Status of the CSC Track-Finder

Size: px
Start display at page:

Download "Status of the CSC Track-Finder"

Transcription

1 Status of the CSC Track-Finder Darin Acosta University of Florida May 2000 D. Acosta, University of Florida TriDAS Review May

2 Outline Overview of the CSC trigger system Sector Receiver Sector Processor Muon Sorter CSC/DT Interface D. Acosta, University of Florida TriDAS Review May

3 CSC Muon Trigger Scheme Strip FE cards FE LCT Strip LCT + Motherboard card LCT Port Card PC OPTICAL CSC Track-Finder Sector Receiver SR Sector Processor SP FE Wire LCT card Wire FE cards RIM RPC Interface Module TMB 2µ / chamber In counting house RPC 4µ 3µ / port card DT 4µ 3µ / sector CSC Muon Sorter 4µ On chamber In peripheral crate Global µ Trigger Global L1 D. Acosta, University of Florida TriDAS Review May µ

4 The CSC Track-Finder From DT Track-Finder (Vienna) OPTICAL MB1 DT TF ME4 ME2-ME3 12 Sector Processors SP 1 Muon Sorter (Vienna) From CSC Port Cards PC 3µ / port card ME1 SR SP 24 Sector Receivers (+12 for ME4) 3µ / sector 12 sectors MS 4µ To Global Muon Trigger GMT (UCLA) (Florida) (Rice) 4µ WBS: , From DT Track-Finder 8µ RPC D. Acosta, University of Florida TriDAS Review May

5 Sector Receiver Functionality UCLA Receive 6 µ segments via 12 optical links from 2 Muon Port Cards Require 3 Sector Receivers for one 60 sector 2. Synchronize the data 3. Reformat the data into track segment variables } LCT bit pattern η, ϕ, ϕ b,... via s 4. Apply corrections for alignment 5. Communicate to Sector Processor via custom backplane (Channel Link) 6. Fan out ME1/3 µ segments to DT Track- Finder D. Acosta, University of Florida TriDAS Review May

6 Sector Receiver Logic UCLA Front Panel JTAG interface Controller FPGA VME Optical Fiber from MPC Optical Fiber from MPC Optical Receiver Optical Receiver Deserializer Deserializer Front FPGA L U T S L U T S Back FPGA To Backplane To Barrel Repeat for each Muon D. Acosta, University of Florida TriDAS Review May

7 Sector Receiver Scheme UCLA D. Acosta, University of Florida TriDAS Review May

8 Sector Receiver Fell behind schedule after postdoc departure. UCLA Personnel added in December/January: Robert Cousins, physicist, 50% time Vladislav Sedov, electronics engineer, 90% time (10% residual work on ALCT board) Also using paid consultant for some FPGA work (UCLA CS Ph.D. candidate) Schematics now well underway. Long-lead-time parts ordered. Layout planned by beginning of May. Plan to be ready for summer Track Finder test. D. Acosta, University of Florida TriDAS Review May

9 Sector Processor Functionality Florida 1. Accumulate track segments for possibly more than one B.X. 2. Extrapolate in 3D from one station to another for all possible track segment combinations 3. Assemble tracks from extrapolation results 4. Select best 3 tracks and cancel ghosts 5. Assign track parameters: p T, ϕ, η, quality New since last Review: Combined DT/CSC overlap region onto same board as CSC-only region (add MB1 ME2 extrap.) , Improved P T assignment technique Ghost-busting when 2 muons enter 1 CSC chamber (try all combinations) D. Acosta, University of Florida TriDAS Review May

10 Sector Processor Logic Florida Extrapolation Units Track Assembler Units , Bunch Crossing Analyzer From Backplane BXA bus EU1-2 EU1-3 EU2-3 bus TAU1 TAU2 Final Selection Unit FSU EU2-4 EU3-4 TAU3 Assignment Unit EU MB1-2 AU To Front panel FIFO MUX D. Acosta, University of Florida TriDAS Review May

11 Extrapolation Logic Florida Amb(A 1 ) η road finder η road finder Q η (A1B 1) Q η (A2B 1) Q η (A3B 1) Amb(B 1 ) η 1 η (A 1 ) η (B 1 ) SUB η A-η B η 2 η AND OR z φ high CMP φ high Qual(A 1 ) Qual(B 1 ) φ med φ low ABS φ CMP φ med CMP φ low Extrap Qual Q extrap (A 1 B 1 ) quality assignment quality unit assignment unit φ b + CMP φ -φ b + φ b (A 1 ) φ b - CMP φ -φ b - φ (A 1 ) φ (B 1 ) φ b (B 1 ) SUB φ A-φ B φ b + φ b - CMP φ -φ b + CMP φ -φ b - φ AND ϕ ϕ road finder ϕ road finder D. Acosta, University of Florida TriDAS Review May

12 Track Selection and P T Assignment φ φ Florida φ 9 to 3 Sorter with ghost cancellation logic 9 Track Assembler RAMs I.D. Comparison Unit Track Rank Sorter MUX Cancellation Logic and Encoder FIFO Mode (From FSU) MUX η φ 1 φ 2 φ 3 SUB φ 1 -φ 2 SUB φ 2 -φ 3 MUX η ~2M x 8 SRAM η Rank (P T & Quality) Sign New: 3-station sagitta measurement using FPGA preprocessing and RAM (Improves P T resolution from 30% to 20%) D. Acosta, University of Florida TriDAS Review May

13 SP Prototype Layout Florida Custom ChannelLink backplane Standard VME VME/JTAG interface (developed separately) Bunch Crossing Analyzer Extrapolation Units XCV50BG256 XCV400BG560 Track Assembler Units SRAM Final Selection Unit XCV150BG352 XCV50BG256 Assignment Units SRAM Layout complete 12 layers Tests set for 6/1/00 D. Acosta, University of Florida TriDAS Review May

14 Prototype Crate Layout SR SR SP SR CCB Florida One sector is half of Track- Finder crate Six crates for entire system Fully routed for summer tests Smaller prototype tested already US CMS DOE/NSF Review: April 11-13,

