(A) Based on the second-order FRF provided, determine appropriate values for ω n, ζ, and K. ω n =500 rad/s; ζ=0.1; K=0.

Size: px
Start display at page:

Download "(A) Based on the second-order FRF provided, determine appropriate values for ω n, ζ, and K. ω n =500 rad/s; ζ=0.1; K=0."

Transcription

1 ME35 Homework # Due: 1/1/1 Problem #1 (3%) A co-worker brings you an accelerometer spec sheet with the following frequency response function (FRF):. s G accelerometer = [volt +.1 jω.1 ω m ] (A) Based on the second-order FRF provided, determine appropriate values for ω n, ζ, and K. ω n =5 rad/s; ζ=.1; K=.15 [ volt s m ] (B) In terms ω n, ζ, and K, write the equations needed to determine the magnitude and phase angle of G(jω). G(jω) = K ; (1 ω ω ) +( ζ ω) n ω n G(jω) = atan ( ζ ω n ω/(1 ω ω n )) (C) Based on the equations developed in part (B), write a MATLAB program to plot magnitude G(jω) and phase G(jω). The resulting figure should show both axes on linear scales, with rad/s on the horizontal axis and either magnitude or degrees on the vertical axis. Your code should allow you to vary the values for ω n, ζ, and K, as well as setting bounds for the input frequency. Show your code. clear all; clc; %please enter the minimum input frequency f_bond_l = input('please enter the minimum input frequency: '); if f_bond_l < %please enter the maximum input frequency f_bond_h = input('please enter the maximum input frequency: '); if f_bond_h < else if f_bond_h <= f_bond_l disp('maximum input frequency should be larger than minimum input frequency!'); %please enter the omega omega = input('please enter the omega: '); if omega < disp('no negative omega '); %please enter the damping ratio zeta = input('please enter the damping ratio: '); if omega < disp('no negative damping ratio '); %please enter the sensitivity k = input('please enter the sensitivity: '); 1/7

2 Phase (deg) Gain ME35 Homework # Due: 1/1/1 for i=1: w(i)=f_bond_l+(i-1)*fix(f_bond_h-f_bond_l)/; %magnitude and phase angle mag(i) = k/sqrt((1-w(i)^/omega^)^+((*zeta*w(i))^/(omega^))); phase(i) = -atan((*zeta*w(i)/omega),(1-w(i)^/omega^)); %draw plots subplot(,1,1) plot(w,mag) title('plot of accelerometer gain') xlabel(''); ylabel('gain'); subplot(,1,) plot(w,phase/pi*18) title('plot of accelerometer phase shift') xlabel(''); ylabel('phase (deg)'); % (D) Using the values determined for ω n, ζ, and K in part (A), run your code from part (C) to plot the accelerometer gain and phase for frequencies between 1 and 1, rad/s. 8 x 1-3 Plot of accelerometer gain Plot of accelerometer phase shift (E) Using the semilogx command, rewrite your MATLAB code from part (C) to plot the input frequency on a logarithmic scale, going from 1 to 1 rad/sec. Also adjust the magnitude values to be shown in decibels. Show your updated code. clear all; clc; %please enter the minimum input frequency f_bond_l = input('please enter the minimum input frequency: '); if f_bond_l < %please enter the maximum input frequency f_bond_h = input('please enter the maximum input frequency: '); if f_bond_h < else if f_bond_h <= f_bond_l disp('maximum input frequency should be larger than minimum input frequency!'); /7

3 Phase (deg) Gain(dB) ME35 Homework # Due: 1/1/1 %please enter the omega omega = input('please enter the omega: '); if omega < disp('no negative omega '); %please enter the damping ratio zeta = input('please enter the damping ratio: '); if omega < disp('no negative damping ratio '); %please enter the sensitivity k = input('please enter the sensitivity: '); for i=1: w(i)=f_bond_l+(i-1)*fix(f_bond_h-f_bond_l)/; %magnitude and phase angle mag(i) = k/sqrt((1-w(i)^/omega^)^+((*zeta*w(i))^/(omega^))); mag_d(i)=*log1(mag(i)); phase(i) = -atan((*zeta*w(i)/omega),(1-w(i)^/omega^)); %draw plots subplot(,1,1) semilogx(w,mag_d) title('plot of accelerometer gain') xlabel(''); ylabel('gain(db)'); subplot(,1,) semilogx(w,phase/pi*18) title('plot of accelerometer phase shift') xlabel(''); ylabel('phase (deg)'); % (F) Using the values determined for ω n, ζ, and K in part (A), run your code from part (E) to plot the accelerometer gain and phase for frequencies between 1 and 1, rad/s. - Plot of accelerometer gain Plot of accelerometer phase shift (G) Plot by hand the gain (in db) and phase (in degrees) versus ω for the accelerometer FRF given above. Use a semi-log plot, with the input frequency spanning a few decades on either 3/7

4 P hase (deg) M agnitude (db ) Phase (deg) Magnitude (db) Phase [rad] Magnitude ME35 Homework # Due: 1/1/1 side of the natural frequency. Be sure to indicate the low frequency gain and the high frequency slope. Also indicate the resonant frequency, as well as the gain where ω = ω n apoxi -55 db Wr Wn -db/dec Frequency [rad/s] (H) Use the bode command in Matlab to create a Bode plot for the accelerometer FRF given above. - Bode Diagram Problem # (%) /7

