Micromechanical Signal Processors for Low-Power Communications Instructor: Clark T.-C. Nguyen

Size: px
Start display at page:

Download "Micromechanical Signal Processors for Low-Power Communications Instructor: Clark T.-C. Nguyen"

Transcription

1 First International Conference and School on Nanoscale/Molecular Mechanics: Maui, HI; May 2002 School Lecture/Tutorial on Micromechanical Signal Processors for Low-Power Communications Instructor: Clark T.-C. Nguyen Center for Integrated Wireless Microsystems Dept. of Electrical Engineering and Computer Science University of Michigan Ann Arbor, Michigan

2 Outline Miniaturization of Transceivers the need for high-q High-Q Micromechanical Resonators Micromechanical Circuits micromechanical filters micromechanical mixer-filters micromechanical switches Using MEMS in Comm. Receivers direct replacement of passives trade Q (or selectivity) for power MEMS-based receiver architecture Research Issues Conclusions

3 Frequency Division Multiplexed Communications Information is transmitted in specific frequency channels within specific bands Transmitted Power Band GSM Band Adj. Band DCS1800 Band Frequency

4 Frequency Division Multiplexed Communications Information is transmitted in specific frequency channels within specific bands Transmitted Power Band Filter GSM Band Adj. Band DCS1800 Band Frequency

5 Frequency Division Multiplexed Communications Information is transmitted in specific frequency channels within specific bands Transmitted Power Band Filter GSM Band Adj. Band DCS1800 Band Need: high frequency selectivity need high-q Frequency

6 Need for High-Q: Selective Low-Loss Filters In resonator-based filters: high tank Q low insertion loss At right: a 0.3% bandwidth 70 MHz (simulated) heavy insertion loss for resonator Q < 5,000

7 Attaining High-Q Problem: IC s cannot achieve Q s in the thousands transistors consume too much power to get Q on-chip spiral inductors Q s no higher than ~10 off-chip inductors Q s in the range of 100 s Observation: vibrating mechanical resonances Q > 1,000 Example: quartz crystal resonators (e.g., in wristwatches) extremely high Q s ~ 10,000 or higher (Q ~ 10 6 possible) mechanically vibrates at a distinct frequency in a thickness-shear mode

8 Miniaturization of Transceivers High-Q functionality required by oscillators and filters cannot be realized using standard IC components use off-chip mechanical components SAW, ceramic, and crystal resonators pose bottlenecks against ultimate miniaturization

9 So Many Passive Components! The total area on a printed circuit board for a wireless phone is often dominated by passive components passives pose a bottleneck on the ultimate miniaturization of transceivers Transistor Transistor Chips Chips Quartz Quartz Crystal Crystal Inductors Inductors Capacitors Capacitors Resistors Resistors IF IF Filter Filter (SAW) (SAW) RF RF Filter Filter (ceramic) (ceramic) IF IF Filter Filter (SAW) (SAW)

10 Surface Micromachining Fabrication steps compatible with planar IC processing

11 Post-CMOS Circuits+μMechanics Integration Completely monolithic, low phase noise, high-q oscillator (effectively, an integrated crystal oscillator) [Nguyen, Howe] Oscilloscope Output Waveform To allow the use of >600 o C processing temperatures, tungsten (instead of aluminum) is used for metallization

12 Target Application: Integrated Transceivers Off-chip high-q mechanical components present bottlenecks to miniaturization replace them with μmechanical versions

13 Micromechanical Resonators

14 Vertically-Driven Micromechanical Resonator To date, most used design to achieve VHF frequencies Smaller mass higher frequency range and lower series R x

15 HF μmechanical CC-Beam Resonator Surface-micromachined, POCl 3 -doped polycrystalline silicon Extracted Q = 8,000 (vacuum) Freq. and Q influenced by dc-bias and anchor effects

16 Anchor Dissipation in Fixed-Fixed Beams f o Q

17 92 MHz Free-Free Beam μresonator Free-free beam μmechanical resonator with non-intrusive supports reduce anchor dissipation higher Q

18 92 MHz Free-Free Beam μresonator Free-free beam μmechanical resonator with non-intrusive supports reduce anchor dissipation higher Q

19 70MHz Nano-Scale Bulk Si Resonators

20 Scaling-Induced Performance Limitations Mass Loading Noise Contaminant Molecules [J. R. Vig, 1999] Temperature Fluctuation Noise Photons f = o 1 2π k m mass ~10-13 kg volume ~10-15 m 3 Differences in rates of adsorption and desorption of contaminant molecules mass fluctuations frequency fluctuations Absorption/emission of photons temperature fluctuations frequency fluctuations Problem: If dimensions too small phase noise significant! The smaller the resonator smaller the power handling

21 156 MHz Radial Contour-Mode Disk μmechanical Resonator Below: Balanced radial-mode disk polysilicon μmechanical resonator (34 μm diameter) μmechanical Disk Resonator Metal Electrode R Design/Performance: R=17μm, t=2μm d=1,000å, V P =35V f o =156.23MHz, Q=9,400 Metal Electrode Anchor f o =156MHz Q=9,400 [Clark, Hsu, Nguyen IEDM 00]

22 Desired Filter Characteristics Small shape factor generally preferred

23 Micromechanical Circuits

24 Micromechanical Circuits MEMS for Wireless Communications A single mechanical beam can t really do much on its own But use many mechanical beams attached together in a circuit, and attain a more complex, more useful function Input Force F i Output Displacement x o F i x o t Key Design Property: High Q t

