through, you will be hearing the original. Once that is done playing, hit return. The second time, you will be hearing the sound filtered through a first-order low-pass filter with a half-power frequency of 2000 rad/s. Among other things, you should notice that the drums stand out more. To analyze the frequency content, use the following script (also available on the Pundit page for the lab). The specific commands will be explained below. clear load DukeFightSong Filter constants R = 0000; C = 50 e -9; Experimental Transfer Function [EstH, EstF ] = tfestimate ( SoundIn, SoundOut, [], [], [], samplerate ); EstMag = abs ( EstH ); EstOmega = EstF *2* pi; Analytical Transfer Function s = tf ([ 0], []); H = / ( + s * R * C); [HMag, HPhase, HOmega ] = bode (H, {, max ( EstOmega )}); HMag = squeeze ( HMag ); Make plot figure (); clf semilogx ( EstOmega, 20* log0 ( EstMag ), b - ) hold on semilogx ( HOmega, 20* log0 ( HMag ), r - ) hold off xlabel ( \ omega, rad /s ); ylabel ( H, db ) legend ( Estimates, Theoretical, 0) The code above to get magnitudes and phases out of the tfestimate program, once the data set is loaded is: Copyright 208, Gustafson et al. Lab 7 5

6 EGR 224L - Spring 208 [EstH, EstF ] = tfestimate ( SoundIn, SoundOut, [], [], [], samplerate ); EstH will be a set of complex numbers representing both the magnitudes and phases of the transfer function while EstF will be the frequencies (in Hz) at which the estimates are given. The lines below this generate a vector of magnitudes of the transfer function estimates (EstMag) as well as a vector of the angular frequencies of the estimates (EstOmega). For the theoretical transfer function, you first need to set up a transfer function object in MATLAB using the tf command, then use the bode command to get an array of magnitudes, phases, and frequencies. The lines s = tf ([ 0], []); H = / ( + s * R * C); take care of this by first defining s as a transfer function: s = () s + (0) s 0 () s 0 and then using that to build the transfer function for the low-pass filter. The code above to get theoretical values for a transfer function H using the bode command is: [HMag, HPhase, HOmega ] = bode (H, {, max ( EstOmega )}); HMag = squeeze ( HMag ); where HMag and HPhase will be real numbers that give the magnitudes and phases, respectively, of the transfer function at angular frequencies denoted by HOmega. The limits on the Bode analysis are set to obtain frequencies between and the maximum value obtained by tfestimate - so make sure the tfestimate line runs first The bode command is capable of performing much more powerful tasks than we have asked for it, and as a result the output is more complicated than it needs to be for us. Specifically, the magnitude and phase vectors are three dimensional - one row, one column, and several layers. Before plotting with these then, you need MATLAB to squeeze out the extra singleton dimension - the command for this is: HMag = squeeze ( HMag ); The plot commands generate Bode plots for the experimental and analytical estimates and put them on the same graph. You should see that the experimental estimates are good for a certain range of frequencies - generally those near the middle of the graph. The low and high ends are not quite as good. Part of the reason for these errors is that the song you used does not contain a great deal of very high or very low frequencies. The next task will be to examine a file that does have those. Copyright 208, Gustafson et al. Lab 7 6

7 EGR 224L - Spring Chirp Another file you have been given is the ChirpData file. This file contains a chirp signal that sweeps through frequencies from Hz to 0 khz over the course of 20 seconds. Because of that, it is a better candidate for providing information about the transfer function of the filter. First, you will want to listen to the signal and the filtered version of the signal. Save your HearDuke.m script as HearChirp.m and then change the file name loaded on line 2 to ChirpData. At the beginning, it may seem that nothing is playing - this is because the super-low frequencies in the signal are below the range of human hearing. Eventually, you will hear the signal. You may, in fact, want to move your headphones away from your ears for the latter parts of the signal as the high frequency parts are...very high. When you listed to the filtered version, you should note that the higher frequency parts now have a lower volume. To see the frequency information, go ahead and save your SeeDuke.m file as SeeChirp.m. Again, change the name of the file you are loading on line 2 of the program and run it. This time, you should see that there is a much cleaner experimentally determined transfer function. The extreme low and high ends are still not great, but the midrange should very closely match the analytically determined magnitudes nd Order Filtering In both these cases, a first-order filter was used to eliminate the high-frequency information. Often it is preferable to use a higher-order filter, such as the Sallen-Key filter discussed above. The remaining two data files - which end in SK - were taken when passing the input signal through a Sallen-Key filter. Your job is to determine the resistor value used in the filter given that 50 nf and 00 nf capacitors were used. You should create Hear -type programs for each so you can hear how the second order filters eliminate the higher frequency sounds, then generate See -type programs. You will need to change not only the name of the file being loaded but also the structure of the transfer function. Type in a guess for the resistance value and run the See program; you can then keep adjusting your estimated R values until the experimentally determined magnitudes match the analytically determined ones. As you might imagine, using the Chirp data is probably more useful than using the Duke data because of the wider range of frequencies in the Chirp signal. 7.5 Assignment Your assignment is to go through this lab, determine good estimates for the resistance used for the Sallen-Key filter, and show the TAs the results from your four See programs. Copyright 208, Gustafson et al. Lab 7 7