15 Pre-Prototype Prototype Tests Florida VME / JTAG interface for SR and SP: Software & hardware for FPGA and SRAM downloading through VME works Channel Link backplane and connector tests: No errors found up to 58 MHz clock (400 MHz on backplane) D. Acosta, University of Florida TriDAS Review May

16 Muon Sorter Functionality Rice 1. Receive 36 muons from 12 Sector Processors bits = 648 bits (& control bits) 2. Sort and rank the best 4 muons Sort is based on 7 bits (5 bits for p T and 2 bits for quality) 3. Send the output to the Global Muon Trigger for association with RPC and DT triggers 4 22 bits = 88 bits New since last Review: Reduction in muon count from 72 to 36 (inclusion of CSC/DT overlap in Sector Processor) allows sorting to be accomplished in one FPGA D. Acosta, University of Florida TriDAS Review May

17 Muon Sorter Logic FF- FLIP-FLOP, - LOOK-UP TABLE RAM Rice FF FF FF FF 14 FF 14 FF FF FF FF 2 8 CLK 40MHz VME INTERFACE FOR READ/WRITE SORTER 4 out of comparisons in parallel SORTER 4 out of comparisons in parallel SORTER 4 out of 8 comparisons in parallel FF FF FF FF 7 8 ALTERA EP20K200EFC ADR1 PAT1 ADR2 PAT2 ADR3 PAT3 ADR4 PAT out of 36 SINGLE-CHIP SORTER BLOCK DIAGRAM AND TIMING D. Acosta, University of Florida TriDAS Review May

18 Sorter Board Block Diagram Rice CONNECTORS TO GMT 9U * 400 MM BOARD VME INTERFACE VME J1 CONNECTOR CCB INTERFACE CONNECTOR TO CUSTOM BACKPLANE GMT LVDS DRIVERS SORTER PLD CONNECTOR TO RECEIVER BOARDS D. Acosta, University of Florida TriDAS Review May

19 Muon Sorter Crate Layout Rice CONNECTORS TO GMT S R R R R CONNECTORS TO RECEIVER BOARDS D. Acosta, University of Florida TriDAS Review May

20 Sorter Receiver Board Block Diagram Rice RECEIVERS POWER CLOCK CONNECTOR TO SP Rx CONNECTOR TO SP CONNECTOR TO SP Rx Rx PIPELINE PLD 10K130E or 20K200E CONNECTOR TO SORTER BOARD D. Acosta, University of Florida TriDAS Review May

21 Summer Plans Crate test with prototype SR, SP, CCB (and TMB, MPC) scheduled for summer 2000 Bench tests start June 1 Integration tests start July 1 Will test optical link connections and trigger algorithms at 40 MHz, verify output and latency All designs are proceeding well, and we should be able to make milestone Conceptual design, schematics, and some layouts already exist Development of test software started D. Acosta, University of Florida TriDAS Review May

22 Separation of DT/CSC Coverage R (cm) Slow simulation of CMS detector in GEANT 3.21 MB2/1 ME1/3 η = Z (cm) Hard boundary defined η=1.04 Separate Track- Finders optimized for each system Information shared across boundary for maximum efficiency Tentative agreement reached on DT/CSC interface Feb 00 D. Acosta, University of Florida TriDAS Review May

23 Advantages of Proposal Interconnections are cut in half when track segments from ME 2/2 and MB 2/2 are not shared (only ME 1/3 and MB2/1 are shared) The mapping of 60 CSC trigger sectors onto 30 DT ones is avoided (no ME 2/2) But, ME1 station has 30 or 20 subsectors, so there may still be a mapping problem The RPC data may be used by the GMT to settle any ghosting problem if a single muon is found by both Track-Finders φ b and η do not need to be sent by the CSC Track-Finder for DT T-F extrapolations D. Acosta, University of Florida TriDAS Review May

24 Advantages Continued The DT Track-Finder may trigger on MB1-MB2 type tracks These track segments and all those sent by the CSC trigger are assumed to be in barrel region The CSC Track-Finder logic is considerably simplified with proposed boundary Already assumed in present prototype D. Acosta, University of Florida TriDAS Review May

25 Issues with Proposal Must demonstrate acceptable efficiency by simulation CSC Sector Receiver must be designed to send only 2 track segments (out of 3) for the barrel-overlap region D. Acosta, University of Florida TriDAS Review May

Trigger Overview. Wesley Smith, U. Wisconsin CMS Trigger Project Manager. DOE/NSF Review April 12, 2000

Trigger Overview. Wesley Smith, U. Wisconsin CMS Trigger Project Manager. DOE/NSF Review April 12, 2000 Overview Wesley Smith, U. Wisconsin CMS Project Manager DOE/NSF Review April 12, 2000 1 TriDAS Main Parameters Level 1 Detector Frontend Readout Systems Event Manager Builder Networks Run Control System

More information

L1 Trigger Activities at UF. The CMS Level-1 1 Trigger

L1 Trigger Activities at UF. The CMS Level-1 1 Trigger L1 Trigger Activities at UF Current team: Darin Acosta (PI) Alex Madorsky (engineer) Lev Uvarov (PNPI engineer) Victor Golovtsov (PNPI engineer) Daniel Holmes (postdoc, CERN-based) Bobby Scurlock (grad

More information

A Cosmic Muon Tracking Algorithm for the CMS RPC based Technical Trigger

A Cosmic Muon Tracking Algorithm for the CMS RPC based Technical Trigger A Cosmic Muon Tracking Algorithm for the CMS RPC based Technical Trigger by Rajan Raj Thilak Department of Physics University of Bari INFN on behalf of the CMS RPC-Trigger Group (Bari, Frascati, Sofia,

More information

The CMS Muon Trigger

The CMS Muon Trigger The CMS Muon Trigger Outline: o CMS trigger system o Muon Lv-1 trigger o Drift-Tubes local trigger o peformance tests CMS Collaboration 1 CERN Large Hadron Collider start-up 2007 target luminosity 10^34

More information

CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS NOTE 2006/000 The Compact Muon Solenoid Experiment CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland DRAFT 8 Sep. 2006 The CMS Drift Tube Trigger

More information

Level-1 Regional Calorimeter System for CMS

Level-1 Regional Calorimeter System for CMS Level-1 Regional Calorimeter System for CMS P. Chumney, S. Dasu, M. Jaworski, J. Lackey, P. Robl, W.H.Smith Physics Department, University of Wisconsin, Madison, WI, USA CHEP March 2003 The pdf file of