25 Desired Filter Characteristics Small shape factor generally preferred

26 MEMS for Wireless Communications Micromechanical Filter Circuit

27 Ideal Spring-Coupled μmechanical Filter Symmetric Mode Anti-Symmetric Mode BW ~ k s12 k r c r 1 m r1 k s 12 m r2 c r 2 k r 1 k r 2

28 MEMS for Wireless Communications Micromechanical Filter Circuit

29 HF Spring-Coupled Micromechanical Filter

30 MEMS for Wireless Communications High-Order μmechanical Filter

31 Electromechanical Mixing MEMS for Wireless Communications ω o =ω IF Electrical Signal Input Filter Response ω IF ω LO ω RF ω Mechanical Signal Input ω IF ω LO ω RF ω

32 Micromechanical Mixer-Filter [Wong, Nguyen IEDM 98]

33 Micromechanical Switch MEMS for Wireless Communications Operate the micromechanical beam in an up/down binary fashion [C. Goldsmith, 1995] Performance: I.L.~0.1dB, IIP3 ~ 66dBm (extremely linear) Issues: switching voltage ~ 20V, switching time: 1-5μs

34 MEMS-Based Receivers

35 MEMS-Based Receiver Architecture Most Direct Approach: replace off-chip components (in orange) with μmechanical versions (in green) L 1 ~2dB 1 ~2dB L 3 ~6dB 3 ~6dB L 5 ~12dB 5 ~12dB NF NF = 8.8dB 8.8dB Higher Q L 1 ~0.3dB 1 ~0.3dB L 3 ~0.5dB 3 ~0.5dB L 5 ~1dB 5 ~1dB Replace with MEMS Antenna Antenna Diversity Diversity for for resilience resilience against against fading fading Obvious Benefit: substantial size reduction NF NF = 2.8dB 2.8dB

36 MEMS-Based Receiver Front-End Received Power Desired Signal Conventional RF Filter Q res ~400 ω LO ω RF Frequency

37 MEMS-Based Receiver Front-End Received Power Desired Signal Conventional RF Filter Q res ~400 Out-of-Band Interferers Removed ω LO ω RF Frequency

38 MEMS-Based Receiver Front-End Received Power Desired Signal μmechanical Q res ~400 RF Filter Q res ~10,000 ω LO ω RF Frequency

39 MEMS-Based Receiver Front-End Provides Provides robustness robustness against against jammers jammers and and extends extends battery battery lifetime lifetime Received Power Desired Signal μmechanical Q res ~400 RF Filter Q res ~10,000 All Interferers Removed ω LO ω RF Frequency

40 MEMS-Based Receiver Front-End Provides Provides robustness robustness against against jammers jammers and and extends extends battery battery lifetime lifetime Reduces Reduces loss loss and and removes removes power power consumption consumption by by active active devices devices Eliminates Eliminates active active phase-locking phase-locking ckt. ckt. power power consumption consumption Miniaturization Miniaturization

41 MEMS-Based Receiver Front-End Low Loss Eliminate the RF LNA? If possible, could enhance robustness substantially reduce RF front-end power [Nguyen, Top. Mtg. on Si IC s in RF Systems 2001]

42 Research Issues

43 Research Issues: Frequency Extension Needed diameters to achieve UHF fundamental-mode resonance frequencies using a 2μm-thick disk resonator

44 38.8 khz CVD Polydiamond Folded- Beam μmechanical Resonator In situ-doped polydiamond deposited via a microwave plasma reactor (methane and diborane reactants) at 540 o C 80% higher resonance frequency than polysilicon version Design/Performance: L b =160μm, W b =2μm, h=2μm, d=2μm, V P =25V, f o =38.8kHz Q=19,500 f o =38.8kHz Q=19,500 [Wang, Butler, Nguyen, MEMS 02]

45 Research Issues: Frequency Extension Needed diameters to achieve UHF fundamental-mode resonance frequencies using a 2μm-thick disk resonator Problem: geometry not the only consideration; other important factors include: impedance vs. linearity/power handling manufacturing issues: trimming, vacuum encapsulation, MEMS/transistor integration thermal and aging stability

46 Research Issue: Termination Resistance Need to minimize R Q for impedance matching want: V P = large A o = large d = small

47 Small Electrode-to-Resonator Gaps

48 Design Issue: Process Tolerances Process variations can lead to distortion in the filter passband

49 μmechanical Filter Passband Correction [Wang, Nguyen, 1999] Problems: too many interconnect leads, Δf small at VHF Need: a permanent frequency trimming technique

50 Research Issue: Frequency Trimming For banks of filters or resonators need automated trimming on a massive scale, preferably voltage-activated Localized Annealing: current through structure heats it like a filament extremely fast thermal time constants allow for ultra-rapid annealing 16 ppm f o shift per anneal pulse [Wang, Wong, Hsu, Nguyen Transucers 97]

51 Research Issue: Thermal Stability [Wang, Yu, Nguyen 2000] Need temperature compensation or control methods

52 Vacuum Encapsulation Below: localized heated bonding to seal a vacuum cap over a released micromechanical resonator Schematic of the Bonding Encapsulation Procedure Broken Glass Cap V anneal Glass Cap Microcavity Q µheater and Aluminum Solder weeks at 25 mtorr [Cheng, Hsu, Lin, Nguyen, Najafi MEMS 2000] Weeks

53 Thermal Stability Comparison 1.7ppm/ o C Poly-Si μresonator -17ppm/ o C Thermal stability of poly-si micromechanical resonator is 10X worse than the worst case of AT-cut quartz crystal