Laboratory 5: RC Circuits and Filtering

Laboratory 5: RC Circuits and Filtering 5.1 Introduction Laboratory 5: ircuits and Filtering For this lab, you will be comparing the experimental behavior of a filter with analytical behavior modeled in MATLAB using Bode plots. During the lab

More information

Class #16: Experiment Matlab and Data Analysis

Class #16: Experiment Matlab and Data Analysis Class #16: Experiment Matlab and Data Analysis Purpose: The objective of this experiment is to add to our Matlab skill set so that data can be easily plotted and analyzed with simple tools. Background:

More information

George Mason University Signals and Systems I Spring 2016

George Mason University Signals and Systems I Spring 2016 George Mason University Signals and Systems I Spring 2016 Laboratory Project #4 Assigned: Week of March 14, 2016 Due Date: Laboratory Section, Week of April 4, 2016 Report Format and Guidelines for Laboratory

More information

FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY

FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY In this experiment we will analytically determine and measure the frequency response of networks containing resistors, AC source/sources, and energy storage

More information

ECEN Network Analysis Section 3. Laboratory Manual

ECEN Network Analysis Section 3. Laboratory Manual ECEN 3714----Network Analysis Section 3 Laboratory Manual LAB 07: Active Low Pass Filter Oklahoma State University School of Electrical and Computer Engineering. Section 3 Laboratory manual - 1 - Spring

More information

Open Loop Frequency Response

Open Loop Frequency Response TAKE HOME LABS OKLAHOMA STATE UNIVERSITY Open Loop Frequency Response by Carion Pelton 1 OBJECTIVE This experiment will reinforce your understanding of the concept of frequency response. As part of the

More information

Real Analog - Circuits 1 Chapter 11: Lab Projects

Real Analog - Circuits 1 Chapter 11: Lab Projects Real Analog - Circuits 1 Chapter 11: Lab Projects 11.2.1: Signals with Multiple Frequency Components Overview: In this lab project, we will calculate the magnitude response of an electrical circuit and

More information

BME 3512 Bioelectronics Laboratory Two - Passive Filters

BME 3512 Bioelectronics Laboratory Two - Passive Filters BME 35 Bioelectronics Laboratory Two - Passive Filters Learning Objectives: Understand the basic principles of passive filters. Laboratory Equipment: Agilent Oscilloscope Model 546A Agilent Function Generator

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 8 FILTER NETWORKS OBJECTIVES In this lab session the student will investigate passive low-pass and

More information

The above figure represents a two stage circuit. Recall, the transfer function relates. Vout

The above figure represents a two stage circuit. Recall, the transfer function relates. Vout LABORATORY 12: Bode plots/second Order Filters Material covered: Multistage circuits Bode plots Design problem Overview Notes: Two stage circuits: Vin1 H1(s) Vout1 Vin2 H2(s) Vout2 The above figure represents

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Continuing the discussion of Op Amps, the next step is filters. There are many different types of filters, including low pass, high pass and band pass. We will discuss each of the

More information

EK307 Active Filters and Steady State Frequency Response

EK307 Active Filters and Steady State Frequency Response EK307 Active Filters and Steady State Frequency Response Laboratory Goal: To explore the properties of active signal-processing filters Learning Objectives: Active Filters, Op-Amp Filters, Bode plots Suggested

More information

EE233 Autumn 2016 Electrical Engineering University of Washington. EE233 HW7 Solution. Nov. 16 th. Due Date: Nov. 23 rd

EE233 Autumn 2016 Electrical Engineering University of Washington. EE233 HW7 Solution. Nov. 16 th. Due Date: Nov. 23 rd EE233 HW7 Solution Nov. 16 th Due Date: Nov. 23 rd 1. Use a 500nF capacitor to design a low pass passive filter with a cutoff frequency of 50 krad/s. (a) Specify the cutoff frequency in hertz. fc c 50000

More information

STATION NUMBER: LAB SECTION: Filters. LAB 6: Filters ELECTRICAL ENGINEERING 43/100 INTRODUCTION TO MICROELECTRONIC CIRCUITS

STATION NUMBER: LAB SECTION: Filters. LAB 6: Filters ELECTRICAL ENGINEERING 43/100 INTRODUCTION TO MICROELECTRONIC CIRCUITS Lab 6: Filters YOUR EE43/100 NAME: Spring 2013 YOUR PARTNER S NAME: YOUR SID: YOUR PARTNER S SID: STATION NUMBER: LAB SECTION: Filters LAB 6: Filters Pre- Lab GSI Sign- Off: Pre- Lab: /40 Lab: /60 Total:

More information

EECS 216 Winter 2008 Lab 2: FM Detector Part I: Intro & Pre-lab Assignment

EECS 216 Winter 2008 Lab 2: FM Detector Part I: Intro & Pre-lab Assignment EECS 216 Winter 2008 Lab 2: Part I: Intro & Pre-lab Assignment c Kim Winick 2008 1 Introduction In the first few weeks of EECS 216, you learned how to determine the response of an LTI system by convolving

More information

Use of the LTI Viewer and MUX Block in Simulink

Use of the LTI Viewer and MUX Block in Simulink Use of the LTI Viewer and MUX Block in Simulink INTRODUCTION The Input-Output ports in Simulink can be used in a model to access the LTI Viewer. This enables the user to display information about the magnitude

More information

Pre-Lab. Introduction

Pre-Lab. Introduction Pre-Lab Read through this entire lab. Perform all of your calculations (calculated values) prior to making the required circuit measurements. You may need to measure circuit component values to obtain

More information

EE 233 Circuit Theory Lab 3: First-Order Filters

EE 233 Circuit Theory Lab 3: First-Order Filters EE 233 Circuit Theory Lab 3: First-Order Filters Table of Contents 1 Introduction... 1 2 Precautions... 1 3 Prelab Exercises... 2 3.1 Inverting Amplifier... 3 3.2 Non-Inverting Amplifier... 4 3.3 Integrating

More information

BIOE 123 Module 3. Electronics 2: Time Varying Circuits. Lecture (30 min) Date. Learning Goals

BIOE 123 Module 3. Electronics 2: Time Varying Circuits. Lecture (30 min) Date. Learning Goals BIOE 123 Module 3 Electronics 2: Time Varying Circuits Lecture (30 min) Date Learning Goals Learn about the behavior of capacitors and inductors Learn how to analyze time-varying circuits to quantify parameters

More information

Experiment 8 Frequency Response

Experiment 8 Frequency Response Experiment 8 Frequency Response W.T. Yeung, R.A. Cortina, and R.T. Howe UC Berkeley EE 105 Spring 2005 1.0 Objective This lab will introduce the student to frequency response of circuits. The student will

More information

4 Experiment 4: DC Motor Voltage to Speed Transfer Function Estimation by Step Response and Frequency Response (Part 2)

4 Experiment 4: DC Motor Voltage to Speed Transfer Function Estimation by Step Response and Frequency Response (Part 2) 4 Experiment 4: DC Motor Voltage to Speed Transfer Function Estimation by Step Response and Frequency Response (Part 2) 4.1 Introduction This lab introduces new methods for estimating the transfer function

More information

SMS045 - DSP Systems in Practice. Lab 1 - Filter Design and Evaluation in MATLAB Due date: Thursday Nov 13, 2003

SMS045 - DSP Systems in Practice. Lab 1 - Filter Design and Evaluation in MATLAB Due date: Thursday Nov 13, 2003 SMS045 - DSP Systems in Practice Lab 1 - Filter Design and Evaluation in MATLAB Due date: Thursday Nov 13, 2003 Lab Purpose This lab will introduce MATLAB as a tool for designing and evaluating digital

More information

EK307 Passive Filters and Steady State Frequency Response

EK307 Passive Filters and Steady State Frequency Response EK307 Passive Filters and Steady State Frequency Response Laboratory Goal: To explore the properties of passive signal-processing filters Learning Objectives: Passive filters, Frequency domain, Bode plots

More information

EES42042 Fundamental of Control Systems Bode Plots

EES42042 Fundamental of Control Systems Bode Plots EES42042 Fundamental of Control Systems Bode Plots DR. Ir. Wahidin Wahab M.Sc. Ir. Aries Subiantoro M.Sc. 2 Bode Plots Plot of db Gain and phase vs frequency It is assumed you know how to construct Bode

More information

Laboratory Project 4: Frequency Response and Filters

Laboratory Project 4: Frequency Response and Filters 2240 Laboratory Project 4: Frequency Response and Filters K. Durney and N. E. Cotter Electrical and Computer Engineering Department University of Utah Salt Lake City, UT 84112 Abstract-You will build a

More information

EECS40 RLC Lab guide

EECS40 RLC Lab guide EECS40 RLC Lab guide Introduction Second-Order Circuits Second order circuits have both inductor and capacitor components, which produce one or more resonant frequencies, ω0. In general, a differential

More information

v(t) = V p sin(2π ft +φ) = V p cos(2π ft +φ + π 2 )

v(t) = V p sin(2π ft +φ) = V p cos(2π ft +φ + π 2 ) 1 Let us revisit sine and cosine waves. A sine wave can be completely defined with three parameters Vp, the peak voltage (or amplitude), its frequency w in radians/second or f in cycles/second (Hz), and

More information

DOING PHYSICS WITH MATLAB FILTER CIRCUITS

DOING PHYSICS WITH MATLAB FILTER CIRCUITS DOING PHYSICS WITH MATLAB FILTER CIRCUITS Matlab download directory Matlab scripts CacFilters1.m Modelling a simple RC low pass filter or RC high pass filter using complex functions to represent circuit