5 Phase (deg) Magnitude (db) ME35 Homework # Due: 1/1/1 You are given the above Bode diagram of the frequency response function (FRF) of an unknown system A. Please answer the followings based on the above plot. (A) If τ=1 and K=1, calculate the 1 st order FRF and steady-state output of this system when it is excited with x = 1 sin(.1t) + 1sin (1t). (hint: use FRF of 1 st order system) FRF= 1 ; y= 1sin(.1t-.1)+.1sin(1t-1.57) 1+jω (B) Based on part (A), comment on the different response of the system to very low and very high frequency input signals? for low frequency input, neither magnitude nor phase change too much; for high frequency input, magnitude decreases drastically and phase lags approaching -9 degrees Bode Diagram Now you are given the above Bode diagram for the frequency response function (FRF) of another unknown system B. Please answer the followings based on the above plot. (C) If this system is excited with x = 5 sin(.1t) + 5 cos(1t) + 5 sin(1t) + 5 cos(1t) what will be the steady-state response (hint: read out the closest value from the graph). y=.1*5sin(.1t+9 )+5cos(1t+81 )+7.9*5sin(1t+5 )+1*5cos(1t+9 ) (D) Compared to previous FRF of system A, comments on how does system B respond differently to very low and very high frequency input signals? for low frequency input, magnitude drastically decrease while phase keep leading 9 degrees; for high frequency input, magnitude doesn't change too much while phase approaching degree. Problem #3 (3%) You are given a thermocouple without any additional documentation other than that it works. (A) What parameters do you need to know to fully characterize this thermocouple? sensitivity and time constant 5/7

6 O utput (V olt) O utput V oltage (V olt) ME35 Homework # Due: 1/1/1 To find the parameters, you took the thermocouple at room temperature of 5 C and immediately place it in a container of iced water, i.e. at C and recorded the time history of the output voltage as below: Tim e (sec) (B) Based on the above response, estimate the parameters you stated in part (A). Show your work. (Mark up the relevant points and your best estimation of the corresponding values on the above figure and turn it in with your work) K=delta output/delta input=(1.5-1)/(-5)=-.5 (v/degc) use y(t) = y o + (y y o )(1 e t τ ) for t, where y =1.5; y o =y()=1, plug in (., ) solve for τ, finally we got τ=.1 (sec) You are given another gadget with a voltage input port and a voltage output port without any documentation. You feel adventurous and connect the input port to a function generator and the output port to a scope. You are also cautious and applied a step input of 5 mv into the input port and stored the following output response: Tim e (sec) (C) What is the best guess of the order of the device, 1 st or nd order? Why? nd system, vibration /7

7 Amplitude Phase (deg) Magnitude (db) ME35 Homework # Due: 1/1/1 (D) Find/identify the natural frequency, damping ratio, and static sensitivity form the above step response. Show your work and remember the proper units. (Mark up the points and your best estimation of the corresponding values on the above figure and turn it in with your work) K=5/.5=1; Td=1.-.8=.; ω d =*pi/ Td=1.5 rad/s; use OS method:ζ = 1 π ln (y f y o OS ) ζ = 1 5 ln =.; ω π d = ω n 1 ζ, we got: ω n =1.5 rad/s (E) Give the parameter that you identified in part (D), determine the corresponding differential equation and the corresponding frequency response function (FRF). 1 FRF= 1 ( ω 1.5) +j.(ω/1.5 ) PDE= 1 d y +. dy + y = 1x (x:input; y:output) 1.5 dt 1.5 dt (F) Use MATLAB and plot the corresponding Bode diagram and the step response for a 5 mv step input. Bode Diagram Step Response Time (sec) 7/7

CHAPTER 6 INTRODUCTION TO SYSTEM IDENTIFICATION

CHAPTER 6 INTRODUCTION TO SYSTEM IDENTIFICATION CHAPTER 6 INTRODUCTION TO SYSTEM IDENTIFICATION Broadly speaking, system identification is the art and science of using measurements obtained from a system to characterize the system. The characterization

More information

4 Experiment 4: DC Motor Voltage to Speed Transfer Function Estimation by Step Response and Frequency Response (Part 2)

4 Experiment 4: DC Motor Voltage to Speed Transfer Function Estimation by Step Response and Frequency Response (Part 2) 4 Experiment 4: DC Motor Voltage to Speed Transfer Function Estimation by Step Response and Frequency Response (Part 2) 4.1 Introduction This lab introduces new methods for estimating the transfer function

More information

CHAPTER 6 Frequency Response, Bode. Plots, and Resonance

CHAPTER 6 Frequency Response, Bode. Plots, and Resonance CHAPTER 6 Frequency Response, Bode Plots, and Resonance CHAPTER 6 Frequency Response, Bode Plots, and Resonance 1. State the fundamental concepts of Fourier analysis. 2. Determine the output of a filter

More information

EE Experiment 8 Bode Plots of Frequency Response

EE Experiment 8 Bode Plots of Frequency Response EE16:Exp8-1 EE 16 - Experiment 8 Bode Plots of Frequency Response Objectives: To illustrate the relationship between a system frequency response and the frequency response break frequencies, factor powers,

More information

ME 365 FINAL EXAM. Monday, April 29, :30 pm-5:30 pm LILY Problem Score

ME 365 FINAL EXAM. Monday, April 29, :30 pm-5:30 pm LILY Problem Score Name: SOLUTION Section: 8:30_Chang 11:30_Meckl ME 365 FINAL EXAM Monday, April 29, 2013 3:30 pm-5:30 pm LILY 1105 Problem Score Problem Score Problem Score Problem Score Problem Score 1 5 9 13 17 2 6 10

More information

MAE143A Signals & Systems - Homework 8, Winter 2013 due by the end of class Tuesday March 5, 2013.