54 Geometric-Stress Compensation Use a temperature dependent mechanical stiffness to null frequency shifts due to Young s modulus thermal dep. [Hsu and Nguyen, IEDM 00] [W.-T. Hsu, et al., IEDM 00] Problems: stress relaxation compromised design flexibility [Hsu, Nguyen IEDM 2000]

55 Electrical Spring Constant Displacement-dependent E fields generate motional force in quadrature with the input force electrical stiffness Effective electrical stiffness subtracts from mechanical stiffness, causing frequency shift DC-Bias Gap Spacing

56 Operation of Stiffness Compensation To implement stiffness compensation: add a top electrode of a material with a larger thermal expansion coefficient than resonator material design such that the top electrode-to-resonator gap spacing increases with increasing temperature T increase gap increase freq. increase counteract freq. decrease caused by Young's modulus [Hsu, Nguyen MEMS 02] V p V c TC f of Uncompensated CC-beam ( ) Compensation via electrical stiffness (+)

57 SEM of 10MHz Stiffness-Compensated Resonator with with Slitted Top Electrode Top Electrode Driving Anchors Electrode [Hsu, Nguyen MEMS 02] Anchors Anchors Anchors Slits Anchors Anchors Resonator Beam

58 MEMS for Wireless Communications Measured Δf/f vs. Temperature for Electrical Stiffness-Compensated μresonators Design/Performance: f o =10MHz, Q=4,000 V P =8V, h e =4μm d o =1000Å, h=2μm W r =8μm, L r =40μm [Hsu, Nguyen MEMS 02] Δf/f [ppm] 0.24ppm/ o C Temperature [K] V P -V C Slits help to release the stress generated by lateral thermal expansion linear TC f curves 0.24ppm/ o C!!! 16V 14V 12V 10V 9V 8V 7V 6V 4V 2V 0V CC

59 Summary of μresonator TC f s 1.7ppm/ o C Elect.-Stiffness Compensation 0.24ppm/ o C Poly-Si μresonator Geom.-Stress Compensation 2.5ppm/ o C With more accurate V C, it may be possible to completely null the TC f using electrical stiffness compensation

60 Conclusions Via enhanced selectivity on a massive scale, micromechanical circuits using high-q elements have the potential for shifting communication transceiver design paradigms, greatly enhancing their capabilities Advantages of Micromechanical Circuits: orders of magnitude smaller size than present mechanical resonator devices better performance than other single-chip solutions potentially large reduction in power consumption alternative transceiver architectures that maximize the use of high-q, frequency selective devices for improved performance For more information:

61 Conclusions Compelling parallels between MEMS and integrated transistor signal processor technologies: Before 1960: discrete transistor circuits wired on boards with limited functionality After IC s: VLSI CPU s and memory circuits have revolutionized the way things are done Today: discrete mechanical circuits coupled by welded wires with limited functionality With VLSI Micromechanical Signal Processors: functions never before possible now realizable via a combination of transistor and mechanical circuits? a functional and system architectural revolution reminiscent of the IC revolution? potential for true revolution? but there is much work yet to be done

62 Acknowledgments Numerous authors referenced throughout Former and present graduate students, especially Kun Wang, Frank Bannon III, and Ark-Chew Wong, who are largely responsible for the micromechanical filter work, and Wan-Thai Hsu and Mustafa Demirci, who are largely responsible for the resonator work My government funding sources: mainly DARPA and an NSF Engineering Research Center

63 MEMS for Wireless Communications Selected Readings [1], Transceiver front-end architectures using vibrating micromechanical signal processors (invited), Dig. of Papers, Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Sept , 2001, pp [2], L. P.B. Katehi, and G. M. Rebeiz, Micromachined devices for wireless communications (invited), Proc. IEEE, vol. 86, no. 8, pp , Aug [3], Frequency-selective MEMS for miniaturized lowpower communication devices (invited), IEEE Trans. Microwave Theory Tech., vol. 47, no. 8, pp , Aug [4] F. D. Bannon III, J. R. Clark, and, High frequency micromechanical filters, IEEE J. Solid-State Circuits, vol. 35, no. 4, pp , April [5] K. Wang and, High-order medium frequency micromechanical electronic filters, IEEE/ ASME J. Microelectromech. Syst., vol. 8, no. 4, pp , Dec [6] K. Wang, A.-C. Wong, and, VHF free-free beam high-q micromechanical resonators, IEEE/ASME J. Microelectromech. Syst., vol. 9, no. 3, pp , Sept

64 Selected Readings (cont.) MEMS for Wireless Communications [7] J. R. Clark, W.-T. Hsu, and, High-Q VHF micromechanical contour-mode disk resonators, Technical Digest, IEEE Int. Electron Devices Meeting, San Francisco, California, Dec , 2000, pp [8] J. R. Vig and Y. Kim, Noise in microelectromechanical system resonators, IEEE Trans. Utrason. Ferroelec. Freq. Contr., vol. 46, no. 6, pp , Nov [9] A. N. Cleland and M. L. Roukes, Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals, Appl. Phys. Lett., 69 (18), pp , Oct. 28, [10] M. L. Roukes, Nanoelectromechanical systems, Tech. Digest, 2000 Solid-State Sensor and Actuator Workshop, Hilton Head Island, South Carolina, June 4-8, 2000, pp [11] A.-C. Wong, H. Ding, and, Micromechanical mixer+filters, Technical Digest, IEEE International Electron Devices Meeting, San Francisco, California, Dec. 6-9, 1998, pp [12] W.-T. Hsu, J. R. Clark, and, Mechanically temperature compensated flexural-mode micromechanical resonators, Technical Digest, IEEE Int. Electron Devices Meeting, San Francisco, California, Dec , 2000, pp