More information

Frequency Selective Circuits

Frequency Selective Circuits Lab 15 Frequency Selective Circuits Names Objectives in this lab you will Measure the frequency response of a circuit Determine the Q of a resonant circuit Build a filter and apply it to an audio signal

More information

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Homework 4

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Homework 4 EECS 16B Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Homework 4 This homework is solely for your own practice. However, everything on it is in scope for midterm 1,

More information

DOING PHYSICS WITH MATLAB RESONANCE CIRCUITS SERIES RLC CIRCUITS

DOING PHYSICS WITH MATLAB RESONANCE CIRCUITS SERIES RLC CIRCUITS DOING PHYSICS WITH MATLAB RESONANCE CIRCUITS SERIES RLC CIRCUITS Matlab download directory Matlab scripts CRLCs1.m CRLCs2.m Graphical analysis of a series RLC resonance circuit Fitting a theoretical curve

More information

Mechatronics. Analog and Digital Electronics: Studio Exercises 1 & 2

Mechatronics. Analog and Digital Electronics: Studio Exercises 1 & 2 Mechatronics Analog and Digital Electronics: Studio Exercises 1 & 2 There is an electronics revolution taking place in the industrialized world. Electronics pervades all activities. Perhaps the most important

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Circuits & Electronics Spring 2005

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Circuits & Electronics Spring 2005 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.002 Circuits & Electronics Spring 2005 Lab #2: MOSFET Inverting Amplifiers & FirstOrder Circuits Introduction

More information

THE CITADEL THE MILITARY COLLEGE OF SOUTH CAROLINA. Department of Electrical and Computer Engineering. ELEC 423 Digital Signal Processing

THE CITADEL THE MILITARY COLLEGE OF SOUTH CAROLINA. Department of Electrical and Computer Engineering. ELEC 423 Digital Signal Processing THE CITADEL THE MILITARY COLLEGE OF SOUTH CAROLINA Department of Electrical and Computer Engineering ELEC 423 Digital Signal Processing Project 2 Due date: November 12 th, 2013 I) Introduction In ELEC

More information

Lab 4 Fourier Series and the Gibbs Phenomenon

Lab 4 Fourier Series and the Gibbs Phenomenon Lab 4 Fourier Series and the Gibbs Phenomenon EE 235: Continuous-Time Linear Systems Department of Electrical Engineering University of Washington This work 1 was written by Amittai Axelrod, Jayson Bowen,

More information

ECE 203 LAB 2 PRACTICAL FILTER DESIGN & IMPLEMENTATION

ECE 203 LAB 2 PRACTICAL FILTER DESIGN & IMPLEMENTATION Version 1. 1 of 7 ECE 03 LAB PRACTICAL FILTER DESIGN & IMPLEMENTATION BEFORE YOU BEGIN PREREQUISITE LABS ECE 01 Labs ECE 0 Advanced MATLAB ECE 03 MATLAB Signals & Systems EXPECTED KNOWLEDGE Understanding

More information

Downloaded from

Downloaded from VI SEMESTER FINAL EXAMINATION 2003 Attempt ALL questions. Q. [1] [a] What is filter? Why it is required? Define half power points, rolloff and centre frequency. [3] [b] Plot the magnitude and phase response

More information

EE Experiment 8 Bode Plots of Frequency Response

EE Experiment 8 Bode Plots of Frequency Response EE16:Exp8-1 EE 16 - Experiment 8 Bode Plots of Frequency Response Objectives: To illustrate the relationship between a system frequency response and the frequency response break frequencies, factor powers,

More information

Bode plot, named after Hendrik Wade Bode, is usually a combination of a Bode magnitude plot and Bode phase plot:

Bode plot, named after Hendrik Wade Bode, is usually a combination of a Bode magnitude plot and Bode phase plot: Bode plot From Wikipedia, the free encyclopedia A The Bode plot for a first-order (one-pole) lowpass filter Bode plot, named after Hendrik Wade Bode, is usually a combination of a Bode magnitude plot and

More information

Build Your Own Bose WaveRadio Bass Preamp Active Filter Design

Build Your Own Bose WaveRadio Bass Preamp Active Filter Design EE230 Filter Laboratory Build Your Own Bose WaveRadio Bass Preamp Active Filter Design Objectives 1) Design an active filter on paper to meet a particular specification 2) Verify your design using Spice

More information

PHYS 3322 Modern Laboratory Methods I AC R, RC, and RL Circuits

PHYS 3322 Modern Laboratory Methods I AC R, RC, and RL Circuits Purpose PHYS 3322 Modern Laboratory Methods I AC, C, and L Circuits For a given frequency, doubling of the applied voltage to resistors, capacitors, and inductors doubles the current. Hence, each of these

More information

Core Technology Group Application Note 6 AN-6

Core Technology Group Application Note 6 AN-6 Characterization of an RLC Low pass Filter John F. Iannuzzi Introduction Inductor-capacitor low pass filters are utilized in systems such as audio amplifiers, speaker crossover circuits and switching power

More information

Complex Numbers in Electronics

Complex Numbers in Electronics P5 Computing, Extra Practice After Session 1 Complex Numbers in Electronics You would expect the square root of negative numbers, known as complex numbers, to be only of interest to pure mathematicians.