MAE143A Signals & Systems - Homework 8, Winter 2013 due by the end of class Tuesday March 5, 2013. MAE43A Signals & Systems - Homework 8, Winter 3 due by the end of class uesday March 5, 3. Question Measuring frequency responses Before we begin to measure frequency responses, we need a little theory...

More information

MTE 360 Automatic Control Systems University of Waterloo, Department of Mechanical & Mechatronics Engineering

MTE 360 Automatic Control Systems University of Waterloo, Department of Mechanical & Mechatronics Engineering MTE 36 Automatic Control Systems University of Waterloo, Department of Mechanical & Mechatronics Engineering Laboratory #1: Introduction to Control Engineering In this laboratory, you will become familiar

More information

Class #16: Experiment Matlab and Data Analysis

Class #16: Experiment Matlab and Data Analysis Class #16: Experiment Matlab and Data Analysis Purpose: The objective of this experiment is to add to our Matlab skill set so that data can be easily plotted and analyzed with simple tools. Background:

More information

Exercise 8: Frequency Response

Exercise 8: Frequency Response Exercise 8: Frequency Response Introduction We can find the frequency response of a system by exciting the system with a sinusoidal signal of amplitude A and frequency ω [rad/s] (Note: ω = 2πf) and observing

More information

Cleveland State University MCE441: Intr. Linear Control Systems. Lecture 12: Frequency Response Concepts Bode Diagrams. Prof.

Cleveland State University MCE441: Intr. Linear Control Systems. Lecture 12: Frequency Response Concepts Bode Diagrams. Prof. Cleveland State University MCE441: Intr. Linear Control Systems Lecture 12: Concepts Bode Diagrams Prof. Richter 1 / 2 Control systems are affected by signals which are often unpredictable: noise, disturbances,

More information

Use of the LTI Viewer and MUX Block in Simulink

Use of the LTI Viewer and MUX Block in Simulink Use of the LTI Viewer and MUX Block in Simulink INTRODUCTION The Input-Output ports in Simulink can be used in a model to access the LTI Viewer. This enables the user to display information about the magnitude

More information

Lecture 7:Examples using compensators

Lecture 7:Examples using compensators Lecture :Examples using compensators Venkata Sonti Department of Mechanical Engineering Indian Institute of Science Bangalore, India, This draft: March, 8 Example :Spring Mass Damper with step input Consider

More information

Frequency Response Analysis and Design Tutorial

Frequency Response Analysis and Design Tutorial 1 of 13 1/11/2011 5:43 PM Frequency Response Analysis and Design Tutorial I. Bode plots [ Gain and phase margin Bandwidth frequency Closed loop response ] II. The Nyquist diagram [ Closed loop stability

More information

Course Outline. Time vs. Freq. Domain Analysis. Frequency Response. Amme 3500 : System Dynamics & Control. Design via Frequency Response

Course Outline. Time vs. Freq. Domain Analysis. Frequency Response. Amme 3500 : System Dynamics & Control. Design via Frequency Response Course Outline Amme 35 : System Dynamics & Control Design via Frequency Response Week Date Content Assignment Notes Mar Introduction 2 8 Mar Frequency Domain Modelling 3 5 Mar Transient Performance and

More information

Complex Numbers in Electronics

Complex Numbers in Electronics P5 Computing, Extra Practice After Session 1 Complex Numbers in Electronics You would expect the square root of negative numbers, known as complex numbers, to be only of interest to pure mathematicians.

More information

ME 375. HW 7 Solutions. Original Homework Assigned 10/12, Due 10/19.

ME 375. HW 7 Solutions. Original Homework Assigned 10/12, Due 10/19. ME 375. HW 7 Solutions. Original Homework Assigned /2, Due /9. Problem. Palm 8.2 a-b Part (a). T (s) = 5 6s+2 = 5 2 3s+. Here τ = 3 and the multiplicative factor 5/2 shifts the magnitude curve up by 2log5/2

More information

, answer the next six questions.

, answer the next six questions. Frequency Response Problems Conceptual Questions 1) T/F Given f(t) = A cos (ωt + θ): The amplitude of the output in sinusoidal steady-state increases as K increases and decreases as ω increases. 2) T/F

More information

How to Graph the Transmissibility of a Single Degree of Freedom Vibrational System in MATLAB

How to Graph the Transmissibility of a Single Degree of Freedom Vibrational System in MATLAB How to Graph the Transmissibility of a Single Degree of Freedom Vibrational System in MATLAB Requirements: PC with MATLAB installed (Version 2010b was used for this guide) Basic understanding of how programming

More information

Outline. Digital Control. Lecture 3

Outline. Digital Control. Lecture 3 Outline Outline Outline 1 ler Design 2 What have we talked about in MM2? Sampling rate selection Equivalents between continuous & digital Systems Outline ler Design Emulation Method for 1 ler Design

More information

STATION NUMBER: LAB SECTION: Filters. LAB 6: Filters ELECTRICAL ENGINEERING 43/100 INTRODUCTION TO MICROELECTRONIC CIRCUITS

STATION NUMBER: LAB SECTION: Filters. LAB 6: Filters ELECTRICAL ENGINEERING 43/100 INTRODUCTION TO MICROELECTRONIC CIRCUITS Lab 6: Filters YOUR EE43/100 NAME: Spring 2013 YOUR PARTNER S NAME: YOUR SID: YOUR PARTNER S SID: STATION NUMBER: LAB SECTION: Filters LAB 6: Filters Pre- Lab GSI Sign- Off: Pre- Lab: /40 Lab: /60 Total:

More information

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab Objectives Boise State University Department of Electrical and Computer Engineering ECE L Circuit Analysis and Design Lab Experiment #0: Frequency esponse Measurements The objectives of this laboratory