65 Selected Readings (cont.) MEMS for Wireless Communications [13] W.-T. Hsu and, Stiffness-compensated temperature-insensitive micromechanical resonators, Tech. Digest, 2002 IEEE Int. Micro Electro Mechanical Systems Conf., Las Vegas, Nevada, Jan , 2002, pp [14] K. Wang, A.-C. Wong, W.-T. Hsu, and, Frequencytrimming and Q-factor enhancement of micromechanical resonators via localized filament annealing, Dig. of Technical Papers, 1997 International Conference on Solid-State Sensors and Actuators, Chicago, Illinois, June 16-19, 1997, pp [15] Y.-T. Cheng, W.-T. Hsu, L. Lin,, and K. Najafi, Vacuum packaging using localized aluminum/silicon-to-glass bonding, Tech. Digest, 14th Int. IEEE Micro Electro Mechanical Systems Conference, Interlaken, Switzerland, Jan , 2001, pp [16] and R. T. Howe, An integrated CMOS micromechanical resonator high-q oscillator, IEEE J. Solid-State Circuits, vol. 34, no. 4, pp , April 1999.

Micromechanical Circuits for Wireless Communications

Micromechanical Circuits for Wireless Communications Micromechanical Circuits for Wireless Communications Clark T.-C. Nguyen Center for Integrated Microsystems Dept. of Electrical Engineering and Computer Science University of Michigan Ann Arbor, Michigan

More information

RF MEMS for Low-Power Communications

RF MEMS for Low-Power Communications RF MEMS for Low-Power Communications Clark T.-C. Nguyen Center for Wireless Integrated Microsystems Dept. of Electrical Engineering and Computer Science University of Michigan Ann Arbor, Michigan 48109-2122

More information

Vibrating RF MEMS for Low Power Wireless Communications

Vibrating RF MEMS for Low Power Wireless Communications Vibrating RF MEMS for Low Power Wireless Communications Clark T.-C. Nguyen Center for Wireless Integrated Microsystems Dept. of Electrical Engineering and Computer Science University of Michigan Ann Arbor,

More information

MEMS Technologies for Communications

MEMS Technologies for Communications MEMS Technologies for Communications Clark T.-C. Nguyen Program Manager, MPG/CSAC/MX Microsystems Technology Office () Defense Advanced Research Projects Agency Nanotech 03 Feb. 25, 2003 Outline Introduction:

More information

MEMS Technologies and Devices for Single-Chip RF Front-Ends

MEMS Technologies and Devices for Single-Chip RF Front-Ends MEMS Technologies and Devices for Single-Chip RF Front-Ends Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Science University of Michigan Ann Arbor, Michigan 48105-2122 CCMT 06 April 25,

More information

Micromachining Technologies for Miniaturized Communication Devices

Micromachining Technologies for Miniaturized Communication Devices Micromachining Technologies for Miniaturized Communication Devices Clark T.-C. Nguyen Center for Integrated Sensors and Circuits Department of Electrical Engineering and Computer Science University of

More information

Micromechanical Circuits for Wireless Communications

Micromechanical Circuits for Wireless Communications Proceedings, 2000 European Solid-State Device Research Conference, Cork, Ireland, September 11-13, 2000, pp. 2-12. Micromechanical Circuits for Wireless Communications Clark T.-C. Nguyen Center for Integrated

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2007

EE C245 ME C218 Introduction to MEMS Design Fall 2007 EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 1: Definition

More information

DEVELOPMENT OF RF MEMS SYSTEMS

DEVELOPMENT OF RF MEMS SYSTEMS DEVELOPMENT OF RF MEMS SYSTEMS Ivan Puchades, Ph.D. Research Assistant Professor Electrical and Microelectronic Engineering Kate Gleason College of Engineering Rochester Institute of Technology 82 Lomb

More information

RF MEMS in Wireless Architectures

RF MEMS in Wireless Architectures 26.4 RF MEMS in Wireless Architectures Clark T.-C. Nguyen DARPA/MTO 3701 North Farifax Drive, Arlington, Virginia 22203-1714 (On leave from the University of Michigan, Ann Arbor, Michigan 48109-2122) 1-571-218-4586

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2010

EE C245 ME C218 Introduction to MEMS Design Fall 2010 Instructor: Prof. Clark T.-C. Nguyen EE C245 ME C218 Introduction to MEMS Design Fall 2010 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C245 ME C218 Introduction to MEMS Design Fall 2008 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 1: Definition

More information

Microelectromechanical Devices for Wireless Communications

Microelectromechanical Devices for Wireless Communications Microelectromechanical Devices for Wireless Communications Clark T.-C. Nguyen Center for Integrated Sensors and Circuits Department of Electrical Engineering and Computer Science University of Michigan

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C45 ME C18 Introduction to MEMS Design Fall 008 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 9470 Lecture 7: Noise &

More information

Micromechanical Circuits for Communication Transceivers

Micromechanical Circuits for Communication Transceivers Micromechanical Circuits for Communication Transceivers C. T.-C. Nguyen, Micromechanical circuits for communication transceivers (invited), Proceedings, 2000 Bipolar/BiCMOS Circuits and Technology Meeting

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION C. T.-C. Nguyen, Micromechanical components for miniaturized low-power communications (invited plenary), Proceedings, 1999 IEEE MTT-S International Microwave Symposium RF MEMS Workshop (on Microelectromechanical