More information

Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Fall Semester, Introduction to EECS 2

Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Fall Semester, Introduction to EECS 2 Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Fall Semester, 2006 6.082 Introduction to EECS 2 Lab #2: Time-Frequency Analysis Goal:... 3 Instructions:... 3

More information

Precalculations Individual Portion Filter Lab: Building and Testing Electrical Filters

Precalculations Individual Portion Filter Lab: Building and Testing Electrical Filters Name: Date of lab: Section number: M E 345. Lab 6 Precalculations Individual Portion Filter Lab: Building and Testing Electrical Filters Precalculations Score (for instructor or TA use only): / 20 1. (4)

More information

Signal Processing First Lab 20: Extracting Frequencies of Musical Tones

Signal Processing First Lab 20: Extracting Frequencies of Musical Tones Signal Processing First Lab 20: Extracting Frequencies of Musical Tones Pre-Lab and Warm-Up: You should read at least the Pre-Lab and Warm-up sections of this lab assignment and go over all exercises in

More information

UNIVERSITY OF WARWICK

UNIVERSITY OF WARWICK UNIVERSITY OF WARWICK School of Engineering ES905 MSc Signal Processing Module (2010) AM SIGNALS AND FILTERING EXERCISE Deadline: This is NOT for credit. It is best done before the first assignment. You

More information

AC BEHAVIOR OF COMPONENTS

AC BEHAVIOR OF COMPONENTS AC BEHAVIOR OF COMPONENTS AC Behavior of Capacitor Consider a capacitor driven by a sine wave voltage: I(t) 2 1 U(t) ~ C 0-1 -2 0 2 4 6 The current: is shifted by 90 o (sin cos)! 1.0 0.5 0.0-0.5-1.0 0

More information

Lab 2: Capacitors. Integrator and Differentiator Circuits

Lab 2: Capacitors. Integrator and Differentiator Circuits Lab 2: Capacitors Topics: Differentiator Integrator Low-Pass Filter High-Pass Filter Band-Pass Filter Integrator and Differentiator Circuits The simple RC circuits that you built in a previous section

More information

Laboratory 4: Amplification, Impedance, and Frequency Response

Laboratory 4: Amplification, Impedance, and Frequency Response ES 3: Introduction to Electrical Systems Laboratory 4: Amplification, Impedance, and Frequency Response I. GOALS: In this laboratory, you will build an audio amplifier using an LM386 integrated circuit.

More information

NPTEL Online Course: Control Engineering

NPTEL Online Course: Control Engineering NPTEL Online Course: Control Engineering Dr. Ramkrishna Pasumarthy and Dr.Viswanath Assignment - 0 : s. A passive band pass filter with is one which: (a) Attenuates signals between the two cut-off frequencies

More information

Rotary Motion Servo Plant: SRV02. Rotary Experiment #03: Speed Control. SRV02 Speed Control using QuaRC. Student Manual

Rotary Motion Servo Plant: SRV02. Rotary Experiment #03: Speed Control. SRV02 Speed Control using QuaRC. Student Manual Rotary Motion Servo Plant: SRV02 Rotary Experiment #03: Speed Control SRV02 Speed Control using QuaRC Student Manual Table of Contents 1. INTRODUCTION...1 2. PREREQUISITES...1 3. OVERVIEW OF FILES...2

More information

Assist Lecturer: Marwa Maki. Active Filters

Assist Lecturer: Marwa Maki. Active Filters Active Filters In past lecture we noticed that the main disadvantage of Passive Filters is that the amplitude of the output signals is less than that of the input signals, i.e., the gain is never greater

More information

Laboratory Assignment 1 Sampling Phenomena

Laboratory Assignment 1 Sampling Phenomena 1 Main Topics Signal Acquisition Audio Processing Aliasing, Anti-Aliasing Filters Laboratory Assignment 1 Sampling Phenomena 2.171 Analysis and Design of Digital Control Systems Digital Filter Design and

More information

DSP First Lab 03: AM and FM Sinusoidal Signals. We have spent a lot of time learning about the properties of sinusoidal waveforms of the form: k=1

DSP First Lab 03: AM and FM Sinusoidal Signals. We have spent a lot of time learning about the properties of sinusoidal waveforms of the form: k=1 DSP First Lab 03: AM and FM Sinusoidal Signals Pre-Lab and Warm-Up: You should read at least the Pre-Lab and Warm-up sections of this lab assignment and go over all exercises in the Pre-Lab section before

More information

ECE 2100 Experiment VI AC Circuits and Filters

ECE 2100 Experiment VI AC Circuits and Filters ECE 200 Experiment VI AC Circuits and Filters November 207 Introduction What happens when we put a sinusoidal signal through a typical linear circuit? We will get a sinusoidal output of the same frequency,