More information

Frequency Response Analysis

Frequency Response Analysis Frequency Response Analysis Continuous Time * M. J. Roberts - All Rights Reserved 2 Frequency Response * M. J. Roberts - All Rights Reserved 3 Lowpass Filter H( s) = ω c s + ω c H( jω ) = ω c jω + ω c

More information

Free vibration of cantilever beam FREE VIBRATION OF CANTILEVER BEAM PROCEDURE

Free vibration of cantilever beam FREE VIBRATION OF CANTILEVER BEAM PROCEDURE FREE VIBRATION OF CANTILEVER BEAM PROCEDURE AIM Determine the damped natural frequency, logarithmic decrement and damping ratio of a given system from the free vibration response Calculate the mass of

More information

Open Loop Frequency Response

Open Loop Frequency Response TAKE HOME LABS OKLAHOMA STATE UNIVERSITY Open Loop Frequency Response by Carion Pelton 1 OBJECTIVE This experiment will reinforce your understanding of the concept of frequency response. As part of the

More information

ENG 100 Lab #2 Passive First-Order Filter Circuits

ENG 100 Lab #2 Passive First-Order Filter Circuits ENG 100 Lab #2 Passive First-Order Filter Circuits In Lab #2, you will construct simple 1 st -order RL and RC filter circuits and investigate their frequency responses (amplitude and phase responses).

More information

CDS 101/110: Lecture 8.2 PID Control

CDS 101/110: Lecture 8.2 PID Control CDS 11/11: Lecture 8.2 PID Control November 16, 216 Goals: Nyquist Example Introduce and review PID control. Show how to use loop shaping using PID to achieve a performance specification Discuss the use

More information

Bode and Log Magnitude Plots

Bode and Log Magnitude Plots Bode and Log Magnitude Plots Bode Magnitude and Phase Plots System Gain and Phase Margins & Bandwidths Polar Plot and Bode Diagrams Transfer Function from Bode Plots Bode Plots of Open Loop and Closed

More information

Attia, John Okyere. Plotting Commands. Electronics and Circuit Analysis using MATLAB. Ed. John Okyere Attia Boca Raton: CRC Press LLC, 1999

Attia, John Okyere. Plotting Commands. Electronics and Circuit Analysis using MATLAB. Ed. John Okyere Attia Boca Raton: CRC Press LLC, 1999 Attia, John Okyere. Plotting Commands. Electronics and Circuit Analysis using MATLAB. Ed. John Okyere Attia Boca Raton: CRC Press LLC, 1999 1999 by CRC PRESS LLC CHAPTER TWO PLOTTING COMMANDS 2.1 GRAPH

More information

SECTION 7: FREQUENCY DOMAIN ANALYSIS. MAE 3401 Modeling and Simulation

SECTION 7: FREQUENCY DOMAIN ANALYSIS. MAE 3401 Modeling and Simulation SECTION 7: FREQUENCY DOMAIN ANALYSIS MAE 3401 Modeling and Simulation 2 Response to Sinusoidal Inputs Frequency Domain Analysis Introduction 3 We ve looked at system impulse and step responses Also interested

More information

E. Slope-Intercept Form and Direct Variation (pp )

E. Slope-Intercept Form and Direct Variation (pp ) and Direct Variation (pp. 32 35) For any two points, there is one and only one line that contains both points. This fact can help you graph a linear equation. Many times, it will be convenient to use the

More information

EEL2216 Control Theory CT2: Frequency Response Analysis

EEL2216 Control Theory CT2: Frequency Response Analysis EEL2216 Control Theory CT2: Frequency Response Analysis 1. Objectives (i) To analyse the frequency response of a system using Bode plot. (ii) To design a suitable controller to meet frequency domain and

More information

FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY

FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY In this experiment we will analytically determine and measure the frequency response of networks containing resistors, AC source/sources, and energy storage

More information

Operational Amplifier BME 360 Lecture Notes Ying Sun

Operational Amplifier BME 360 Lecture Notes Ying Sun Operational Amplifier BME 360 Lecture Notes Ying Sun Characteristics of Op-Amp An operational amplifier (op-amp) is an analog integrated circuit that consists of several stages of transistor amplification

More information

ME 5281 Fall Homework 8 Due: Wed. Nov. 4th; start of class.

ME 5281 Fall Homework 8 Due: Wed. Nov. 4th; start of class. ME 5281 Fall 215 Homework 8 Due: Wed. Nov. 4th; start of class. Reading: Chapter 1 Part A: Warm Up Problems w/ Solutions (graded 4%): A.1 Non-Minimum Phase Consider the following variations of a system:

More information

Integrators, differentiators, and simple filters

Integrators, differentiators, and simple filters BEE 233 Laboratory-4 Integrators, differentiators, and simple filters 1. Objectives Analyze and measure characteristics of circuits built with opamps. Design and test circuits with opamps. Plot gain vs.