More information

TIMING, TRIGGER AND CONTROL INTERFACE MODULE FOR ATLAS SCT READ OUT ELECTRONICS

TIMING, TRIGGER AND CONTROL INTERFACE MODULE FOR ATLAS SCT READ OUT ELECTRONICS TIMING, TRIGGER AND CONTROL INTERFACE MODULE FOR ATLAS SCT READ OUT ELECTRONICS Jonathan Butterworth ( email : jmb@hep.ucl.ac.uk ) Dominic Hayes ( email : dah@hep.ucl.ac.uk ) John Lane ( email : jbl@hep.ucl.ac.uk

More information

ATLAS Muon Trigger and Readout Considerations. Yasuyuki Horii Nagoya University on Behalf of the ATLAS Muon Collaboration

ATLAS Muon Trigger and Readout Considerations. Yasuyuki Horii Nagoya University on Behalf of the ATLAS Muon Collaboration ATLAS Muon Trigger and Readout Considerations Yasuyuki Horii Nagoya University on Behalf of the ATLAS Muon Collaboration ECFA High Luminosity LHC Experiments Workshop - 2016 ATLAS Muon System Overview

More information

Tests of the CMS Level-1 Regional Calorimeter Trigger Prototypes

Tests of the CMS Level-1 Regional Calorimeter Trigger Prototypes Tests of the CMS Level-1 Regional Calorimeter Trigger Prototypes W.H.Smith, P. Chumney, S. Dasu, M. Jaworski, J. Lackey, P. Robl, Physics Department, University of Wisconsin, Madison, WI, USA 8th Workshop

More information

The CSC Track-Finding Processor for the Level 1 Trigger of the CMS Experiment at the LHC at CERN B. Scurlock, S. M. Wang, and D. Acosta University of

The CSC Track-Finding Processor for the Level 1 Trigger of the CMS Experiment at the LHC at CERN B. Scurlock, S. M. Wang, and D. Acosta University of The CSC Track-Finding Processor for the Level 1 Trigger of the CMS Experiment at the LHC at CERN B. Scurlock, S. M. Wang, and D. Acosta University of Florida, Gainesville, FL August 18, 1999 Abstract This

More information

First-level trigger systems at LHC. Nick Ellis EP Division, CERN, Geneva

First-level trigger systems at LHC. Nick Ellis EP Division, CERN, Geneva First-level trigger systems at LHC Nick Ellis EP Division, CERN, Geneva 1 Outline Requirements from physics and other perspectives General discussion of first-level trigger implementations Techniques and

More information

Update on TAB Progress

Update on TAB Progress Update on TAB Progress John Parsons Nevis Labs, Columbia University Feb. 15/2002 Assumptions about ADC/FIR board ADC to TAB data links Progress on Trigger Algorithm Board (TAB) Urgent issues to be resolved

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS CR -2016/370 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland 13 November 2016 (v2, 13 February 2017)

More information

Hardware Trigger Processor for the MDT System

Hardware Trigger Processor for the MDT System University of Massachusetts Amherst E-mail: tcpaiva@cern.ch We are developing a low-latency hardware trigger processor for the Monitored Drift Tube system for the Muon Spectrometer of the ATLAS Experiment.

More information

High-p T (Hi-pT) Board for ATLAS TGC Trigger

High-p T (Hi-pT) Board for ATLAS TGC Trigger Muon Endcap Trigger Electronics Document presented for FDR held on March 1, 2004 CF I. Introduction High-p T (Hi-pT) Board for ATLAS TGC Trigger ATLAS TGC Electronics group *revised on 16th March 2004

More information

Hardware Trigger Processor for the MDT System

Hardware Trigger Processor for the MDT System University of Massachusetts Amherst E-mail: tcpaiva@cern.ch We are developing a low-latency hardware trigger processor for the Monitored Drift Tube system in the Muon spectrometer. The processor will fit

More information

Upgrade of the ATLAS Thin Gap Chamber Electronics for HL-LHC. Yasuyuki Horii, Nagoya University, on Behalf of the ATLAS Muon Collaboration

Upgrade of the ATLAS Thin Gap Chamber Electronics for HL-LHC. Yasuyuki Horii, Nagoya University, on Behalf of the ATLAS Muon Collaboration Upgrade of the ATLAS Thin Gap Chamber Electronics for HL-LHC Yasuyuki Horii, Nagoya University, on Behalf of the ATLAS Muon Collaboration TWEPP 2017, UC Santa Cruz, 12 Sep. 2017 ATLAS Muon System Overview

More information

The 1st Result of Global Commissioning of the ATALS Endcap Muon Trigger System in ATLAS Cavern

The 1st Result of Global Commissioning of the ATALS Endcap Muon Trigger System in ATLAS Cavern The 1st Result of Global Commissioning of the ATALS Endcap Muon Trigger System in ATLAS Cavern Takuya SUGIMOTO (Nagoya University) On behalf of TGC Group ~ Contents ~ 1. ATLAS Level1 Trigger 2. Endcap

More information

L1 Track Finding For a TiME Multiplexed Trigger

L1 Track Finding For a TiME Multiplexed Trigger V INFIERI WORKSHOP AT CERN 27/29 APRIL 215 L1 Track Finding For a TiME Multiplexed Trigger DAVIDE CIERI, K. HARDER, C. SHEPHERD, I. TOMALIN (RAL) M. GRIMES, D. NEWBOLD (UNIVERSITY OF BRISTOL) I. REID (BRUNEL

More information

Level-1 Track Trigger R&D. Zijun Xu Peking University

Level-1 Track Trigger R&D. Zijun Xu Peking University Level-1 Trigger R&D Zijun Xu Peking University 2016-12 1 Level-1 Trigger for CMS Phase2 Upgrade HL-LHC, ~2025 Pileup 140-250 Silicon based Level 1 Trigger Be crucial for trigger objects reconstruction

More information

The CMS Muon Detector

The CMS Muon Detector VCI 21 conference 19-23/2/21 The CMS Muon Detector Paolo Giacomelli INFN Sezione di Bologna Univ. of California, Riverside General Overview Drift Tubes Cathode Strip Chambers Resistive Plate Chambers Global

More information

Data Acquisition System for the Angra Project

Data Acquisition System for the Angra Project Angra Neutrino Project AngraNote 012-2009 (Draft) Data Acquisition System for the Angra Project H. P. Lima Jr, A. F. Barbosa, R. G. Gama Centro Brasileiro de Pesquisas Físicas - CBPF L. F. G. Gonzalez

More information

CMS Internal Note. The content of this note is intended for CMS internal use and distribution only. HCAL Partition Definitions

CMS Internal Note. The content of this note is intended for CMS internal use and distribution only. HCAL Partition Definitions Available on CMS information server CMS IN 2005/999 CMS Internal Note The content of this note is intended for CMS internal use and distribution only 1 March 2005 HCAL Partition Definitions J. Mans, D.

