Analog Filters D R. T A R E K T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N

Size: px
Start display at page:

Download "Analog Filters D R. T A R E K T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N"

Transcription

1 Analog Filters D. T A E K T U T U N J I P H I L A D E L P H I A U N I V E S I T Y, J O D A N 2 0 4

2 Introduction Electrical filters are deigned to eliminate unwanted frequencies Filters can be classified as: Analog or Digital Analog filters can be classified as passive or active and they are implemented using electrical components, such as resistors, capacitors, inductors, and op-amps When op-amps are used, filters become active Digital filters are implemented as programs in computers, microcontrollers, or DSPs

3 Filter Types: Ideal

4 ealistic Filters lowpass highpass bandpass bandstop

5 Cutoff Frequency The passband is the range of frequencies that pass through the filter The stopband is the range of frequencies that do not pass through the filter Cutoff frequency (fc) is the frequency at which the voltage gain of the filter drops to (or -3dB) of its maximum value: H( jc ) H 2 max

6 Lowpass Filter Gain (V/V) Pass band Stop band Frequency, Hz Cutoff frequency

7 Capacitors and Inductors Capacitors and Inductors impedances change with the frequency of the signals Capacitors behave as Open Circuit for DC signals Short circuit for high frequencies Inductors behave as Open circuit for high frequencies Short circuit for DC signals Most filters use capacitors (not inductors) because of accuracy, size, and cost

8 Passive Lowpass Filter V I + _ C + V O _ 0 db -3 db. /C H ( s) Vout Vin / sc / sc Cs H ( ) jc H ( j) 2 ImH ( j ) 2 H ( j) e H ( j) tan Im{ H ( j)} e{ H ( j)} H( j) H ( j) tan ( C) C 2

9 Passive Lowpass Filter In order to get, f c, we solve the following equation H ( jc ) Hmax c ( C) 2 c / C fc / 2C 2 ()

10 Phase (deg) Magnitude (db) MATLAB >> =000; C=.; >> num=; den=[*c ]; >> sys=tf(num,den) Transfer function: s Bode Diagram System: sys Frequency (rad/sec): Magnitude (db): -3 >> bode(sys);grid Frequency (rad/sec)

11 Amplitude Step esponse Step esponse System: sys ise Time (sec): Time (sec)

12 Filter Order Increase Note: By increasing the filter order, the response becomes closer to an ideal filter

13 Example: LP, HP, BP, BE This circuit demonstrates different filter types By changing the output voltage [ef] Signals and Systems using MATLAB by Luis Chaparro.

14 Bandpass Filter Example Consider the series LC circuit with output across to design a bandpass filter. Let the poles be at 200 rad/sec and 2000 rad/sec (i.e. cutoff frequencies). The Transfer function becomes H ( s) /( Cs) Ls ( / L) s s^2 ( / L) s /( LC) 2200 s 2200s 2200 s ( s200)( s2000) s s ( )( ) s s x The last term on the right can be put in Bode form as: jw jw jw ( )( ) eference: University of Tennessee, USA

15 To: Y() Phase (deg); Magnitude (db) -5 db 0-5 Bode Diagrams From: U() -3 db Frequency (rad/sec) MATLAB Simulation esult

16 Active Filters: LP Active filters use op-amps in their design and therefore have gain. An active low pass filter is shown below C Vin Vout When input frequency is 0, then the capacitor is open and the circuit becomes a regular inverting op-amp with gain 2/ When input frequency is infinite, the capacitor is short and the Output voltage becomes zero

17 Active Filters: LP The transfer function, magnitude, and the cutoff frequency of the circuit shown is derived to be C / C ) j H( C ) j / ( Z Z ) j H( c in out

18 Active Filters: HP An active high pass filter is shown below C 2 Vin - + Vout The transfer function and the cutoff frequency of the circuit shown is derived to be H ( j) / C c 2 j j / C

19 Active Filters: Band Pass We can construct an active band pass filter using three cascade stages Active Low Pass Active High Pass Non-inverting Op-amp C L Vin L - + L C H H - + H Vout

20 Active Band Stop Filter C fb V in + _ C 2 2 i + V O _

21 Active Filter Design Example Problem Statement: A transducer is used as an input to a PC. The measured signal is sinusoidal with high frequency noise added. The signal is shown in figure below. Design an analog signal conditioning circuit to filter out the noise and give a gain of 0 for the sinusoidal signal T signal t shift T noise

22 Example continued The original signal had a period, T signal, of ms => F signal =,000 Hz The time shift, t shift, is equal to 0.25 ms => phase shift is 0.25ms x360 0 /ms = 45 degrees Then, the signal can be represented as x(t ) 2 ( 000, )t noise 0. 5sin 45 Amplitude frequency Phase shift The noise frequency is calculated to be around 8 KHz And since the signal frequency is KHz => need LP filter with cutoff frequency around 4 KHz