More information

Comparison of Signal Attenuation of Multiple Frequencies Between Passive and Active High-Pass Filters

Comparison of Signal Attenuation of Multiple Frequencies Between Passive and Active High-Pass Filters Comparison of Signal Attenuation of Multiple Frequencies Between Passive and Active High-Pass Filters Aaron Batker Pritzker Harvey Mudd College 23 November 203 Abstract Differences in behavior at different

More information

DOING PHYSICS WITH MATLAB RESONANCE CIRCUITS RLC PARALLEL VOLTAGE DIVIDER

DOING PHYSICS WITH MATLAB RESONANCE CIRCUITS RLC PARALLEL VOLTAGE DIVIDER DOING PHYSICS WITH MATLAB RESONANCE CIRCUITS RLC PARALLEL VOLTAGE DIVIDER Matlab download directory Matlab scripts CRLCp1.m CRLCp2.m When you change channels on your television set, an RLC circuit is used

More information

DO NOT REMOVE FROM LABORATORY Operating Instructions for the Vibration Experiment

DO NOT REMOVE FROM LABORATORY Operating Instructions for the Vibration Experiment DO NOT REMOVE FROM LABORATORY Operating Instructions for the Vibration Experiment MAE171a/MAE175a Prof. R.A. de Callafon Dept. of MAE, UCSD version: 3.141, January 16, 2012 NOTE: make sure to handle the

More information

Department of Electrical & Computer Engineering Technology. EET 3086C Circuit Analysis Laboratory Experiments. Masood Ejaz

Department of Electrical & Computer Engineering Technology. EET 3086C Circuit Analysis Laboratory Experiments. Masood Ejaz Department of Electrical & Computer Engineering Technology EET 3086C Circuit Analysis Laboratory Experiments Masood Ejaz Experiment # 1 DC Measurements of a Resistive Circuit and Proof of Thevenin Theorem

More information

Fourier Series and Gibbs Phenomenon

Fourier Series and Gibbs Phenomenon Fourier Series and Gibbs Phenomenon University Of Washington, Department of Electrical Engineering This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License

More information

EXPERIMENT 14 Variable-frequency networks

EXPERIMENT 14 Variable-frequency networks EXPEIMENT 14 Variable-frequency networks The objective of this experiment is to: Investigate networks excited with variable-frequency sinusoidal signals I. Introduction The ac steady-state behavior of

More information

ET 304A Laboratory Tutorial-Circuitmaker For Transient and Frequency Analysis

ET 304A Laboratory Tutorial-Circuitmaker For Transient and Frequency Analysis ET 304A Laboratory Tutorial-Circuitmaker For Transient and Frequency Analysis All circuit simulation packages that use the Pspice engine allow users to do complex analysis that were once impossible to

More information

Lab 9 Frequency Domain

Lab 9 Frequency Domain Lab 9 Frequency Domain 1 Components Required Resistors Capacitors Function Generator Multimeter Oscilloscope 2 Filter Design Filters are electric components that allow applying different operations to

More information

DSP First. Laboratory Exercise #2. Introduction to Complex Exponentials

DSP First. Laboratory Exercise #2. Introduction to Complex Exponentials DSP First Laboratory Exercise #2 Introduction to Complex Exponentials The goal of this laboratory is gain familiarity with complex numbers and their use in representing sinusoidal signals as complex exponentials.

More information

ECE 3155 Experiment I AC Circuits and Bode Plots Rev. lpt jan 2013

ECE 3155 Experiment I AC Circuits and Bode Plots Rev. lpt jan 2013 Signature Name (print, please) Lab section # Lab partner s name (if any) Date(s) lab was performed ECE 3155 Experiment I AC Circuits and Bode Plots Rev. lpt jan 2013 In this lab we will demonstrate basic

More information

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Homework 4

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Homework 4 EECS 6B Designing Information Devices and Systems II Fall 208 Elad Alon and Miki Lustig Homework 4 This homework is solely for your own practice. However, everything on it is in scope for midterm, and

More information

EE 221 L CIRCUIT II. by Ming Zhu

EE 221 L CIRCUIT II. by Ming Zhu EE 22 L CIRCUIT II LABORATORY 9: RC CIRCUITS, FREQUENCY RESPONSE & FILTER DESIGNS by Ming Zhu DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS OBJECTIVE Enhance the knowledge

More information

Low Pass Filter Introduction

Low Pass Filter Introduction Low Pass Filter Introduction Basically, an electrical filter is a circuit that can be designed to modify, reshape or reject all unwanted frequencies of an electrical signal and accept or pass only those

More information

Lab 10: Oscillators (version 1.1)

Lab 10: Oscillators (version 1.1) Lab 10: Oscillators (version 1.1) WARNING: Use electrical test equipment with care! Always double-check connections before applying power. Look for short circuits, which can quickly destroy expensive equipment.