More information

Commissioning Status and Results of ATLAS Level1 Endcap Muon Trigger System. Yasuyuki Okumura. Nagoya TWEPP 2008

Commissioning Status and Results of ATLAS Level1 Endcap Muon Trigger System. Yasuyuki Okumura. Nagoya TWEPP 2008 Commissioning Status and Results of ATLAS Level1 Endcap Muon Trigger System Yasuyuki Okumura Nagoya University @ TWEPP 2008 ATLAS Trigger DAQ System Trigger in LHC-ATLAS Experiment 3-Level Trigger System

More information

The CMS Silicon Strip Tracker and its Electronic Readout

The CMS Silicon Strip Tracker and its Electronic Readout The CMS Silicon Strip Tracker and its Electronic Readout Markus Friedl Dissertation May 2001 M. Friedl The CMS Silicon Strip Tracker and its Electronic Readout 2 Introduction LHC Large Hadron Collider:

More information

9. TRIGGER AND DATA ACQUISITION

9. TRIGGER AND DATA ACQUISITION 9. TRIGGER AND DATA ACQUISITION 9.1 INTRODUCTION The CMS trigger and data acquisition system is shown in Fig. 9.1 and the used terminology in Table 9.1. For the nominal LHC design luminosity of 1 34 cm

More information

GRETINA. Electronics. Auxiliary Detector Workshop. Sergio Zimmermann LBNL. Auxiliary Detectors Workshop. January 28, 2006

GRETINA. Electronics. Auxiliary Detector Workshop. Sergio Zimmermann LBNL. Auxiliary Detectors Workshop. January 28, 2006 GRETINA Auxiliary Detector Workshop Electronics Sergio Zimmermann LBNL 1 Outline Electronic Interface Options Digitizers Trigger/Timing System Grounding and Shielding Summary 2 Interface Options Three

More information

First-level trigger systems at LHC

First-level trigger systems at LHC First-level trigger systems at LHC N. Ellis CERN, 1211 Geneva 23, Switzerland Nick.Ellis@cern.ch Abstract Some of the challenges of first-level trigger systems in the LHC experiments are discussed. The

More information

The Muon Pretrigger System of the HERA-B Experiment

The Muon Pretrigger System of the HERA-B Experiment The Muon Pretrigger System of the HERA-B Experiment Adams, M. 1, Bechtle, P. 1, Böcker, M. 1, Buchholz, P. 1, Cruse, C. 1, Husemann, U. 1, Klaus, E. 1, Koch, N. 1, Kolander, M. 1, Kolotaev, I. 1,2, Riege,

More information

US CMS Calorimeter. Regional Trigger System WBS 3.1.2

US CMS Calorimeter. Regional Trigger System WBS 3.1.2 WBS Dictionary/Basis of Estimate Documentation US CMS Calorimeter Regional Trigger System WBS 3.1.2-1- 1. INTRODUCTION 1.1 The CMS Calorimeter Trigger System The CMS trigger and data acquisition system

More information

Digital Design and System Implementation. Overview of Physical Implementations

Digital Design and System Implementation. Overview of Physical Implementations Digital Design and System Implementation Overview of Physical Implementations CMOS devices CMOS transistor circuit functional behavior Basic logic gates Transmission gates Tri-state buffers Flip-flops

More information

Tracking and Alignment in the CMS detector

Tracking and Alignment in the CMS detector Tracking and Alignment in the CMS detector Frédéric Ronga (CERN PH-CMG) for the CMS collaboration 10th Topical Seminar on Innovative Particle and Radiation Detectors Siena, October 1 5 2006 Contents 1

More information

Installation, Commissioning and Performance of the CMS Electromagnetic Calorimeter (ECAL) Electronics

Installation, Commissioning and Performance of the CMS Electromagnetic Calorimeter (ECAL) Electronics Installation, Commissioning and Performance of the CMS Electromagnetic Calorimeter (ECAL) Electronics How to compose a very very large jigsaw-puzzle CMS ECAL Sept. 17th, 2008 Nicolo Cartiglia, INFN, Turin,

More information

Operation and performance of the CMS Resistive Plate Chambers during LHC run II

Operation and performance of the CMS Resistive Plate Chambers during LHC run II Operation and performance of the CMS Resistive Plate Chambers during LHC run II, Isabel Pedraza Benemérita Universidad Autónoma de Puebla On behalf of the CMS collaboration XXXI Reunión Anual de la División

More information

Development and Test of a Demonstrator for a First-Level Muon Trigger based on the Precision Drift Tube Chambers for ATLAS at HL-LHC

Development and Test of a Demonstrator for a First-Level Muon Trigger based on the Precision Drift Tube Chambers for ATLAS at HL-LHC Development and Test of a Demonstrator for a First-Level Muon Trigger based on the Precision Drift Tube Chambers for ATLAS at HL-LHC K. Schmidt-Sommerfeld Max-Planck-Institut für Physik, München K. Schmidt-Sommerfeld,

More information

Multi-Channel Charge Pulse Amplification, Digitization and Processing ASIC for Detector Applications

Multi-Channel Charge Pulse Amplification, Digitization and Processing ASIC for Detector Applications 1.0 Multi-Channel Charge Pulse Amplification, Digitization and Processing ASIC for Detector Applications Peter Fischer for Tim Armbruster, Michael Krieger and Ivan Peric Heidelberg University Motivation