23 Example continued There are many ways to design this filter. Here is one way: Since the transducer signal is differential => use a difference amplifier at first stage and then active LP filter as second stage V- V C 2 Vout Stage 0: Buffer Stage : Diff. Amp. Stage 2: LP filter

24 Example continued Use = KW at the buffers (no gain) The cutoff frequency is c = /C 2 Let C = 0.mF and since c = 2,000 => 2 = 398 W Gain is equal 2 / = 0 => = 39.8 W

25 Frequency esponse from Poles and Zeros

26 Consider the filter transfer function: Example

27 Spectrum Analyzer A Spectrum Analyzer system is used to measure the distribution of power across the frequencies

28 Conclusion Filters are used to enhance the desired frequencies while eliminating unwanted frequencies. Analog filters are electrical circuits composed mainly of resistors and capacitors (passive) and op-amps (active). Filters have three types: Lowpass, Highpass, Bandpass, and Bandreject

INTRODUCTION TO FILTER CIRCUITS

INTRODUCTION TO FILTER CIRCUITS INTRODUCTION TO FILTER CIRCUITS 1 2 Background: Filters may be classified as either digital or analog. Digital filters are implemented using a digital computer or special purpose digital hardware. Analog

More information

EE301 ELECTRONIC CIRCUITS

EE301 ELECTRONIC CIRCUITS EE30 ELECTONIC CICUITS CHAPTE 5 : FILTES LECTUE : Engr. Muhammad Muizz Electrical Engineering Department Politeknik Kota Kinabalu, Sabah. 5. INTODUCTION Is a device that removes or filters unwanted signal.

More information

CHAPTER 14. Introduction to Frequency Selective Circuits

CHAPTER 14. Introduction to Frequency Selective Circuits CHAPTER 14 Introduction to Frequency Selective Circuits Frequency-selective circuits Varying source frequency on circuit voltages and currents. The result of this analysis is the frequency response of

More information

EK307 Active Filters and Steady State Frequency Response

EK307 Active Filters and Steady State Frequency Response EK307 Active Filters and Steady State Frequency Response Laboratory Goal: To explore the properties of active signal-processing filters Learning Objectives: Active Filters, Op-Amp Filters, Bode plots Suggested

More information

EE233 Autumn 2016 Electrical Engineering University of Washington. EE233 HW7 Solution. Nov. 16 th. Due Date: Nov. 23 rd

EE233 Autumn 2016 Electrical Engineering University of Washington. EE233 HW7 Solution. Nov. 16 th. Due Date: Nov. 23 rd EE233 HW7 Solution Nov. 16 th Due Date: Nov. 23 rd 1. Use a 500nF capacitor to design a low pass passive filter with a cutoff frequency of 50 krad/s. (a) Specify the cutoff frequency in hertz. fc c 50000

More information

Electric Circuit Theory

Electric Circuit Theory Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Chapter 15 Active Filter Circuits Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Contents and Objectives 3 Chapter Contents 15.1 First-Order

More information

Lecture 17 Date: Parallel Resonance Active and Passive Filters

Lecture 17 Date: Parallel Resonance Active and Passive Filters Lecture 17 Date: 09.10.2017 Parallel Resonance Active and Passive Filters Parallel Resonance At resonance: The voltage V as a function of frequency. At resonance, the parallel LC combination acts like

More information

ECE 203 LAB 2 PRACTICAL FILTER DESIGN & IMPLEMENTATION

ECE 203 LAB 2 PRACTICAL FILTER DESIGN & IMPLEMENTATION Version 1. 1 of 7 ECE 03 LAB PRACTICAL FILTER DESIGN & IMPLEMENTATION BEFORE YOU BEGIN PREREQUISITE LABS ECE 01 Labs ECE 0 Advanced MATLAB ECE 03 MATLAB Signals & Systems EXPECTED KNOWLEDGE Understanding

More information

The above figure represents a two stage circuit. Recall, the transfer function relates. Vout

The above figure represents a two stage circuit. Recall, the transfer function relates. Vout LABORATORY 12: Bode plots/second Order Filters Material covered: Multistage circuits Bode plots Design problem Overview Notes: Two stage circuits: Vin1 H1(s) Vout1 Vin2 H2(s) Vout2 The above figure represents

More information

Analog Design-filters

Analog Design-filters Analog Design-filters Introduction and Motivation Filters are networks that process signals in a frequency-dependent manner. The basic concept of a filter can be explained by examining the frequency dependent

More information

ME411 Engineering Measurement & Instrumentation. Winter 2017 Lecture 3

ME411 Engineering Measurement & Instrumentation. Winter 2017 Lecture 3 ME411 Engineering Measurement & Instrumentation Winter 2017 Lecture 3 1 Current Measurement DC or AC current Use of a D Arsonval Meter - electric current carrying conductor passing through a magnetic field