More information

DC and AC Circuits. Objective. Theory. 1. Direct Current (DC) R-C Circuit

DC and AC Circuits. Objective. Theory. 1. Direct Current (DC) R-C Circuit [International Campus Lab] Objective Determine the behavior of resistors, capacitors, and inductors in DC and AC circuits. Theory ----------------------------- Reference -------------------------- Young

More information

ECE317 Homework 7. where

ECE317 Homework 7. where ECE317 Homework 7 Problem 1: Consider a system with loop gain, T(s), given by: where T(s) = 300(1+s)(1+ s 40 ) 1) Determine whether the system is stable by finding the closed loop poles of the system using

More information

Operational Amplifier Circuits

Operational Amplifier Circuits ECE VIII. Basic 5 Operational Amplifier Circuits Lab 8 In this lab we will verify the operation of inverting and noninverting amplifiers constructed using Operational Amplifiers. We will also observe the

More information

EE 462G Laboratory #1 Measuring Capacitance

EE 462G Laboratory #1 Measuring Capacitance EE 462G Laboratory #1 Measuring Capacitance Drs. A.V. Radun and K.D. Donohue (1/24/07) Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 Updated 8/31/2007 by

More information

Knowledge Integration Module 2 Fall 2016

Knowledge Integration Module 2 Fall 2016 Knowledge Integration Module 2 Fall 2016 1 Basic Information: The knowledge integration module 2 or KI-2 is a vehicle to help you better grasp the commonality and correlations between concepts covered

More information

Cleveland State University MCE441: Intr. Linear Control Systems. Lecture 12: Frequency Response Concepts Bode Diagrams. Prof.

Cleveland State University MCE441: Intr. Linear Control Systems. Lecture 12: Frequency Response Concepts Bode Diagrams. Prof. Cleveland State University MCE441: Intr. Linear Control Systems Lecture 12: Concepts Bode Diagrams Prof. Richter 1 / 2 Control systems are affected by signals which are often unpredictable: noise, disturbances,

More information

Lab 9: Operational amplifiers II (version 1.5)

Lab 9: Operational amplifiers II (version 1.5) Lab 9: Operational amplifiers II (version 1.5) WARNING: Use electrical test equipment with care! Always double-check connections before applying power. Look for short circuits, which can quickly destroy

More information

EE 230 Lab Lab nf C 2. A. Low-Q low-pass active filters. (a) 10 k! Figure 1. (a) First-order low-pass. (b) Second-order low-pass.

EE 230 Lab Lab nf C 2. A. Low-Q low-pass active filters. (a) 10 k! Figure 1. (a) First-order low-pass. (b) Second-order low-pass. Second-order filter circuits This time, we measure frequency response plots for second-order filters. We start by examining a simple 2nd-order low-pass filter. The we look at the various arrangements of

More information

Signals and Systems Lecture 6: Fourier Applications

Signals and Systems Lecture 6: Fourier Applications Signals and Systems Lecture 6: Fourier Applications Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2012 arzaneh Abdollahi Signal and Systems Lecture 6

More information

Simulating Circuits James Lamberti 5/4/2014

Simulating Circuits James Lamberti 5/4/2014 Simulating Circuits James Lamberti (jal416@lehigh.edu) 5/4/2014 There are many simulation and design platforms for circuits. The two big ones are Altium and Cadence. This tutorial will focus on Altium,

More information

Fourier Signal Analysis

Fourier Signal Analysis Part 1B Experimental Engineering Integrated Coursework Location: Baker Building South Wing Mechanics Lab Experiment A4 Signal Processing Fourier Signal Analysis Please bring the lab sheet from 1A experiment

More information

, answer the next six questions.

, answer the next six questions. Frequency Response Problems Conceptual Questions 1) T/F Given f(t) = A cos (ωt + θ): The amplitude of the output in sinusoidal steady-state increases as K increases and decreases as ω increases. 2) T/F

More information

PYKC 13 Feb 2017 EA2.3 Electronics 2 Lecture 8-1

PYKC 13 Feb 2017 EA2.3 Electronics 2 Lecture 8-1 In this lecture, I will cover amplitude and phase responses of a system in some details. What I will attempt to do is to explain how would one be able to obtain the frequency response from the transfer

More information

AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE

AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE July 22, 2008 AC Currents, Voltages, Filters, Resonance 1 Name Date Partners AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE V(volts) t(s) OBJECTIVES To understand the meanings of amplitude, frequency, phase,

More information

2.161 Signal Processing: Continuous and Discrete

2.161 Signal Processing: Continuous and Discrete MIT OpenCourseWare http://ocw.mit.edu 2.6 Signal Processing: Continuous and Discrete Fall 28 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS

More information

Xcircuit and Spice. February 26, 2007

Xcircuit and Spice. February 26, 2007 Xcircuit and Spice February 26, 2007 This week we are going to start with a new tool, namely Spice. Spice is a circuit simulator. The variant of spice we will use here is called Spice-Opus, and is a combined

More information

THE HONG KONG POLYTECHNIC UNIVERSITY Department of Electronic and Information Engineering. EIE2106 Signal and System Analysis Lab 2 Fourier series