More information

PHYSICS 330 LAB Operational Amplifier Frequency Response

PHYSICS 330 LAB Operational Amplifier Frequency Response PHYSICS 330 LAB Operational Amplifier Frequency Response Objectives: To measure and plot the frequency response of an operational amplifier circuit. History: Operational amplifiers are among the most widely

More information

and using the step routine on the closed loop system shows the step response to be less than the maximum allowed 20%.

and using the step routine on the closed loop system shows the step response to be less than the maximum allowed 20%. Phase (deg); Magnitude (db) 385 Bode Diagrams 8 Gm = Inf, Pm=59.479 deg. (at 62.445 rad/sec) 6 4 2-2 -4-6 -8-1 -12-14 -16-18 1-1 1 1 1 1 2 1 3 and using the step routine on the closed loop system shows

More information

Chapter 5 Frequency-domain design

Chapter 5 Frequency-domain design Chapter 5 Frequency-domain design Control Automático 3º Curso. Ing. Industrial Escuela Técnica Superior de Ingenieros Universidad de Sevilla Outline of the presentation Introduction. Time response analysis

More information

Electronics basics for MEMS and Microsensors course

Electronics basics for MEMS and Microsensors course Electronics basics for course, a.a. 2017/2018, M.Sc. in Electronics Engineering Transfer function 2 X(s) T(s) Y(s) T S = Y s X(s) The transfer function of a linear time-invariant (LTI) system is the function

More information

#8A RLC Circuits: Free Oscillations

#8A RLC Circuits: Free Oscillations #8A RL ircuits: Free Oscillations Goals In this lab we investigate the properties of a series RL circuit. Such circuits are interesting, not only for there widespread application in electrical devices,

More information

Experiment 1 Alternating Current with Coil and Ohmic Resistors

Experiment 1 Alternating Current with Coil and Ohmic Resistors Experiment Alternating Current with Coil and Ohmic esistors - Objects of the experiment - Determining the total impedance and the phase shift in a series connection of a coil and a resistor. - Determining

More information

Lab 6 rev 2.1-kdp Lab 6 Time and frequency domain analysis of LTI systems

Lab 6 rev 2.1-kdp Lab 6 Time and frequency domain analysis of LTI systems Lab 6 Time and frequency domain analysis of LTI systems 1 I. GENERAL DISCUSSION In this lab and the next we will further investigate the connection between time and frequency domain responses. In this

More information

Laboratory 7: Active Filters

Laboratory 7: Active Filters EGR 224L - Spring 208 7. Introduction Laboratory 7: Active Filters During this lab, you are going to use data files produced by two different low-pass filters to examine MATLAB s ability to predict transfer

More information

PYKC 13 Feb 2017 EA2.3 Electronics 2 Lecture 8-1

PYKC 13 Feb 2017 EA2.3 Electronics 2 Lecture 8-1 In this lecture, I will cover amplitude and phase responses of a system in some details. What I will attempt to do is to explain how would one be able to obtain the frequency response from the transfer

More information

Välkomna till TSRT15 Reglerteknik Föreläsning 5. Summary of lecture 4 Frequency response Bode plot

Välkomna till TSRT15 Reglerteknik Föreläsning 5. Summary of lecture 4 Frequency response Bode plot Välkomna till TSRT15 Reglerteknik Föreläsning 5 Summary of lecture 4 Frequency response Bode plot Summary of last lecture 2 Given a pole polynomial with a varying parameter P(s)+KQ(s)=0 We draw the location

More information

ME 360: FUNDAMENTALS OF SIGNAL PROCESSING, INSTRUMENTATION AND CONTROL

ME 360: FUNDAMENTALS OF SIGNAL PROCESSING, INSTRUMENTATION AND CONTROL ME 360: FUNDAMENTALS OF SIGNAL PROCESSING, INSTRUMENTATION AND CONTROL Experiment No. 5 System Identification with Frequency Response Techniques using the Dynamic Signal Analyzer. CREDITS Originated: N.

More information

EES42042 Fundamental of Control Systems Bode Plots

EES42042 Fundamental of Control Systems Bode Plots EES42042 Fundamental of Control Systems Bode Plots DR. Ir. Wahidin Wahab M.Sc. Ir. Aries Subiantoro M.Sc. 2 Bode Plots Plot of db Gain and phase vs frequency It is assumed you know how to construct Bode

More information

Advanced Circuits Topics Part 2 by Dr. Colton (Fall 2017)

Advanced Circuits Topics Part 2 by Dr. Colton (Fall 2017) Part 2: Some Possibly New Things Advanced Circuits Topics Part 2 by Dr. Colton (Fall 2017) These are some topics that you may or may not have learned in Physics 220 and/or 145. This handout continues where

More information

ECE503 Homework Assignment Number 8 Solution

ECE503 Homework Assignment Number 8 Solution ECE53 Homework Assignment Number 8 Solution 1. 3 points. Recall that an analog integrator has transfer function H a (s) = 1 s. Use the bilinear transform to find the digital transfer function G(z) from

More information

EE 233 Circuit Theory Lab 2: Amplifiers

EE 233 Circuit Theory Lab 2: Amplifiers EE 233 Circuit Theory Lab 2: Amplifiers Table of Contents 1 Introduction... 1 2 Precautions... 1 3 Prelab Exercises... 2 3.1 LM348N Op-amp Parameters... 2 3.2 Voltage Follower Circuit Analysis... 2 3.2.1

More information

Application Note #2442

Application Note #2442 Application Note #2442 Tuning with PL and PID Most closed-loop servo systems are able to achieve satisfactory tuning with the basic Proportional, Integral, and Derivative (PID) tuning parameters. However,

More information

ECE317 Homework 7. where

ECE317 Homework 7. where ECE317 Homework 7 Problem 1: Consider a system with loop gain, T(s), given by: where T(s) = 300(1+s)(1+ s 40 ) 1) Determine whether the system is stable by finding the closed loop poles of the system using

More information

Lecture 2 Analog circuits. IR detection

Lecture 2 Analog circuits. IR detection Seeing the light.. Lecture Analog circuits I t IR light V 9V V Q OP805 RL IR detection Noise sources: Electrical (60Hz, 0Hz, 80Hz.) Other electrical IR from lights IR from cameras (autofocus) Visible light