More information

Chapter 19. Basic Filters

Chapter 19. Basic Filters Chapter 19 Basic Filters Objectives Analyze the operation of RC and RL lowpass filters Analyze the operation of RC and RL highpass filters Analyze the operation of band-pass filters Analyze the operation

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Continuing the discussion of Op Amps, the next step is filters. There are many different types of filters, including low pass, high pass and band pass. We will discuss each of the

More information

Electrical Circuits II (ECE233b)

Electrical Circuits II (ECE233b) Electrical ircuits II (EE33b) ariablefrequency Network Performance (Part 3) Anestis Dounavis The University of Western Ontario Faculty of Engineering Science Scaling Often the values of circuit parameters

More information

EXPERIMENT 1: Characteristics of Passive and Active Filters

EXPERIMENT 1: Characteristics of Passive and Active Filters Kathmandu University Department of Electrical and Electronics Engineering ELECTRONICS AND ANALOG FILTER DESIGN LAB EXPERIMENT : Characteristics of Passive and Active Filters Objective: To understand the

More information

Kent Bertilsson Muhammad Amir Yousaf

Kent Bertilsson Muhammad Amir Yousaf Today s topics Analog System (Rev) Frequency Domain Signals in Frequency domain Frequency analysis of signals and systems Transfer Function Basic elements: R, C, L Filters RC Filters jw method (Complex

More information

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Homework 4

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Homework 4 EECS 16B Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Homework 4 This homework is solely for your own practice. However, everything on it is in scope for midterm 1,

More information

EE-2302 Passive Filters and Frequency Response

EE-2302 Passive Filters and Frequency Response EE2302 Passive Filters and Frequency esponse Objective he student should become acquainted with simple passive filters for performing highpass, lowpass, and bandpass operations. he experimental tasks also

More information

ME 365 EXPERIMENT 7 SIGNAL CONDITIONING AND LOADING

ME 365 EXPERIMENT 7 SIGNAL CONDITIONING AND LOADING ME 365 EXPERIMENT 7 SIGNAL CONDITIONING AND LOADING Objectives: To familiarize the student with the concepts of signal conditioning. At the end of the lab, the student should be able to: Understand the

More information

A.C. FILTER NETWORKS. Learning Objectives

A.C. FILTER NETWORKS. Learning Objectives C H A P T E 17 Learning Objectives Introduction Applications Different Types of Filters Octaves and Decades of Frequency Decibel System alue of 1 db Low-Pass C Filter Other Types of Low-Pass Filters Low-Pass

More information

Assist Lecturer: Marwa Maki. Active Filters

Assist Lecturer: Marwa Maki. Active Filters Active Filters In past lecture we noticed that the main disadvantage of Passive Filters is that the amplitude of the output signals is less than that of the input signals, i.e., the gain is never greater

More information

ECEN Network Analysis Section 3. Laboratory Manual

ECEN Network Analysis Section 3. Laboratory Manual ECEN 3714----Network Analysis Section 3 Laboratory Manual LAB 07: Active Low Pass Filter Oklahoma State University School of Electrical and Computer Engineering. Section 3 Laboratory manual - 1 - Spring

More information

PHYS225 Lecture 15. Electronic Circuits

PHYS225 Lecture 15. Electronic Circuits PHYS225 Lecture 15 Electronic Circuits Last lecture Difference amplifier Differential input; single output Good CMRR, accurate gain, moderate input impedance Instrumentation amplifier Differential input;

More information

An active filters means using amplifiers to improve the filter. An acive second-order RC low-pass filter still has two RC components in series.

An active filters means using amplifiers to improve the filter. An acive second-order RC low-pass filter still has two RC components in series. Active Filters An active filters means using amplifiers to improve the filter. An acive second-order low-pass filter still has two components in series. Hjω ( ) -------------------------- 2 = = ----------------------------------------------------------

More information

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Homework 4

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Homework 4 EECS 6B Designing Information Devices and Systems II Fall 208 Elad Alon and Miki Lustig Homework 4 This homework is solely for your own practice. However, everything on it is in scope for midterm, and

More information

EK307 Passive Filters and Steady State Frequency Response

EK307 Passive Filters and Steady State Frequency Response EK307 Passive Filters and Steady State Frequency Response Laboratory Goal: To explore the properties of passive signal-processing filters Learning Objectives: Passive filters, Frequency domain, Bode plots

More information

FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY

FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY In this experiment we will analytically determine and measure the frequency response of networks containing resistors, AC source/sources, and energy storage

More information

D66 & DP66 Series. 32 Pin DIP 6-Pole Filters. 1.0 Hz to 100 khz Fixed Frequency

D66 & DP66 Series. 32 Pin DIP 6-Pole Filters. 1.0 Hz to 100 khz Fixed Frequency D66 & DP66 Series Hz to 00 khz Fixed Frequency 32 Pin DIP Filters Description The D66 and DP66 Series of small 6-pole fixedfrequency, precision active filters provide high performance linear active filtering