THE HONG KONG POLYTECHNIC UNIVERSITY Department of Electronic and Information Engineering. EIE2106 Signal and System Analysis Lab 2 Fourier series THE HONG KONG POLYTECHNIC UNIVERSITY Department of Electronic and Information Engineering EIE2106 Signal and System Analysis Lab 2 Fourier series 1. Objective The goal of this laboratory exercise is to

More information

EEL2216 Control Theory CT2: Frequency Response Analysis

EEL2216 Control Theory CT2: Frequency Response Analysis EEL2216 Control Theory CT2: Frequency Response Analysis 1. Objectives (i) To analyse the frequency response of a system using Bode plot. (ii) To design a suitable controller to meet frequency domain and

More information

Transmit filter designs for ADSL modems

Transmit filter designs for ADSL modems EE 233 Laboratory-4 1. Objectives Transmit filter designs for ADSL modems Design a filter from a given topology and specifications. Analyze the characteristics of the designed filter. Use SPICE to verify

More information

LABORATORY #3 QUARTZ CRYSTAL OSCILLATOR DESIGN

LABORATORY #3 QUARTZ CRYSTAL OSCILLATOR DESIGN LABORATORY #3 QUARTZ CRYSTAL OSCILLATOR DESIGN OBJECTIVES 1. To design and DC bias the JFET transistor oscillator for a 9.545 MHz sinusoidal signal. 2. To simulate JFET transistor oscillator using MicroCap

More information

ECE 2713 Design Project Solution

ECE 2713 Design Project Solution ECE 2713 Design Project Solution Spring 218 Dr. Havlicek 1. (a) Matlab code: ---------------------------------------------------------- P1a Make a 2 second digital audio signal that contains a pure cosine

More information

Frequency Response Analysis

Frequency Response Analysis Frequency Response Analysis Continuous Time * M. J. Roberts - All Rights Reserved 2 Frequency Response * M. J. Roberts - All Rights Reserved 3 Lowpass Filter H( s) = ω c s + ω c H( jω ) = ω c jω + ω c

More information

Frequency Responses and Active Filter Circuits

Frequency Responses and Active Filter Circuits Frequency Responses and Active Filter Circuits Compensation capacitors and parasitic capacitors will influence the frequency response Capacitors are also purposely added to create certain functions; e.g.

More information

FREQUENCY RESPONSE OF R, L AND C ELEMENTS

FREQUENCY RESPONSE OF R, L AND C ELEMENTS FREQUENCY RESPONSE OF R, L AND C ELEMENTS Marking scheme : Methods & diagrams : 3 Graph plotting : - Tables & analysis : 2 Questions & discussion : 3 Performance : 2 Aim: This experiment will investigate

More information

ECE 4670 Spring 2014 Lab 1 Linear System Characteristics

ECE 4670 Spring 2014 Lab 1 Linear System Characteristics ECE 4670 Spring 2014 Lab 1 Linear System Characteristics 1 Linear System Characteristics The first part of this experiment will serve as an introduction to the use of the spectrum analyzer in making absolute

More information

(A) Based on the second-order FRF provided, determine appropriate values for ω n, ζ, and K. ω n =500 rad/s; ζ=0.1; K=0.

(A) Based on the second-order FRF provided, determine appropriate values for ω n, ζ, and K. ω n =500 rad/s; ζ=0.1; K=0. ME35 Homework # Due: 1/1/1 Problem #1 (3%) A co-worker brings you an accelerometer spec sheet with the following frequency response function (FRF):. s G accelerometer = [volt +.1 jω.1 ω m ] (A) Based on

More information

BME 3512 Bioelectronics Laboratory Six - Active Filters

BME 3512 Bioelectronics Laboratory Six - Active Filters BME 5 Bioelectronics Laboratory Six - Active Filters Learning Objectives: Understand the basic principles of active filters. Describe the differences between active and passive filters. Laboratory Equipment:

More information

Analog Filters D R. T A R E K T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N

Analog Filters D R. T A R E K T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N Analog Filters D. T A E K T U T U N J I P H I L A D E L P H I A U N I V E S I T Y, J O D A N 2 0 4 Introduction Electrical filters are deigned to eliminate unwanted frequencies Filters can be classified

More information

Lab 8 - INTRODUCTION TO AC CURRENTS AND VOLTAGES

Lab 8 - INTRODUCTION TO AC CURRENTS AND VOLTAGES 08-1 Name Date Partners ab 8 - INTRODUCTION TO AC CURRENTS AND VOTAGES OBJECTIVES To understand the meanings of amplitude, frequency, phase, reactance, and impedance in AC circuits. To observe the behavior

More information

Lab 6 rev 2.1-kdp Lab 6 Time and frequency domain analysis of LTI systems

Lab 6 rev 2.1-kdp Lab 6 Time and frequency domain analysis of LTI systems Lab 6 Time and frequency domain analysis of LTI systems 1 I. GENERAL DISCUSSION In this lab and the next we will further investigate the connection between time and frequency domain responses. In this

More information