More information

EECS150 - Digital Design Lecture 9 - CMOS Implementation Technologies

EECS150 - Digital Design Lecture 9 - CMOS Implementation Technologies EECS150 - Digital Design Lecture 9 - CMOS Implementation Technologies Feb 14, 2012 John Wawrzynek Spring 2012 EECS150 - Lec09-CMOS Page 1 Overview of Physical Implementations Integrated Circuits (ICs)

More information

ATLAS Phase-II trigger upgrade

ATLAS Phase-II trigger upgrade Particle Physics ATLAS Phase-II trigger upgrade David Sankey on behalf of the ATLAS Collaboration Thursday, 10 March 16 Overview Setting the scene Goals for Phase-II upgrades installed in LS3 HL-LHC Run

More information

Towards an ADC for the Liquid Argon Electronics Upgrade

Towards an ADC for the Liquid Argon Electronics Upgrade 1 Towards an ADC for the Liquid Argon Electronics Upgrade Gustaaf Brooijmans Upgrade Workshop, November 10, 2009 2 Current LAr FEB Existing FEB (radiation tolerant for LHC, but slhc?) Limits L1 latency

More information

SLHC Trigger & DAQ. Wesley H. Smith. U. Wisconsin - Madison FNAL Forward Pixel SLHC Workshop October 9, 2006

SLHC Trigger & DAQ. Wesley H. Smith. U. Wisconsin - Madison FNAL Forward Pixel SLHC Workshop October 9, 2006 SLHC Trigger & DAQ Wesley H. Smith U. Wisconsin - Madison FNAL Forward Pixel SLHC Workshop October 9, 2006 Outline: SLHC Machine, Physics, Trigger & DAQ Impact of Luminosity up to 10 35 Calorimeter, Muon

More information

ATA Memo No. 40 Processing Architectures For Complex Gain Tracking. Larry R. D Addario 2001 October 25

ATA Memo No. 40 Processing Architectures For Complex Gain Tracking. Larry R. D Addario 2001 October 25 ATA Memo No. 40 Processing Architectures For Complex Gain Tracking Larry R. D Addario 2001 October 25 1. Introduction In the baseline design of the IF Processor [1], each beam is provided with separate

More information

Barrel LVL1 Muon Trigger Coincidence Matrix ASIC: User Requirement Document

Barrel LVL1 Muon Trigger Coincidence Matrix ASIC: User Requirement Document Barrel LVL1 Muon Trigger Coincidence Matrix ASIC: User Requirement Document Authors:, E. Petrolo, A. Salamon, R. Vari, S. Veneziano Keywords:ATLAS, Level-1, Barrel, ASIC Abstract The Coincidence Matrix

More information

EECS150 - Digital Design Lecture 15 - CMOS Implementation Technologies. Overview of Physical Implementations

EECS150 - Digital Design Lecture 15 - CMOS Implementation Technologies. Overview of Physical Implementations EECS150 - Digital Design Lecture 15 - CMOS Implementation Technologies Mar 12, 2013 John Wawrzynek Spring 2013 EECS150 - Lec15-CMOS Page 1 Overview of Physical Implementations Integrated Circuits (ICs)

More information

Using an FPGA based system for IEEE 1641 waveform generation

Using an FPGA based system for IEEE 1641 waveform generation Using an FPGA based system for IEEE 1641 waveform generation Colin Baker EADS Test & Services (UK) Ltd 23 25 Cobham Road Wimborne, Dorset, UK colin.baker@eads-ts.com Ashley Hulme EADS Test Engineering

More information

HARDWARE TRIGGERS AT THE LHC

HARDWARE TRIGGERS AT THE LHC HARDWARE TRIGGERS AT THE LHC Eric Eisenhandler Physics Department, Queen Mary & Westfield College, University of London, London E1 4NS, UK email: e.eisenhandler@qmw.ac.uk Abstract This paper gives an overview

More information

EE 330 Lecture 44. Digital Circuits. Dynamic Logic Circuits. Course Evaluation Reminder - All Electronic

EE 330 Lecture 44. Digital Circuits. Dynamic Logic Circuits. Course Evaluation Reminder - All Electronic EE 330 Lecture 44 Digital Circuits Dynamic Logic Circuits Course Evaluation Reminder - All Electronic Digital Building Blocks Shift Registers Sequential Logic Shift Registers (stack) Array Logic Memory

More information

The performance of a Pre-Processor Multi-Chip Module for the ATLAS Level-1 Trigger

The performance of a Pre-Processor Multi-Chip Module for the ATLAS Level-1 Trigger The performance of a Pre-Processor Multi-Chip Module for the ATLAS Level-1 Trigger J. Krause, U. Pfeiffer, K. Schmitt, O. Stelzer Kirchhoff-Institut für Physik, Universität Heidelberg, Germany Abstract

More information

Motivation Overview Grounding & Shielding L1 Trigger System Diagrams Front-End Electronics Modules

Motivation Overview Grounding & Shielding L1 Trigger System Diagrams Front-End Electronics Modules F.J. Barbosa, Jlab 1. 2. 3. 4. 5. 6. 7. 8. 9. Motivation Overview Grounding & Shielding L1 Trigger System Diagrams Front-End Electronics Modules Safety Summary 1 1. Motivation Hall D will begin operations

More information

LSI and Circuit Technologies for the SX-8 Supercomputer

LSI and Circuit Technologies for the SX-8 Supercomputer LSI and Circuit Technologies for the SX-8 Supercomputer By Jun INASAKA,* Toshio TANAHASHI,* Hideaki KOBAYASHI,* Toshihiro KATOH,* Mikihiro KAJITA* and Naoya NAKAYAMA This paper describes the LSI and circuit

More information

Belle Monolithic Thin Pixel Upgrade -- Update

Belle Monolithic Thin Pixel Upgrade -- Update Belle Monolithic Thin Pixel Upgrade -- Update Gary S. Varner On Behalf of the Pixel Gang (Marlon, Fang, ) Local Belle Meeting March 2004 Univ. of Hawaii Today s delta Have shown basic scheme before Testing

More information

CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS NOTE 1997/084 The Compact Muon Solenoid Experiment CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland 29 August 1997 Muon Track Reconstruction Efficiency