More information

Mechatronics. Analog and Digital Electronics: Studio Exercises 1 & 2

Mechatronics. Analog and Digital Electronics: Studio Exercises 1 & 2 Mechatronics Analog and Digital Electronics: Studio Exercises 1 & 2 There is an electronics revolution taking place in the industrialized world. Electronics pervades all activities. Perhaps the most important

More information

Instrumentation Amplifiers Filters Integrators Differentiators Frequency-Gain Relation Non-Linear Op-Amp Applications DC Imperfections

Instrumentation Amplifiers Filters Integrators Differentiators Frequency-Gain Relation Non-Linear Op-Amp Applications DC Imperfections Lecture Op-Amp Building Blocks and Applications Instrumentation Amplifiers Filters Integrators Differentiators Frequency-Gain elation Non-Linear Op-Amp Applications DC Imperfections ELG439 Check List for

More information

ENGR4300 Test 3A Fall 2002

ENGR4300 Test 3A Fall 2002 1. 555 Timer (20 points) Figure 1: 555 Timer Circuit For the 555 timer circuit in Figure 1, find the following values for R1 = 1K, R2 = 2K, C1 = 0.1uF. Show all work. a) (4 points) T1: b) (4 points) T2:

More information

Introduction (cont )

Introduction (cont ) Active Filter 1 Introduction Filters are circuits that are capable of passing signals within a band of frequencies while rejecting or blocking signals of frequencies outside this band. This property of

More information

FYS3240 PC-based instrumentation and microcontrollers. Signal sampling. Spring 2015 Lecture #5

FYS3240 PC-based instrumentation and microcontrollers. Signal sampling. Spring 2015 Lecture #5 FYS3240 PC-based instrumentation and microcontrollers Signal sampling Spring 2015 Lecture #5 Bekkeng, 29.1.2015 Content Aliasing Nyquist (Sampling) ADC Filtering Oversampling Triggering Analog Signal Information

More information

Assignment 11. 1) Using the LM741 op-amp IC a circuit is designed as shown, then find the output waveform for an input of 5kHz

Assignment 11. 1) Using the LM741 op-amp IC a circuit is designed as shown, then find the output waveform for an input of 5kHz Assignment 11 1) Using the LM741 op-amp IC a circuit is designed as shown, then find the output waveform for an input of 5kHz Vo = 1 x R1Cf 0 Vin t dt, voltage output for the op amp integrator 0.1 m 1

More information

1) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz

1) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz ) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz Solution: a) Input is of constant amplitude of 2 V from 0 to 0. ms and 2 V from 0. ms to 0.2 ms. The output

More information

Fourier Transform Analysis of Signals and Systems

Fourier Transform Analysis of Signals and Systems Fourier Transform Analysis of Signals and Systems Ideal Filters Filters separate what is desired from what is not desired In the signals and systems context a filter separates signals in one frequency

More information

Chapter 15: Active Filters

Chapter 15: Active Filters Chapter 15: Active Filters 15.1: Basic filter Responses A filter is a circuit that passes certain frequencies and rejects or attenuates all others. The passband is the range of frequencies allowed to pass

More information

Application Note 4. Analog Audio Passive Crossover

Application Note 4. Analog Audio Passive Crossover Application Note 4 App Note Application Note 4 Highlights Importing Transducer Response Data Importing Transducer Impedance Data Conjugate Impedance Compensation Circuit Optimization n Design Objective

More information

D61 Series. 32-Pin DIP 4 - Pole Filters Hz to 1.00 Hz Fixed Frequency

D61 Series. 32-Pin DIP 4 - Pole Filters Hz to 1.00 Hz Fixed Frequency D61 Series 0.02 Hz to 0 Hz Fixed Frequency 32-Pin DIP 4 - Pole Filters Description The D61 Series of small 4-pole fixed-frequency, precision active filters provide high performance linear active filtering

More information

Electronics basics for MEMS and Microsensors course

Electronics basics for MEMS and Microsensors course Electronics basics for course, a.a. 2017/2018, M.Sc. in Electronics Engineering Transfer function 2 X(s) T(s) Y(s) T S = Y s X(s) The transfer function of a linear time-invariant (LTI) system is the function

More information

Lecture 2 Analog circuits. Seeing the light..

Lecture 2 Analog circuits. Seeing the light.. Lecture 2 Analog circuits Seeing the light.. I t IR light V1 9V +V IR detection Noise sources: Electrical (60Hz, 120Hz, 180Hz.) Other electrical IR from lights IR from cameras (autofocus) Visible light

More information

Active Filter Design Techniques

Active Filter Design Techniques Active Filter Design Techniques 16.1 Introduction What is a filter? A filter is a device that passes electric signals at certain frequencies or frequency ranges while preventing the passage of others.