More information

Lab 4: First/Second Order DT Systems and a Communications Example (Second Draft)

Lab 4: First/Second Order DT Systems and a Communications Example (Second Draft) ECEN 33 Linear Systems Spring 3-- P. Mathys Lab 4: First/Second Order DT Systems and a Communications Example (Second Draft Introduction The main components from which linear and time-invariant discrete-time

More information

Experiment 2: Transients and Oscillations in RLC Circuits

Experiment 2: Transients and Oscillations in RLC Circuits Experiment 2: Transients and Oscillations in RLC Circuits Will Chemelewski Partner: Brian Enders TA: Nielsen See laboratory book #1 pages 5-7, data taken September 1, 2009 September 7, 2009 Abstract Transient

More information

Lab #2: Electrical Measurements II AC Circuits and Capacitors, Inductors, Oscillators and Filters

Lab #2: Electrical Measurements II AC Circuits and Capacitors, Inductors, Oscillators and Filters Lab #2: Electrical Measurements II AC Circuits and Capacitors, Inductors, Oscillators and Filters Goal: In circuits with a time-varying voltage, the relationship between current and voltage is more complicated

More information

EE105 Fall 2015 Microelectronic Devices and Circuits. Amplifier Gain

EE105 Fall 2015 Microelectronic Devices and Circuits. Amplifier Gain EE05 Fall 205 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) 2- Amplifier Gain Voltage Gain: Current Gain: Power Gain: Note: A v v O v I A i i O i

More information

Pre-Lab. Introduction

Pre-Lab. Introduction Pre-Lab Read through this entire lab. Perform all of your calculations (calculated values) prior to making the required circuit measurements. You may need to measure circuit component values to obtain

More information

sin(wt) y(t) Exciter Vibrating armature ENME599 1

sin(wt) y(t) Exciter Vibrating armature ENME599 1 ENME599 1 LAB #3: Kinematic Excitation (Forced Vibration) of a SDOF system Students must read the laboratory instruction manual prior to the lab session. The lab report must be submitted in the beginning

More information

Bode plot, named after Hendrik Wade Bode, is usually a combination of a Bode magnitude plot and Bode phase plot:

Bode plot, named after Hendrik Wade Bode, is usually a combination of a Bode magnitude plot and Bode phase plot: Bode plot From Wikipedia, the free encyclopedia A The Bode plot for a first-order (one-pole) lowpass filter Bode plot, named after Hendrik Wade Bode, is usually a combination of a Bode magnitude plot and

More information

Department of Electrical & Computer Engineering Technology. EET 3086C Circuit Analysis Laboratory Experiments. Masood Ejaz

Department of Electrical & Computer Engineering Technology. EET 3086C Circuit Analysis Laboratory Experiments. Masood Ejaz Department of Electrical & Computer Engineering Technology EET 3086C Circuit Analysis Laboratory Experiments Masood Ejaz Experiment # 1 DC Measurements of a Resistive Circuit and Proof of Thevenin Theorem

More information

ECE4902 Lab 5 Simulation. Simulation. Export data for use in other software tools (e.g. MATLAB or excel) to compare measured data with simulation

ECE4902 Lab 5 Simulation. Simulation. Export data for use in other software tools (e.g. MATLAB or excel) to compare measured data with simulation ECE4902 Lab 5 Simulation Simulation Export data for use in other software tools (e.g. MATLAB or excel) to compare measured data with simulation Be sure to have your lab data available from Lab 5, Common

More information

EECS40 RLC Lab guide

EECS40 RLC Lab guide EECS40 RLC Lab guide Introduction Second-Order Circuits Second order circuits have both inductor and capacitor components, which produce one or more resonant frequencies, ω0. In general, a differential

More information

NPTEL Online Course: Control Engineering

NPTEL Online Course: Control Engineering NPTEL Online Course: Control Engineering Dr. Ramkrishna Pasumarthy and Dr.Viswanath Assignment - 0 : s. A passive band pass filter with is one which: (a) Attenuates signals between the two cut-off frequencies

More information

Laboratory 5: RC Circuits and Filtering

Laboratory 5: RC Circuits and Filtering 5.1 Introduction Laboratory 5: ircuits and Filtering For this lab, you will be comparing the experimental behavior of a filter with analytical behavior modeled in MATLAB using Bode plots. During the lab

More information

v(t) = V p sin(2π ft +φ) = V p cos(2π ft +φ + π 2 )

v(t) = V p sin(2π ft +φ) = V p cos(2π ft +φ + π 2 ) 1 Let us revisit sine and cosine waves. A sine wave can be completely defined with three parameters Vp, the peak voltage (or amplitude), its frequency w in radians/second or f in cycles/second (Hz), and

More information

Laboratory 4: Amplification, Impedance, and Frequency Response

Laboratory 4: Amplification, Impedance, and Frequency Response ES 3: Introduction to Electrical Systems Laboratory 4: Amplification, Impedance, and Frequency Response I. GOALS: In this laboratory, you will build an audio amplifier using an LM386 integrated circuit.