More information

Location-Dependent Frequency Tuning of Vibrating Micromechanical Resonators Via Laser Trimming

Location-Dependent Frequency Tuning of Vibrating Micromechanical Resonators Via Laser Trimming Location-Dependent Frequency Tuning of Vibrating Micromechanical Resonators Via Laser Trimming Mohamed A. Abdelmoneum, Mustafa U. Demirci, Yu-Wei Lin, and Clark T.-C Nguyen Center for Wireless Integrated

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C245 ME C218 Introduction to MEMS Design Fall 2008 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 2: Benefits

More information

Surface Micromachining

Surface Micromachining Surface Micromachining An IC-Compatible Sensor Technology Bernhard E. Boser Berkeley Sensor & Actuator Center Dept. of Electrical Engineering and Computer Sciences University of California, Berkeley Sensor

More information

Vibrating RF MEMS for Next Generation Wireless Applications

Vibrating RF MEMS for Next Generation Wireless Applications C. T.-C. Nguyen, Vibrating RF MEMS for next generation wireless applications, Proceedings, 004 IEEE Custom Integrated Circuits Conf., Orlando, Florida, Oct. 3-6, 004, pp. 57-64. Vibrating RF MEMS for Next

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2010

EE C245 ME C218 Introduction to MEMS Design Fall 2010 Basic Concept: Scaling Guitar Strings EE C245 ME C218 ntroduction to MEMS Design Fall 21 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley

More information

Introduction to Microeletromechanical Systems (MEMS) Lecture 12 Topics. MEMS Overview

Introduction to Microeletromechanical Systems (MEMS) Lecture 12 Topics. MEMS Overview Introduction to Microeletromechanical Systems (MEMS) Lecture 2 Topics MEMS for Wireless Communication Components for Wireless Communication Mechanical/Electrical Systems Mechanical Resonators o Quality

More information

MEMS BASED QUARTZ OSCILLATORS and FILTERS for on-chip INTEGRATION

MEMS BASED QUARTZ OSCILLATORS and FILTERS for on-chip INTEGRATION MEMS BASED QUARTZ OSCILLATORS and FILTERS for on-chip INTEGRATION R. L. Kubena, F. P. Stratton, D. T. Chang, R. J. Joyce, and T. Y. Hsu Sensors and Materials Laboratory, HRL Laboratories, LLC Malibu, CA

More information

Vibrating RF MEMS Overview: Applications to Wireless Communications

Vibrating RF MEMS Overview: Applications to Wireless Communications C. T.-C. Nguyen, Vibrating RF MEMS overview: applications to wireless communications, Proceedings of SPIE: Micromachining and Microfabrication Process Technology, vol. 5715, Photonics West: MOEMS-MEMS

More information

Micromechanical filters for miniaturized low-power communications

Micromechanical filters for miniaturized low-power communications C. T.-C. Nguyen, Micromechanical filters for miniaturized low-power communications (invited), to be published in Proceedings of SPIE: Smart Structures and Materials (Smart Electronics and MEMS), Newport

More information

INF 5490 RF MEMS. LN10: Micromechanical filters. Spring 2011, Oddvar Søråsen Jan Erik Ramstad Department of Informatics, UoO

INF 5490 RF MEMS. LN10: Micromechanical filters. Spring 2011, Oddvar Søråsen Jan Erik Ramstad Department of Informatics, UoO INF 5490 RF MEMS LN10: Micromechanical filters Spring 2011, Oddvar Søråsen Jan Erik Ramstad Department of Informatics, UoO 1 Today s lecture Properties of mechanical filters Visualization and working principle

More information

A Self-Sustaining Ultra High Frequency Nanoelectromechanical Oscillator

A Self-Sustaining Ultra High Frequency Nanoelectromechanical Oscillator Online Supplementary Information A Self-Sustaining Ultra High Frequency Nanoelectromechanical Oscillator X.L. Feng 1,2, C.J. White 2, A. Hajimiri 2, M.L. Roukes 1* 1 Kavli Nanoscience Institute, MC 114-36,

More information

CMOS-Electromechanical Systems Microsensor Resonator with High Q-Factor at Low Voltage

CMOS-Electromechanical Systems Microsensor Resonator with High Q-Factor at Low Voltage CMOS-Electromechanical Systems Microsensor Resonator with High Q-Factor at Low Voltage S.Thenappan 1, N.Porutchelvam 2 1,2 Department of ECE, Gnanamani College of Technology, India Abstract The paper presents

More information

Intrinsic Temperature Compensation of Highly Resistive High-Q Silicon Microresonators via Charge Carrier Depletion

Intrinsic Temperature Compensation of Highly Resistive High-Q Silicon Microresonators via Charge Carrier Depletion Intrinsic Temperature Compensation of Highly Resistive High-Q Silicon Microresonators via Charge Carrier Depletion Ashwin K. Samarao and Farrokh Ayazi School of Electrical and Computer Engineering Georgia

More information

INF 5490 RF MEMS. L12: Micromechanical filters. S2008, Oddvar Søråsen Department of Informatics, UoO

INF 5490 RF MEMS. L12: Micromechanical filters. S2008, Oddvar Søråsen Department of Informatics, UoO INF 5490 RF MEMS L12: Micromechanical filters S2008, Oddvar Søråsen Department of Informatics, UoO 1 Today s lecture Properties of mechanical filters Visualization and working principle Design, modeling