More information

Filter Approximation Concepts

Filter Approximation Concepts 6 (ESS) Filter Approximation Concepts How do you translate filter specifications into a mathematical expression which can be synthesized? Approximation Techniques Why an ideal Brick Wall Filter can not

More information

Advanced Measurements

Advanced Measurements Albaha University Faculty of Engineering Mechanical Engineering Department Lecture 9: Wheatstone Bridge and Filters Ossama Abouelatta o_abouelatta@yahoo.com Mechanical Engineering Department Faculty of

More information

Lab 10: Oscillators (version 1.1)

Lab 10: Oscillators (version 1.1) Lab 10: Oscillators (version 1.1) WARNING: Use electrical test equipment with care! Always double-check connections before applying power. Look for short circuits, which can quickly destroy expensive equipment.

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 5 GAIN-BANDWIDTH PRODUCT AND SLEW RATE OBJECTIVES In this experiment the student will explore two

More information

An active filter offers the following advantages over a passive filter:

An active filter offers the following advantages over a passive filter: ACTIVE FILTERS An electric filter is often a frequency-selective circuit that passes a specified band of frequencies and blocks or attenuates signals of frequencies outside this band. Filters may be classified

More information

Analog Electronics. Lecture. Op-amp Circuits and Active Filters. Muhammad Amir Yousaf

Analog Electronics. Lecture. Op-amp Circuits and Active Filters. Muhammad Amir Yousaf Analog Electronics Lecture Op-amp Circuits and Active Filters Muhammad Amir Yousaf Instrumentation Amplifiers An instrumentation amplifier (IA) amplifies the voltage difference between its terminals. It

More information

CHAPTER 6 Frequency Response, Bode. Plots, and Resonance

CHAPTER 6 Frequency Response, Bode. Plots, and Resonance CHAPTER 6 Frequency Response, Bode Plots, and Resonance CHAPTER 6 Frequency Response, Bode Plots, and Resonance 1. State the fundamental concepts of Fourier analysis. 2. Determine the output of a filter

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino - ICT School Analog and Telecommunication Electronics E1 - Filters type and design» Filter taxonomy and parameters» Design flow and tools» FilterCAD example» Basic II order cells

More information

Lecture Week 10. Quiz #7 Op-Amps II Homework P17 and P18 Active Filters Active Filters Analysis Active Filters Bode Plots Filter Design Homework

Lecture Week 10. Quiz #7 Op-Amps II Homework P17 and P18 Active Filters Active Filters Analysis Active Filters Bode Plots Filter Design Homework Lecture Week 10 Quiz #7 Op-Amps II Homework P17 and P18 Active Filters Active Filters Analysis Active Filters Bode Plots Filter Design Homework Quiz 7 Op-Amp II(20 pts.) Please clear desks and turn off

More information

Frequency Response Analysis

Frequency Response Analysis Frequency Response Analysis Continuous Time * M. J. Roberts - All Rights Reserved 2 Frequency Response * M. J. Roberts - All Rights Reserved 3 Lowpass Filter H( s) = ω c s + ω c H( jω ) = ω c jω + ω c

More information

System on a Chip. Prof. Dr. Michael Kraft

System on a Chip. Prof. Dr. Michael Kraft System on a Chip Prof. Dr. Michael Kraft Lecture 4: Filters Filters General Theory Continuous Time Filters Background Filters are used to separate signals in the frequency domain, e.g. remove noise, tune

More information

Thursday, 1/23/19 Automatic Gain Control As previously shown, 1 0 is a nonlinear system that produces a limit cycle with a distorted sinusoid for

Thursday, 1/23/19 Automatic Gain Control As previously shown, 1 0 is a nonlinear system that produces a limit cycle with a distorted sinusoid for Thursday, 1/23/19 Automatic Gain Control As previously shown, 1 0 is a nonlinear system that produces a limit cycle with a distorted sinusoid for x(t), which is not a very good sinusoidal oscillator. A

More information

Application Note 5. Analog Audio Active Crossover

Application Note 5. Analog Audio Active Crossover App Note Highlights Importing Transducer Response Data Generic Transfer Function Modeling Circuit Optimization Cascade Circuit Synthesis n Design Objective 3-Way Active Crossover 4th Order Crossover 200Hz/2kHz

More information

Filters and Tuned Amplifiers

Filters and Tuned Amplifiers CHAPTER 6 Filters and Tuned Amplifiers Introduction 55 6. Filter Transmission, Types, and Specification 56 6. The Filter Transfer Function 60 6.7 Second-Order Active Filters Based on the Two-Integrator-Loop

More information

Pre-Lab. Introduction

Pre-Lab. Introduction Pre-Lab Read through this entire lab. Perform all of your calculations (calculated values) prior to making the required circuit measurements. You may need to measure circuit component values to obtain

More information

Analog Circuits and Systems

Analog Circuits and Systems Analog Circuits and Systems Prof. K Radhakrishna Rao Lecture 31: Waveform Generation 1 Review Phase Locked Loop (self tuned filter) 2 nd order High Q low-pass output phase compared with the input 90 phase