More information

Development of Telescope Readout System based on FELIX for Testbeam Experiments

Development of Telescope Readout System based on FELIX for Testbeam Experiments Development of Telescope Readout System based on FELIX for Testbeam Experiments, Hucheng Chen, Kai Chen, Francessco Lanni, Hongbin Liu, Lailin Xu Brookhaven National Laboratory E-mail: weihaowu@bnl.gov,

More information

Clock and control fast signal specification M.Postranecky, M.Warren and D.Wilson 02.Mar.2010

Clock and control fast signal specification M.Postranecky, M.Warren and D.Wilson 02.Mar.2010 Clock and control fast signal specification M.Postranecky, M.Warren and D.Wilson 02.Mar.2010 1 Introduction...1 2 Fast signal connectors and cables...1 3 Timing interfaces...2 XFEL Timing Interfaces...2

More information

The Trigger System of the MEG Experiment

The Trigger System of the MEG Experiment The Trigger System of the MEG Experiment On behalf of D. Nicolò F. Morsani S. Galeotti M. Grassi Marco Grassi INFN - Pisa Lecce - 23 Sep. 2003 1 COBRA magnet Background Rate Evaluation Drift Chambers Target

More information

Evaluating the NanoXplore 65nm RadHard FPGA for CERN applications. Georgios Tsiligiannis

Evaluating the NanoXplore 65nm RadHard FPGA for CERN applications. Georgios Tsiligiannis Evaluating the NanoXplore 65nm RadHard FPGA for CERN applications Georgios Tsiligiannis Outline FPGA under study Irradiation Test Setup Experimental Results Future steps Conclusions 2 FPGA under study

More information

P. Branchini (INFN Roma 3) Involved Group: INFN-LNF G. Felici, INFN-NA A. Aloisio, INFN-Roma1 V. Bocci, INFN-Roma3

P. Branchini (INFN Roma 3) Involved Group: INFN-LNF G. Felici, INFN-NA A. Aloisio, INFN-Roma1 V. Bocci, INFN-Roma3 P. Branchini (INFN Roma 3) Involved Group: INFN-LNF G. Felici, INFN-NA A. Aloisio, INFN-Roma1 V. Bocci, INFN-Roma3 Let s remember the specs in SuperB Baseline: re-implement BaBar L1 trigger with some improvements

More information

The Run-2 ATLAS. ATLAS Trigger System: Design, Performance and Plans

The Run-2 ATLAS. ATLAS Trigger System: Design, Performance and Plans The Run-2 ATLAS Trigger System: Design, Performance and Plans 14th Topical Seminar on Innovative Particle and Radiation Detectors October 3rd October 6st 2016, Siena Martin zur Nedden Humboldt-Universität

More information

Where is CERN? Lake Geneva. Geneve The Alps. 29-Jan-07 Drew Baden 1

Where is CERN? Lake Geneva. Geneve The Alps. 29-Jan-07 Drew Baden 1 Where is CEN? Jura Mountains Lake Geneva Geneve he Alps 29-Jan-07 Drew Baden 1 29-Jan-07 Drew Baden 2 Angels and Demons? CEN s very own X-33 space plane! 29-Jan-07 Drew Baden 3 LC 27km proton-proton ring

More information

Track Extrapolation and Distribution for the CDF-II Trigger System

Track Extrapolation and Distribution for the CDF-II Trigger System Track Extrapolation and Distribution for the CDF-II Trigger System arxiv:physics/0606247v1 [physics.ins-det] 28 Jun 2006 Robert Downing, Nathan Eddy, Lee Holloway, Mike Kasten, Hyunsoo Kim, James Kraus,

More information

Status of TPC-electronics with Time-to-Digit Converters

Status of TPC-electronics with Time-to-Digit Converters EUDET Status of TPC-electronics with Time-to-Digit Converters A. Kaukher, O. Schäfer, H. Schröder, R. Wurth Institut für Physik, Universität Rostock, Germany 31 December 2009 Abstract Two components of

More information

Microprocessor & Interfacing Lecture Programmable Interval Timer

Microprocessor & Interfacing Lecture Programmable Interval Timer Microprocessor & Interfacing Lecture 30 8254 Programmable Interval Timer P A R U L B A N S A L A S S T P R O F E S S O R E C S D E P A R T M E N T D R O N A C H A R Y A C O L L E G E O F E N G I N E E

More information

Online Track Processor for the CDF Upgrade

Online Track Processor for the CDF Upgrade University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Kenneth Bloom Publications Research Papers in Physics and Astronomy 6-1-2002 Online Track Processor for the CDF Upgrade

More information

SDR14TX: Synchronization of multiple devices via PXIe backplane triggering

SDR14TX: Synchronization of multiple devices via PXIe backplane triggering 1 (5) Application Note: SDR14TX: Synchronization of multiple devices via PXIe backplane triggering Table of Contents 1 Introduction... 2 2 Overview... 2 3 PXIe backplane trigger signals... 2 3.1 Overview...

More information

The Level-1 Global Trigger for the CMS Experiment at LHC. Presented at the 12 th Workshop on Electronics for LHC Experiments and Future Experiments

The Level-1 Global Trigger for the CMS Experiment at LHC. Presented at the 12 th Workshop on Electronics for LHC Experiments and Future Experiments The Level-1 Global Trigger for the CMS Experiment at LHC Presented at the 12 th Workshop on Electronics for LHC Experiments and Future Experiments M.Jeitler, A. Taurok, H. Bergauer, C. Deldicque, J.Erö,

More information

CHAPTER 4 FIELD PROGRAMMABLE GATE ARRAY IMPLEMENTATION OF FIVE LEVEL CASCADED MULTILEVEL INVERTER

CHAPTER 4 FIELD PROGRAMMABLE GATE ARRAY IMPLEMENTATION OF FIVE LEVEL CASCADED MULTILEVEL INVERTER 87 CHAPTER 4 FIELD PROGRAMMABLE GATE ARRAY IMPLEMENTATION OF FIVE LEVEL CASCADED MULTILEVEL INVERTER 4.1 INTRODUCTION The Field Programmable Gate Array (FPGA) is a high performance data processing general