More information

LRC Circuit PHYS 296 Your name Lab section

LRC Circuit PHYS 296 Your name Lab section LRC Circuit PHYS 296 Your name Lab section PRE-LAB QUIZZES 1. What will we investigate in this lab? 2. Figure 1 on the following page shows an LRC circuit with the resistor of 1 Ω, the capacitor of 33

More information

3.2 Measuring Frequency Response Of Low-Pass Filter :

3.2 Measuring Frequency Response Of Low-Pass Filter : 2.5 Filter Band-Width : In ideal Band-Pass Filters, the band-width is the frequency range in Hz where the magnitude response is at is maximum (or the attenuation is at its minimum) and constant and equal

More information

CSCD 409 Scientific Programming. Module 6: Plotting (Chpt 5)

CSCD 409 Scientific Programming. Module 6: Plotting (Chpt 5) CSCD 409 Scientific Programming Module 6: Plotting (Chpt 5) 2008-2012, Prentice Hall, Paul Schimpf All rights reserved. No portion of this presentation may be reproduced, in whole or in part, in any form

More information

EK307 Passive Filters and Steady State Frequency Response

EK307 Passive Filters and Steady State Frequency Response EK307 Passive Filters and Steady State Frequency Response Laboratory Goal: To explore the properties of passive signal-processing filters Learning Objectives: Passive filters, Frequency domain, Bode plots

More information

Rotary Motion Servo Plant: SRV02. Rotary Experiment #03: Speed Control. SRV02 Speed Control using QuaRC. Student Manual

Rotary Motion Servo Plant: SRV02. Rotary Experiment #03: Speed Control. SRV02 Speed Control using QuaRC. Student Manual Rotary Motion Servo Plant: SRV02 Rotary Experiment #03: Speed Control SRV02 Speed Control using QuaRC Student Manual Table of Contents 1. INTRODUCTION...1 2. PREREQUISITES...1 3. OVERVIEW OF FILES...2

More information

MEM01: DC-Motor Servomechanism

MEM01: DC-Motor Servomechanism MEM01: DC-Motor Servomechanism Interdisciplinary Automatic Controls Laboratory - ME/ECE/CHE 389 February 5, 2016 Contents 1 Introduction and Goals 1 2 Description 2 3 Modeling 2 4 Lab Objective 5 5 Model

More information

EE152 F13 Midterm 1. Before starting, please check to make sure that you have all 6 pages Total 100. V0.

EE152 F13 Midterm 1. Before starting, please check to make sure that you have all 6 pages Total 100. V0. EE152 F13 Midterm 1 Name: (please print) Solution In recognition of and in the spirit of the Stanford University Honor Code, I certify that I will neither give nor receive unpermitted aid on this exam.

More information

Frequency Selective Circuits

Frequency Selective Circuits Lab 15 Frequency Selective Circuits Names Objectives in this lab you will Measure the frequency response of a circuit Determine the Q of a resonant circuit Build a filter and apply it to an audio signal

More information

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 5 RC Circuits Frequency Response

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 5 RC Circuits Frequency Response POLYTECHNIC UNIVERSITY Electrical Engineering Department EE SOPHOMORE LORTORY Eperiment 5 RC Circuits Frequency Response Modified for Physics 18, rooklyn College I. Overview of Eperiment In this eperiment

More information

EE 233 Circuit Theory Lab 3: First-Order Filters

EE 233 Circuit Theory Lab 3: First-Order Filters EE 233 Circuit Theory Lab 3: First-Order Filters Table of Contents 1 Introduction... 1 2 Precautions... 1 3 Prelab Exercises... 2 3.1 Inverting Amplifier... 3 3.2 Non-Inverting Amplifier... 4 3.3 Integrating

More information

EE 462G Laboratory #1 Measuring Capacitance

EE 462G Laboratory #1 Measuring Capacitance EE 462G Laboratory #1 Measuring Capacitance Drs. A.V. Radun and K.D. Donohue (1/24/07) Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 Updated 8/31/2007 by

More information

Engineering Discovery

Engineering Discovery Modeling, Computing, & Measurement: Measurement Systems # 4 Dr. Kevin Craig Professor of Mechanical Engineering Rensselaer Polytechnic Institute 1 Frequency Response and Filters When you hear music and

More information

DESIGN AND VALIDATION OF A PID AUTO-TUNING ALGORITHM

DESIGN AND VALIDATION OF A PID AUTO-TUNING ALGORITHM DESIGN AND VALIDATION OF A PID AUTO-TUNING ALGORITHM Diego F. Sendoya-Losada and Jesús D. Quintero-Polanco Department of Electronic Engineering, Faculty of Engineering, Surcolombiana University, Neiva,

More information

Bode Plots. Hamid Roozbahani

Bode Plots. Hamid Roozbahani Bode Plots Hamid Roozbahani A Bode plot is a graph of the transfer function of a linear, time-invariant system versus frequency, plotted with a logfrequency axis, to show the system's frequency response.

More information

Experiment 3 Topic: Dynamic System Response Week A Procedure

Experiment 3 Topic: Dynamic System Response Week A Procedure Experiment 3 Topic: Dynamic System Response Week A Procedure Laboratory Assistant: Email: Office Hours: LEX-3 Website: Brock Hedlund bhedlund@nd.edu 11/05 11/08 5 pm to 6 pm in B14 http://www.nd.edu/~jott/measurements/measurements_lab/e3

More information

PROBLEM SET 6. Note: This version is preliminary in that it does not yet have instructions for uploading the MATLAB problems.