More information

D94 Series. 1 Hz to 400 khz* Low Noise Fixed Frequency. 4 - Pole Single Power Supply Anti-Aliasing Low-Pass Filters

D94 Series. 1 Hz to 400 khz* Low Noise Fixed Frequency. 4 - Pole Single Power Supply Anti-Aliasing Low-Pass Filters Hz to 400 khz* Low Noise Fixed Frequency Description: The D94 Series of small 4-pole fixed-frequency, precision active filters provide high performance linear active filtering in a compact package, with

More information

Chapter 4: Passive Analog Signal Processing

Chapter 4: Passive Analog Signal Processing hapter 4: Passive Analog Signal Processing In this chapter we introduce filters and signal transmission theory. Filters are essential components of most analog circuits and are used to remove unwanted

More information

Section 6 Chapter 2: Operational Amplifiers

Section 6 Chapter 2: Operational Amplifiers 03 Section 6 Chapter : Operational Amplifiers eference : Microelectronic circuits Sedra sixth edition 4//03 4//03 Contents: - DC imperfections A. Offset voltage B. Solution of offset voltage C. Input bias

More information

Lecture Week 7. Quiz 4 - KCL/KVL Capacitors RC Circuits and Phasor Analysis RC filters Workshop

Lecture Week 7. Quiz 4 - KCL/KVL Capacitors RC Circuits and Phasor Analysis RC filters Workshop Lecture Week 7 Quiz 4 - KCL/KVL Capacitors RC Circuits and Phasor Analysis RC filters Workshop Quiz 5 KCL/KVL Please clear desks and turn off phones and put them in back packs You need a pencil, straight

More information

Lab 9: Operational amplifiers II (version 1.5)

Lab 9: Operational amplifiers II (version 1.5) Lab 9: Operational amplifiers II (version 1.5) WARNING: Use electrical test equipment with care! Always double-check connections before applying power. Look for short circuits, which can quickly destroy

More information

Friday, 1/27/17 Constraints on A(jω)

Friday, 1/27/17 Constraints on A(jω) Friday, 1/27/17 Constraints on A(jω) The simplest electronic oscillators are op amp based, and A(jω) is typically a simple op amp fixed gain amplifier, such as the negative gain and positive gain amplifiers

More information

D92 Series. 1 Hz to 400 khz* Low Noise Fixed Frequency. 2 - Pole Single Power Supply Anti-Aliasing Low-Pass Filters

D92 Series. 1 Hz to 400 khz* Low Noise Fixed Frequency. 2 - Pole Single Power Supply Anti-Aliasing Low-Pass Filters Hz to 400 khz* Low Noise Fixed Frequency Description: The D92 Series of small 2-pole fixed-frequency, precision active filters provide high performance linear active filtering in a compact package, with

More information

D98 Series. 1 Hz to 400 khz* Low Noise Fixed Frequency. 8- Pole Single Power Supply Anti-Aliasing Low-Pass Filters

D98 Series. 1 Hz to 400 khz* Low Noise Fixed Frequency. 8- Pole Single Power Supply Anti-Aliasing Low-Pass Filters Hz to 400 khz* Low Noise Fixed Frequency Description: The D98 Series of small 8-pole fixed-frequency, precision active filters provide high performance linear active filtering in a compact package, with

More information

Experiments #7. Operational Amplifier part 1

Experiments #7. Operational Amplifier part 1 Experiments #7 Operational Amplifier part 1 1) Objectives: The objective of this lab is to study operational amplifier (op amp) and its applications. We will be simulating and building some basic op-amp

More information

Kerwin, W.J. Passive Signal Processing The Electrical Engineering Handbook Ed. Richard C. Dorf Boca Raton: CRC Press LLC, 2000

Kerwin, W.J. Passive Signal Processing The Electrical Engineering Handbook Ed. Richard C. Dorf Boca Raton: CRC Press LLC, 2000 Kerwin, W.J. Passive Signal Processing The Electrical Engineering Handbook Ed. Richard C. Dorf Boca Raton: CRC Press LLC, 000 4 Passive Signal Processing William J. Kerwin University of Arizona 4. Introduction

More information

Lecture 2 Analog circuits. Seeing the light..