More information

DAQ & Electronics for the CW Beam at Jefferson Lab

DAQ & Electronics for the CW Beam at Jefferson Lab DAQ & Electronics for the CW Beam at Jefferson Lab Benjamin Raydo EIC Detector Workshop @ Jefferson Lab June 4-5, 2010 High Event and Data Rates Goals for EIC Trigger Trigger must be able to handle high

More information

ATLAS [1] is a general purpose experiment for the Large

ATLAS [1] is a general purpose experiment for the Large IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 54, NO. 6, DECEMBER 2007 2629 ATLAS TileCal Read-Out Driver System Production and Initial Performance Results J. Poveda, J. Abdallah, V. Castillo, C. Cuenca,

More information

Monika Wielers Rutherford Appleton Laboratory

Monika Wielers Rutherford Appleton Laboratory Lecture 2 Monika Wielers Rutherford Appleton Laboratory Trigger and Data Acquisition requirements for LHC Example: Data flow in ATLAS (transport of event information from collision to mass storage) 1 What

More information

Multi-Channel FIR Filters

Multi-Channel FIR Filters Chapter 7 Multi-Channel FIR Filters This chapter illustrates the use of the advanced Virtex -4 DSP features when implementing a widely used DSP function known as multi-channel FIR filtering. Multi-channel

More information

Resolution studies on silicon strip sensors with fine pitch

Resolution studies on silicon strip sensors with fine pitch Resolution studies on silicon strip sensors with fine pitch Stephan Hänsel This work is performed within the SiLC R&D collaboration. LCWS 2008 Purpose of the Study Evaluate the best strip geometry of silicon

More information

Lab #10: Finite State Machine Design

Lab #10: Finite State Machine Design Lab #10: Finite State Machine Design Zack Mattis Lab: 3/2/17 Report: 3/14/17 Partner: Brendan Schuster Purpose In this lab, a finite state machine was designed and fully implemented onto a protoboard utilizing

More information

HF Jet Trigger Upgrade R&:D Project

HF Jet Trigger Upgrade R&:D Project Introduction HF Jet Trigger Upgrade R&:D Project Drew Baden, Tullio Grassi, Jeremy Mans University of Maryland Chris Tully, Dan Marlow Princeton University We investigate the possibility of adding functionality

More information

The LHCb trigger system

The LHCb trigger system IL NUOVO CIMENTO Vol. 123 B, N. 3-4 Marzo-Aprile 2008 DOI 10.1393/ncb/i2008-10523-9 The LHCb trigger system D. Pinci( ) INFN, Sezione di Roma - Rome, Italy (ricevuto il 3 Giugno 2008; pubblicato online

More information

SPADIC Status and plans

SPADIC Status and plans SPADIC Status and plans Michael Krieger TRD Strategy Meeting 29.11.2013 Michael Krieger SPADIC Status and plans 1 Reminder: SPADIC 1.0 architecture from detector pads single message stream: signal snapshot

More information

Digital Signal Processing Electronics for Nuclear Physics Applications

Digital Signal Processing Electronics for Nuclear Physics Applications Digital Signal Processing Electronics for Nuclear Physics Applications Small Business Innovation Research Department Of Energy Grant DE-FG02-03ER83778 Wojtek Skulski SkuTek Instrumentation and University

More information

Development of the FVTX trigger

Development of the FVTX trigger Development of the FVTX trigger Rikkyo University Toru Nagashima Nov.7 2014 RadLab student seminar 1 OVERVIEW Physics motivation Test bench setup in RIKEN Timing measurement FVTX trigger design Trigger

More information

I hope you have completed Part 2 of the Experiment and is ready for Part 3.

I hope you have completed Part 2 of the Experiment and is ready for Part 3. I hope you have completed Part 2 of the Experiment and is ready for Part 3. In part 3, you are going to use the FPGA to interface with the external world through a DAC and a ADC on the add-on card. You

More information

FPGAs: Why, When, and How to use them (with RFNoC ) Pt. 1 Martin Braun, Nicolas Cuervo FOSDEM 2017, SDR Devroom

FPGAs: Why, When, and How to use them (with RFNoC ) Pt. 1 Martin Braun, Nicolas Cuervo FOSDEM 2017, SDR Devroom FPGAs: Why, When, and How to use them (with RFNoC ) Pt. 1 Martin Braun, Nicolas Cuervo FOSDEM 2017, SDR Devroom Schematic of a typical SDR Very rough schematic: Analog Stuff ADC/DAC FPGA GPP Let s ignore

More information

Course Outcome of M.Tech (VLSI Design)

Course Outcome of M.Tech (VLSI Design) Course Outcome of M.Tech (VLSI Design) PVL108: Device Physics and Technology The students are able to: 1. Understand the basic physics of semiconductor devices and the basics theory of PN junction. 2.

More information

CHAPTER 5 DESIGN OF COMBINATIONAL LOGIC CIRCUITS IN QCA

CHAPTER 5 DESIGN OF COMBINATIONAL LOGIC CIRCUITS IN QCA 90 CHAPTER 5 DESIGN OF COMBINATIONAL LOGIC CIRCUITS IN QCA 5.1 INTRODUCTION A combinational circuit consists of logic gates whose outputs at any time are determined directly from the present combination

More information

Timing Issues in FPGA Synchronous Circuit Design

Timing Issues in FPGA Synchronous Circuit Design ECE 428 Programmable ASIC Design Timing Issues in FPGA Synchronous Circuit Design Haibo Wang ECE Department Southern Illinois University Carbondale, IL 62901 1-1 FPGA Design Flow Schematic capture HDL

More information

CHAPTER III THE FPGA IMPLEMENTATION OF PULSE WIDTH MODULATION

CHAPTER III THE FPGA IMPLEMENTATION OF PULSE WIDTH MODULATION 34 CHAPTER III THE FPGA IMPLEMENTATION OF PULSE WIDTH MODULATION 3.1 Introduction A number of PWM schemes are used to obtain variable voltage and frequency supply. The Pulse width of PWM pulsevaries with

More information

When to use an FPGA to prototype a controller and how to start

When to use an FPGA to prototype a controller and how to start When to use an FPGA to prototype a controller and how to start Mark Corless, Principal Application Engineer, Novi MI Brad Hieb, Principal Application Engineer, Novi MI 2015 The MathWorks, Inc. 1 When to