PROBLEM SET 6. Note: This version is preliminary in that it does not yet have instructions for uploading the MATLAB problems. PROBLEM SET 6 Issued: 2/32/19 Due: 3/1/19 Reading: During the past week we discussed change of discrete-time sampling rate, introducing the techniques of decimation and interpolation, which is covered

More information

Experiment 8: An AC Circuit

Experiment 8: An AC Circuit Experiment 8: An AC Circuit PART ONE: AC Voltages. Set up this circuit. Use R = 500 Ω, L = 5.0 mh and C =.01 μf. A signal generator built into the interface provides the emf to run the circuit from Output

More information

University of Illinois at Chicago Spring ECE 412 Introduction to Filter Synthesis Homework #2 Solutions. Problem 1

University of Illinois at Chicago Spring ECE 412 Introduction to Filter Synthesis Homework #2 Solutions. Problem 1 Problem 1 (a) Magnitude (impedance) scale the circuit so that all resistors are 1kΩ. Solution: Since all of the resistors in the circuit are 1Ω, we need to magnitude scale by k m = 1000; therefore, we

More information

Lab 4: PMSM Characterization. EE595S Fall 2005 S.D. Sudhoff

Lab 4: PMSM Characterization. EE595S Fall 2005 S.D. Sudhoff Lab 4: PMSM Characterization EE595S Fall 2005 S.D. Sudhoff 1 Machine to Characterize Reliance Electric 1 Hp Continuous at 2000 RPM Maximum Speed 5500 RPM Inertia: 0.012 Lb-in-sec^2 Continuous Stall Torque:

More information

ECE 231 Laboratory Exercise 6 Frequency / Time Response of RL and RC Circuits

ECE 231 Laboratory Exercise 6 Frequency / Time Response of RL and RC Circuits ECE 231 Laboratory Exercise 6 Frequency / Time Response of RL and RC Circuits Laboratory Group (Names) OBJECTIVES Observe and calculate the response of first-order low pass and high pass filters. Gain

More information

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Homework 4

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Homework 4 EECS 16B Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Homework 4 This homework is solely for your own practice. However, everything on it is in scope for midterm 1,

More information

Motor Control. Suppose we wish to use a microprocessor to control a motor - (or to control the load attached to the motor!) Power supply.

Motor Control. Suppose we wish to use a microprocessor to control a motor - (or to control the load attached to the motor!) Power supply. Motor Control Suppose we wish to use a microprocessor to control a motor - (or to control the load attached to the motor!) Operator Input CPU digital? D/A, PWM analog voltage Power supply Amplifier linear,

More information

Homework Assignment 06

Homework Assignment 06 Question 1 (2 points each unless noted otherwise) Homework Assignment 06 1. True or false: when transforming a circuit s diagram to a diagram of its small-signal model, we replace dc constant current sources

More information

Fall Music 320A Homework #2 Sinusoids, Complex Sinusoids 145 points Theory and Lab Problems Due Thursday 10/11/2018 before class

Fall Music 320A Homework #2 Sinusoids, Complex Sinusoids 145 points Theory and Lab Problems Due Thursday 10/11/2018 before class Fall 2018 2019 Music 320A Homework #2 Sinusoids, Complex Sinusoids 145 points Theory and Lab Problems Due Thursday 10/11/2018 before class Theory Problems 1. 15 pts) [Sinusoids] Define xt) as xt) = 2sin

More information

Lab Report 4: Root Locus and Proportional Controller

Lab Report 4: Root Locus and Proportional Controller Lab Report 4: Root Locus and Proportional Controller University of Tennessee at Chattanooga Engineering 32 Blue Team Kevin Schrumpf Justin Anchanattu Justin Rehagen April 1, 212 Introduction The first

More information

Section 7.2 Logarithmic Functions

Section 7.2 Logarithmic Functions Math 150 c Lynch 1 of 6 Section 7.2 Logarithmic Functions Definition. Let a be any positive number not equal to 1. The logarithm of x to the base a is y if and only if a y = x. The number y is denoted

More information

AC BEHAVIOR OF COMPONENTS

AC BEHAVIOR OF COMPONENTS AC BEHAVIOR OF COMPONENTS AC Behavior of Capacitor Consider a capacitor driven by a sine wave voltage: I(t) 2 1 U(t) ~ C 0-1 -2 0 2 4 6 The current: is shifted by 90 o (sin cos)! 1.0 0.5 0.0-0.5-1.0 0

More information

Chapter 2 Simple Electro-Magnetic Circuits

Chapter 2 Simple Electro-Magnetic Circuits Chapter 2 Simple Electro-Magnetic Circuits 2.1 Introduction The simplest component which utilizes electro-magnetic interaction is the coil. A coil is an energy storage component, which stores energy in

More information

Correction for Synchronization Errors in Dynamic Measurements

Correction for Synchronization Errors in Dynamic Measurements Correction for Synchronization Errors in Dynamic Measurements Vasishta Ganguly and Tony L. Schmitz Department of Mechanical Engineering and Engineering Science University of North Carolina at Charlotte

More information

BJT & FET Frequency Response

BJT & FET Frequency Response Chapter 4 BJT & FET Spring 2012 4 th Semester Mechatronics SZABIST, Karachi 2 Course Support humera.rafique@szabist.edu.pk Office: 100 Campus (404) Official: ZABdesk Subsidiary: https://sites.google.com/site/zabistmechatronics/home/spring-2012/ecd

More information

EE 3TP4: Signals and Systems Lab 5: Control of a Servomechanism

EE 3TP4: Signals and Systems Lab 5: Control of a Servomechanism EE 3TP4: Signals and Systems Lab 5: Control of a Servomechanism Tim Davidson Ext. 27352 davidson@mcmaster.ca Objective To identify the plant model of a servomechanism, and explore the trade-off between

More information

Pole, zero and Bode plot

Pole, zero and Bode plot Pole, zero and Bode plot EC04 305 Lecture notes YESAREKEY December 12, 2007 Authored by: Ramesh.K Pole, zero and Bode plot EC04 305 Lecture notes A rational transfer function H (S) can be expressed as

More information

Lesson 1b Linear Equations

Lesson 1b Linear Equations In the first lesson we looked at the concepts and rules of a Function. The first Function that we are going to investigate is the Linear Function. This is a good place to start because with Linear Functions,

More information