Lecture 2 Analog circuits. Seeing the light.. Lecture 2 Analog circuits Seeing the light.. I t IR light V1 9V +V IR detection Noise sources: Electrical (60Hz, 120Hz, 180Hz.) Other electrical IR from lights IR from cameras (autofocus) Visible light

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino - ICT School Analog and Telecommunication Electronics E1 - Filters type and design» Filter taxonomy and parameters» Design flow and tools» FilterCAD example» Basic II order cells

More information

Feed Forward Linearization of Power Amplifiers

Feed Forward Linearization of Power Amplifiers EE318 Electronic Design Lab Report, EE Dept, IIT Bombay, April 2007 Feed Forward Linearization of Power Amplifiers Group-D16 Nachiket Gajare ( 04d07015) < nachiketg@ee.iitb.ac.in> Aditi Dhar ( 04d07030)

More information

Example #6 1. An amplifier with a nominal gain

Example #6 1. An amplifier with a nominal gain 1. An amplifier with a nominal gain A=1000 V/V exhibits a gain change of 10% as the operating temperature changes from 25 o C to 75 o C. If it is required to constrain the change to 0.1% by applying negative

More information

Low Pass Filter Introduction

Low Pass Filter Introduction Low Pass Filter Introduction Basically, an electrical filter is a circuit that can be designed to modify, reshape or reject all unwanted frequencies of an electrical signal and accept or pass only those

More information

Electronic PRINCIPLES

Electronic PRINCIPLES MALVINO & BATES Electronic PRINCIPLES SEVENTH EDITION Chapter 21 Active Filters Topics Covered in Chapter 21 Ideal responses Approximate responses Passive ilters First-order stages VCVS unity-gain second-order

More information

EELE503. Modern filter design. Filter Design - Introduction

EELE503. Modern filter design. Filter Design - Introduction EELE503 Modern filter design Filter Design - Introduction A filter will modify the magnitude or phase of a signal to produce a desired frequency response or time response. One way to classify ideal filters

More information

Lecture XII: Ideal filters

Lecture XII: Ideal filters BME 171: Signals and Systems Duke University October 29, 2008 This lecture Plan for the lecture: 1 LTI systems with sinusoidal inputs 2 Analog filtering frequency-domain description: passband, stopband

More information

LC Resonant Circuits Dr. Roger King June Introduction

LC Resonant Circuits Dr. Roger King June Introduction LC Resonant Circuits Dr. Roger King June 01 Introduction Second-order systems are important in a wide range of applications including transformerless impedance-matching networks, frequency-selective networks,

More information

DSP Laboratory (EELE 4110) Lab#10 Finite Impulse Response (FIR) Filters

DSP Laboratory (EELE 4110) Lab#10 Finite Impulse Response (FIR) Filters Islamic University of Gaza OBJECTIVES: Faculty of Engineering Electrical Engineering Department Spring-2011 DSP Laboratory (EELE 4110) Lab#10 Finite Impulse Response (FIR) Filters To demonstrate the concept

More information

Quiz 6 Op-Amp Characteristics

Quiz 6 Op-Amp Characteristics Lecture Week 11 Quiz 6: Op-Amp Characteristics Complex Numbers and Phasor Domain Review Passive Filters Review Active Filters Complex Impedance and Bode Plots Workshop Quiz 6 Op-Amp Characteristics Please

More information

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab Objectives Boise State University Department of Electrical and Computer Engineering ECE L Circuit Analysis and Design Lab Experiment #0: Frequency esponse Measurements The objectives of this laboratory

More information

Filter Design, Active Filters & Review. EGR 220, Chapter 14.7, December 14, 2017

Filter Design, Active Filters & Review. EGR 220, Chapter 14.7, December 14, 2017 Filter Design, Active Filters & Review EGR 220, Chapter 14.7, 14.11 December 14, 2017 Overview ² Passive filters (no op amps) ² Design examples ² Active filters (use op amps) ² Course review 2 Example:

More information

Differential Amplifier : input. resistance. Differential amplifiers are widely used in engineering instrumentation

Differential Amplifier : input. resistance. Differential amplifiers are widely used in engineering instrumentation Differential Amplifier : input resistance Differential amplifiers are widely used in engineering instrumentation Differential Amplifier : input resistance v 2 v 1 ir 1 ir 1 2iR 1 R in v 2 i v 1 2R 1 Differential

More information

Downloaded from

Downloaded from VI SEMESTER FINAL EXAMINATION 2003 Attempt ALL questions. Q. [1] [a] What is filter? Why it is required? Define half power points, rolloff and centre frequency. [3] [b] Plot the magnitude and phase response

More information

Butterworth Active Bandpass Filter using Sallen-Key Topology

Butterworth Active Bandpass Filter using Sallen-Key Topology Butterworth Active Bandpass Filter using Sallen-Key Topology Technical Report 5 Milwaukee School of Engineering ET-3100 Electronic Circuit Design Submitted By: Alex Kremnitzer Date: 05-11-2011 Date Performed:

More information

Part B. Simple Digital Filters. 1. Simple FIR Digital Filters

Part B. Simple Digital Filters. 1. Simple FIR Digital Filters Simple Digital Filters Chapter 7B Part B Simple FIR Digital Filters LTI Discrete-Time Systems in the Transform-Domain Simple Digital Filters Simple IIR Digital Filters Comb Filters 3. Simple FIR Digital

More information

Chapter 4: Passive Analog Signal Processing

Chapter 4: Passive Analog Signal Processing hapter 4: Passive Analog Signal Transmission hapter 4: Passive Analog Signal Processing In this chapter we introduce filters and signal transmission theory. Filters are essential components of most analog

More information

Laboratory 6. Lab 6. Operational Amplifier Circuits. Required Components: op amp 2 1k resistor 4 10k resistors 1 100k resistor 1 0.