More information

INF 5490 RF MEMS. LN10: Micromechanical filters. Spring 2012, Oddvar Søråsen Department of Informatics, UoO

INF 5490 RF MEMS. LN10: Micromechanical filters. Spring 2012, Oddvar Søråsen Department of Informatics, UoO INF 5490 RF MEMS LN10: Micromechanical filters Spring 2012, Oddvar Søråsen Department of Informatics, UoO 1 Today s lecture Properties of mechanical filters Visualization and working principle Modeling

More information

Frequency-Selective MEMS for Miniaturized Low-Power Communication Devices. Clark T.-C. Nguyen, Member, IEEE. (Invited Paper)

Frequency-Selective MEMS for Miniaturized Low-Power Communication Devices. Clark T.-C. Nguyen, Member, IEEE. (Invited Paper) 1486 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 47, NO. 8, AUGUST 1999 Frequency-Selective MEMS for Miniaturized Low-Power Communication Devices Clark T.-C. Nguyen, Member, IEEE (Invited

More information

IN-CHIP DEVICE-LAYER THERMAL ISOLATION OF MEMS RESONATOR FOR LOWER POWER BUDGET

IN-CHIP DEVICE-LAYER THERMAL ISOLATION OF MEMS RESONATOR FOR LOWER POWER BUDGET Proceedings of IMECE006 006 ASME International Mechanical Engineering Congress and Exposition November 5-10, 006, Chicago, Illinois, USA IMECE006-15176 IN-CHIP DEVICE-LAYER THERMAL ISOLATION OF MEMS RESONATOR

More information

MEMS for RF, Micro Optics and Scanning Probe Nanotechnology Applications

MEMS for RF, Micro Optics and Scanning Probe Nanotechnology Applications MEMS for RF, Micro Optics and Scanning Probe Nanotechnology Applications Part I: RF Applications Introductions and Motivations What are RF MEMS? Example Devices RFIC RFIC consists of Active components

More information

MEMS Reference Oscillators. EECS 242B Fall 2014 Prof. Ali M. Niknejad

MEMS Reference Oscillators. EECS 242B Fall 2014 Prof. Ali M. Niknejad MEMS Reference Oscillators EECS 242B Fall 2014 Prof. Ali M. Niknejad Why replace XTAL Resonators? XTAL resonators have excellent performance in terms of quality factor (Q ~ 100,000), temperature stability

More information

Kun Wang, Yinglei Yu, Ark-Chew Wong, and Clark T.-C. Nguyen

Kun Wang, Yinglei Yu, Ark-Chew Wong, and Clark T.-C. Nguyen K. Wang, Y. Yu, A.-C. Wong, and C. T.-C. Nguyen, VHF free-free beam high-q micromechanical resonators, Technical Digest, 12 th International IEEE Micro Electro Mechanical Systems Conference, Orlando, Florida,

More information

Aluminum Nitride Reconfigurable RF-MEMS Front-Ends

Aluminum Nitride Reconfigurable RF-MEMS Front-Ends From the SelectedWorks of Chengjie Zuo October 2011 Aluminum Nitride Reconfigurable RF-MEMS Front-Ends Augusto Tazzoli University of Pennsylvania Matteo Rinaldi University of Pennsylvania Chengjie Zuo

More information

AN MSI MICROMECHANICAL DIFFERENTIAL DISK-ARRAY FILTER. Dept. of Electrical Engineering & Computer Science, University of Michigan, Ann Arbor, USA 2

AN MSI MICROMECHANICAL DIFFERENTIAL DISK-ARRAY FILTER. Dept. of Electrical Engineering & Computer Science, University of Michigan, Ann Arbor, USA 2 AN MSI MICROMECHANICAL DIFFERENTIAL DISKARRAY FILTER ShengShian Li 1, YuWei Lin 1, Zeying Ren 1, and Clark T.C. Nguyen 2 1 Dept. of Electrical Engineering & Computer Science, University of Michigan, Ann

More information

Switch-less Dual-frequency Reconfigurable CMOS Oscillator using One Single Piezoelectric AlN MEMS Resonator with Co-existing S0 and S1 Lamb-wave Modes

Switch-less Dual-frequency Reconfigurable CMOS Oscillator using One Single Piezoelectric AlN MEMS Resonator with Co-existing S0 and S1 Lamb-wave Modes From the SelectedWorks of Chengjie Zuo January, 11 Switch-less Dual-frequency Reconfigurable CMOS Oscillator using One Single Piezoelectric AlN MEMS Resonator with Co-existing S and S1 Lamb-wave Modes

More information

Electrically coupled MEMS bandpass filters Part I: With coupling element

Electrically coupled MEMS bandpass filters Part I: With coupling element Sensors and Actuators A 122 (2005) 307 316 Electrically coupled MEMS bandpass filters Part I: With coupling element Siavash Pourkamali, Farrokh Ayazi School of Electrical and Computer Engineering, Georgia

More information

Integration of AlN Micromechanical Contour- Mode Technology Filters with Three-Finger Dual Beam AlN MEMS Switches

Integration of AlN Micromechanical Contour- Mode Technology Filters with Three-Finger Dual Beam AlN MEMS Switches University of Pennsylvania From the SelectedWorks of Nipun Sinha 29 Integration of AlN Micromechanical Contour- Mode Technology Filters with Three-Finger Dual Beam AlN MEMS Switches Nipun Sinha, University

More information

ISSCC 2006 / SESSION 16 / MEMS AND SENSORS / 16.1

ISSCC 2006 / SESSION 16 / MEMS AND SENSORS / 16.1 16.1 A 4.5mW Closed-Loop Σ Micro-Gravity CMOS-SOI Accelerometer Babak Vakili Amini, Reza Abdolvand, Farrokh Ayazi Georgia Institute of Technology, Atlanta, GA Recently, there has been an increasing demand

More information

Low-Power RF Integrated Circuit Design Techniques for Short-Range Wireless Connectivity

Low-Power RF Integrated Circuit Design Techniques for Short-Range Wireless Connectivity Low-Power RF Integrated Circuit Design Techniques for Short-Range Wireless Connectivity Marvin Onabajo Assistant Professor Analog and Mixed-Signal Integrated Circuits (AMSIC) Research Laboratory Dept.