More information

Topics Introduction to Microprocessors

Topics Introduction to Microprocessors Topics 2244 Introduction to Microprocessors Chapter 8253 Programmable Interval Timer/Counter Suree Pumrin,, Ph.D. Interfacing with 886/888 Programming Mode 2244 Introduction to Microprocessors 2 8253/54

More information

PROGRAMMABLE ASICs. Antifuse SRAM EPROM

PROGRAMMABLE ASICs. Antifuse SRAM EPROM PROGRAMMABLE ASICs FPGAs hold array of basic logic cells Basic cells configured using Programming Technologies Programming Technology determines basic cell and interconnect scheme Programming Technologies

More information

Lab 2.2 Custom slave programmable interface

Lab 2.2 Custom slave programmable interface Lab 2.2 Custom slave programmable interface Introduction In the previous labs, you used a system integration tool (Qsys) to create a full FPGA-based system comprised of a processor, on-chip memory, a JTAG

More information

Readout electronics for LumiCal detector

Readout electronics for LumiCal detector Readout electronics for Lumial detector arek Idzik 1, Krzysztof Swientek 1 and Szymon Kulis 1 1- AGH niversity of Science and Technology Faculty of Physics and Applied omputer Science racow - Poland The

More information

vxs fpga-based Time to Digital Converter (vftdc)

vxs fpga-based Time to Digital Converter (vftdc) vxs fpga-based Time to Digital Converter (vftdc) 18Mbit RAM Generic 8 differential In 8 ECL out 32 differential in VME64x: Register, Data Readout 32 LVTTL in Trigger Interface Trg/Clk/Reset/Busy VXS P0:

More information

EECS150 - Digital Design Lecture 2 - CMOS

EECS150 - Digital Design Lecture 2 - CMOS EECS150 - Digital Design Lecture 2 - CMOS August 29, 2002 John Wawrzynek Fall 2002 EECS150 - Lec02-CMOS Page 1 Outline Overview of Physical Implementations CMOS devices Announcements/Break CMOS transistor

More information

CMS RPC HL-LHC upgrade with fast timing detectors

CMS RPC HL-LHC upgrade with fast timing detectors Maxime Gouzevitch CMS RPC HL-LHC upgrade with fast timing detectors on behalf of the CMS MUON group ICHEP, SEOUL, 2018 1) RPC upgrade project and motivation 2-3) Requirements and design 4-7) Validation

More information

EECS150 - Digital Design Lecture 19 CMOS Implementation Technologies. Recap and Outline

EECS150 - Digital Design Lecture 19 CMOS Implementation Technologies. Recap and Outline EECS150 - Digital Design Lecture 19 CMOS Implementation Technologies Oct. 31, 2013 Prof. Ronald Fearing Electrical Engineering and Computer Sciences University of California, Berkeley (slides courtesy

More information

DHCAL Prototype Construction José Repond Argonne National Laboratory

DHCAL Prototype Construction José Repond Argonne National Laboratory DHCAL Prototype Construction José Repond Argonne National Laboratory Linear Collider Workshop Stanford University March 18 22, 2005 Digital Hadron Calorimeter Fact Particle Flow Algorithms improve energy

More information

Transmitting DDR Data Between LVDS and RocketIO CML Devices Author: Martin Kellermann

Transmitting DDR Data Between LVDS and RocketIO CML Devices Author: Martin Kellermann XAPP76 (v1.0) November 4, 2004 Product Not Recommended for New esigns R Application Note: Virtex-II Pro Family Transmitting R ata Between LVS and RocketIO CML evices Author: Martin Kellermann Summary The

More information

LHC Experiments - Trigger, Data-taking and Computing

LHC Experiments - Trigger, Data-taking and Computing Physik an höchstenergetischen Beschleunigern WS17/18 TUM S.Bethke, F. Simon V6: Trigger, data taking, computing 1 LHC Experiments - Trigger, Data-taking and Computing data rates physics signals ATLAS trigger

More information

Current Status of ATLAS Endcap Muon Trigger System

Current Status of ATLAS Endcap Muon Trigger System Current Status of ATLAS Endcap Muon Trigger System Takuya SUGIMOTO Nagoya University On behalf of ATLAS Japan TGC Group Contents 1. Introduction 2. Assembly and installation of TGC 3. Readout test at assembly

More information

Reference. Wayne Wolf, FPGA-Based System Design Pearson Education, N Krishna Prakash,, Amrita School of Engineering

Reference. Wayne Wolf, FPGA-Based System Design Pearson Education, N Krishna Prakash,, Amrita School of Engineering FPGA Fabrics Reference Wayne Wolf, FPGA-Based System Design Pearson Education, 2004 CPLD / FPGA CPLD Interconnection of several PLD blocks with Programmable interconnect on a single chip Logic blocks executes

More information

Requirements and Specifications of the TDC for the ATLAS Precision Muon Tracker

Requirements and Specifications of the TDC for the ATLAS Precision Muon Tracker ATLAS Internal Note MUON-NO-179 14 May 1997 Requirements and Specifications of the TDC for the ATLAS Precision Muon Tracker Yasuo Arai KEK, National High Energy Accelerator Research Organization Institute

More information

IMPLEMENTING THE 10-BIT, 50MS/SEC PIPELINED ADC

IMPLEMENTING THE 10-BIT, 50MS/SEC PIPELINED ADC 98 CHAPTER 5 IMPLEMENTING THE 0-BIT, 50MS/SEC PIPELINED ADC 99 5.0 INTRODUCTION This chapter is devoted to describe the implementation of a 0-bit, 50MS/sec pipelined ADC with different stage resolutions

More information

ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION

ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION 98 Chapter-5 ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION 99 CHAPTER-5 Chapter 5: ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION S.No Name of the Sub-Title Page

More information

arxiv: v1 [physics.ins-det] 25 Oct 2012

arxiv: v1 [physics.ins-det] 25 Oct 2012 The RPC-based proposal for the ATLAS forward muon trigger upgrade in view of super-lhc arxiv:1210.6728v1 [physics.ins-det] 25 Oct 2012 University of Michigan, Ann Arbor, MI, 48109 On behalf of the ATLAS

More information