Laboratory 6. Lab 6. Operational Amplifier Circuits. Required Components: op amp 2 1k resistor 4 10k resistors 1 100k resistor 1 0. Laboratory 6 Operational Amplifier Circuits Required Components: 1 741 op amp 2 1k resistor 4 10k resistors 1 100k resistor 1 0.1 F capacitor 6.1 Objectives The operational amplifier is one of the most

More information

P I M. Low PIM, High-Power Filter Solutions for Monitoring Broadband Emissions. Features: Broadband PIM Monitoring. General Concept for Low PIM ATE

P I M. Low PIM, High-Power Filter Solutions for Monitoring Broadband Emissions. Features: Broadband PIM Monitoring. General Concept for Low PIM ATE Features: Patent pending solution enables monitoring of PIM (Passive IM) up to 13 GHz, with high-power capabilities Near end monitoring: carriers are rejected -90 db by the notch filter and travel through

More information

EKT 314 ELECTRONIC INSTRUMENTATION

EKT 314 ELECTRONIC INSTRUMENTATION EKT 314 ELECTRONIC INSTRUMENTATION Elektronik Instrumentasi Semester 2 2012/2013 Chapter 3 Analog Signal Conditioning Session 2 Mr. Fazrul Faiz Zakaria school of computer and communication engineering.

More information

Analog Electronics. Lecture Pearson Education. Upper Saddle River, NJ, All rights reserved.

Analog Electronics. Lecture Pearson Education. Upper Saddle River, NJ, All rights reserved. Analog Electronics V Lecture 5 V Operational Amplifers Op-amp is an electronic device that amplify the difference of voltage at its two inputs. V V 8 1 DIP 8 1 DIP 20 SMT 1 8 1 SMT Operational Amplifers

More information

ECE 363 FINAL (F16) 6 problems for 100 pts Problem #1: Fuel Pump Controller (18 pts)

ECE 363 FINAL (F16) 6 problems for 100 pts Problem #1: Fuel Pump Controller (18 pts) ECE 363 FINAL (F16) NAME: 6 problems for 100 pts Problem #1: Fuel Pump Controller (18 pts) You are asked to design a high-side switch for a remotely operated fuel pump. You decide to use the IRF9520 power

More information

Background Theory and Simulation Practice

Background Theory and Simulation Practice CAD and Simulation Objectives Experiment Topic: CAD and Simulation PSpice 9.1 Student Version To obtain your free copy of the software and user s guide, go to Electronics Lab website ( http://www.electronics-lab.com/downloads/schematic/013/

More information

Poles and Zeros of H(s), Analog Computers and Active Filters

Poles and Zeros of H(s), Analog Computers and Active Filters Poles and Zeros of H(s), Analog Computers and Active Filters Physics116A, Draft10/28/09 D. Pellett LRC Filter Poles and Zeros Pole structure same for all three functions (two poles) HR has two poles and

More information

EE 3305 Lab I Revised July 18, 2003

EE 3305 Lab I Revised July 18, 2003 Operational Amplifiers Operational amplifiers are high-gain amplifiers with a similar general description typified by the most famous example, the LM741. The LM741 is used for many amplifier varieties

More information

Homework Assignment 03

Homework Assignment 03 Homework Assignment 03 Question 1 (Short Takes), 2 points each unless otherwise noted. 1. Two 0.68 μf capacitors are connected in series across a 10 khz sine wave signal source. The total capacitive reactance

More information

Frequency Selective Circuits

Frequency Selective Circuits Lab 15 Frequency Selective Circuits Names Objectives in this lab you will Measure the frequency response of a circuit Determine the Q of a resonant circuit Build a filter and apply it to an audio signal

More information

Optical Modulation and Frequency of Operation

Optical Modulation and Frequency of Operation Optical Modulation and Frequency of Operation Developers AB Overby Objectives Preparation Background The objectives of this experiment are to describe and illustrate the differences between frequency of

More information

Lab 9 Frequency Domain

Lab 9 Frequency Domain Lab 9 Frequency Domain 1 Components Required Resistors Capacitors Function Generator Multimeter Oscilloscope 2 Filter Design Filters are electric components that allow applying different operations to

More information

Homework Assignment 10

Homework Assignment 10 Homework Assignment 10 Question The amplifier below has infinite input resistance, zero output resistance and an openloop gain. If, find the value of the feedback factor as well as so that the closed-loop

More information

ActiveLowPassFilter -- Overview

ActiveLowPassFilter -- Overview ActiveLowPassFilter -- Overview OBJECTIVES: At the end of performing this experiment, learners would be able to: Describe the concept of active Low Pass Butterworth Filter Obtain the roll-off factor and

More information