More information

MEMS BASED QUARTZ OSCILLATORS and FILTERS for on-chip INTEGRATION

MEMS BASED QUARTZ OSCILLATORS and FILTERS for on-chip INTEGRATION MEMS BASED QUARTZ OSCILLATORS and FILTERS for on-chip INTEGRATION R. L. Kubena, F. P. Stratton, D. T. Chang, R. J. Joyce, and T. Y. Hsu Sensors and Materials Laboratory, HRL Laboratories, LLC Malibu, CA

More information

Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy

Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy RFIC2014, Tampa Bay June 1-3, 2014 Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy High data rate wireless networks MAN / LAN PAN ~7GHz of unlicensed

More information

Vibrating MEMS resonators

Vibrating MEMS resonators Vibrating MEMS resonators Vibrating resonators can be scaled down to micrometer lengths Analogy with IC-technology Reduced dimensions give mass reduction and increased spring constant increased resonance

More information

Micro Electro Mechanical Systems Programs at MTO. Clark T.-C. Nguyen Program Manager, DARPA/MTO

Micro Electro Mechanical Systems Programs at MTO. Clark T.-C. Nguyen Program Manager, DARPA/MTO Micro Electro Mechanical Systems Programs at MTO Clark T.-C. Nguyen Program Manager, DARPA/MTO Microsystems Technology Office Technology for Chip-Level Integration of E. P. M. MEMS Application Domains

More information

Low-Power Ovenization of Fused Silica Resonators for Temperature-Stable Oscillators

Low-Power Ovenization of Fused Silica Resonators for Temperature-Stable Oscillators Low-Power Ovenization of Fused Silica Resonators for Temperature-Stable Oscillators Zhengzheng Wu zzwu@umich.edu Adam Peczalski peczalsk@umich.edu Mina Rais-Zadeh minar@umich.edu Abstract In this paper,

More information

Low Actuation Wideband RF MEMS Shunt Capacitive Switch

Low Actuation Wideband RF MEMS Shunt Capacitive Switch Available online at www.sciencedirect.com Procedia Engineering 29 (2012) 1292 1297 2012 International Workshop on Information and Electronics Engineering (IWIEE) Low Actuation Wideband RF MEMS Shunt Capacitive

More information

VHF and UHF Filters for Wireless Communications Based on Piezoelectrically-Transduced Micromechanical Resonators

VHF and UHF Filters for Wireless Communications Based on Piezoelectrically-Transduced Micromechanical Resonators VHF and UHF Filters for Wireless Communications Based on Piezoelectrically-Transduced Micromechanical Resonators Jing Wang Center for Wireless and Microwave Information Systems Nanotechnology Research

More information

VHF Free Free Beam High-Q Micromechanical Resonators

VHF Free Free Beam High-Q Micromechanical Resonators JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 9, NO. 3, SEPTEMBER 2000 347 VHF Free Free Beam High-Q Micromechanical Resonators Kun Wang, Member, IEEE, Ark-Chew Wong, Student Member, IEEE, and Clark

More information

Third Order Intermodulation Distortion in Capacitive-Gap Transduced Micromechanical Filters

Third Order Intermodulation Distortion in Capacitive-Gap Transduced Micromechanical Filters Third Order Intermodulation Distortion in Capacitive-Gap Transduced Micromechanical Filters Jalal Naghsh Nilchi, Ruonan Liu, Scott Li, Mehmet Akgul, Tristan O. Rocheleau, and Clark T.-C. Nguyen Berkeley

More information

ISSCC 2006 / SESSION 20 / WLAN/WPAN / 20.5

ISSCC 2006 / SESSION 20 / WLAN/WPAN / 20.5 20.5 An Ultra-Low Power 2.4GHz RF Transceiver for Wireless Sensor Networks in 0.13µm CMOS with 400mV Supply and an Integrated Passive RX Front-End Ben W. Cook, Axel D. Berny, Alyosha Molnar, Steven Lanzisera,

More information

MEMS Based Lateral Mode Free-Free Beam Resonator

MEMS Based Lateral Mode Free-Free Beam Resonator MEMS Based Lateral Mode Free-Free Beam Resonator Jyoti Yadav 1, Neelam Yadav 2 1 Dronacharya College of Engineering, Gurgaon, 2 St. Margret Engineering College, Neemrana Abstract: MEMS based on mechanical

More information

A Real-Time kHz Clock Oscillator Using a mm 2 Micromechanical Resonator Frequency-Setting Element

A Real-Time kHz Clock Oscillator Using a mm 2 Micromechanical Resonator Frequency-Setting Element 0.0154-mm 2 Micromechanical Resonator Frequency-Setting Element, Proceedings, IEEE International Frequency Control Symposium, Baltimore, Maryland, May 2012, to be published A Real-Time 32.768-kHz Clock

More information

2.97-GHz CVD Diamond Ring Resonator With Q >40,000

2.97-GHz CVD Diamond Ring Resonator With Q >40,000 Proceedings, 2012 IEEE Int. Frequency Control Symposium, Baltimore, Maryland, May 22-24, 2012, to be published. 2.97-GHz CVD Diamond Ring Resonator With Q >40,000 Thura Lin Naing, Turker Beyazoglu, Lingqi

More information

RF Micro/Nano Resonators for Signal Processing

RF Micro/Nano Resonators for Signal Processing RF Micro/Nano Resonators for Signal Processing Roger T. Howe Depts. of EECS and ME Berkeley Sensor & Actuator Center University of California at Berkeley Outline FBARs vs. lateral bulk resonators Electrical

More information

Mechanical Spectrum Analyzer in Silicon using Micromachined Accelerometers with Time-Varying Electrostatic Feedback

Mechanical Spectrum Analyzer in Silicon using Micromachined Accelerometers with Time-Varying Electrostatic Feedback IMTC 2003 Instrumentation and Measurement Technology Conference Vail, CO, USA, 20-22 May 2003 Mechanical Spectrum Analyzer in Silicon using Micromachined Accelerometers with Time-Varying Electrostatic

More information

Frequency-Selective MEMS for Miniaturized Communication Devices

Frequency-Selective MEMS for Miniaturized Communication Devices C. T.-C. Nguyen, Frequency-selective MEMS for miniaturized communication devices (invited), Proceedings, 1998 IEEE Aerospace Conference, vol. 1, Snowmass, Colorado, March 21-28, 1998, pp. 445-460. Frequency-Selective

More information

Behavioral Modeling and Simulation of Micromechanical Resonator for Communications Applications

Behavioral Modeling and Simulation of Micromechanical Resonator for Communications Applications Cannes-Mandelieu, 5-7 May 2003 Behavioral Modeling and Simulation of Micromechanical Resonator for Communications Applications Cecile Mandelbaum, Sebastien Cases, David Bensaude, Laurent Basteres, and

More information

AlN Contour-Mode Resonators for Narrow-Band Filters above 3 GHz

AlN Contour-Mode Resonators for Narrow-Band Filters above 3 GHz From the SelectedWorks of Chengjie Zuo April, 2009 AlN Contour-Mode Resonators for Narrow-Band Filters above 3 GHz Matteo Rinaldi, University of Pennsylvania Chiara Zuniga, University of Pennsylvania Chengjie

More information

Enhancement of Micromechanical Resonator Manufacturing Precision Via Mechanically-Coupled Arraying

Enhancement of Micromechanical Resonator Manufacturing Precision Via Mechanically-Coupled Arraying Enhancement of Micromechanical esonator Manufacturing Precision Via Mechanically-Coupled Arraying Yang Lin, Wei-Chang Li, Bongsang Kim, Yu-Wei Lin 2, Zeying en, and Clark T.-C. guyen Department of Electrical

More information

A Low-Voltage Actuated Micromachined Microwave Switch Using Torsion Springs and Leverage

A Low-Voltage Actuated Micromachined Microwave Switch Using Torsion Springs and Leverage 2540 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 48, NO. 12, DECEMBER 2000 A Low-Voltage Actuated Micromachined Microwave Switch Using Torsion Springs and Leverage Dooyoung Hah, Euisik Yoon,

More information

Vibrating Micromechanical Resonators With Solid Dielectric Capacitive Transducer Gaps

Vibrating Micromechanical Resonators With Solid Dielectric Capacitive Transducer Gaps Vibrating Micromechanical s With Solid Dielectric Capacitive Transducer s Yu-Wei Lin, Sheng-Shian Li, Yuan Xie, Zeying Ren, and Clark T.-C. Nguyen Center for Wireless Integrated Micro Systems Department

More information

Ultra Wideband Amplifier Senior Project Proposal

Ultra Wideband Amplifier Senior Project Proposal Ultra Wideband Amplifier Senior Project Proposal Saif Anwar Sarah Kief Senior Project Fall 2007 December 4, 2007 Advisor: Dr. Prasad Shastry Department of Electrical & Computer Engineering Bradley University

More information

Micro-nanosystems for electrical metrology and precision instrumentation

Micro-nanosystems for electrical metrology and precision instrumentation Micro-nanosystems for electrical metrology and precision instrumentation A. Bounouh 1, F. Blard 1,2, H. Camon 2, D. Bélières 1, F. Ziadé 1 1 LNE 29 avenue Roger Hennequin, 78197 Trappes, France, alexandre.bounouh@lne.fr

More information

Design and Fabrication of RF MEMS Switch by the CMOS Process

Design and Fabrication of RF MEMS Switch by the CMOS Process Tamkang Journal of Science and Engineering, Vol. 8, No 3, pp. 197 202 (2005) 197 Design and Fabrication of RF MEMS Switch by the CMOS Process Ching-Liang Dai 1 *, Hsuan-Jung Peng 1, Mao-Chen Liu 1, Chyan-Chyi

More information

MEMS Real-Time Clocks: small footprint timekeeping. Paolo Frigerio November 15 th, 2018

MEMS Real-Time Clocks: small footprint timekeeping. Paolo Frigerio November 15 th, 2018 : small footprint timekeeping Paolo Frigerio paolo.frigerio@polimi.it November 15 th, 2018 Who? 2 Paolo Frigerio paolo.frigerio@polimi.it BSc & MSc in Electronics Engineering PhD with Prof. Langfelder

More information

Wirelessly powered micro-tracer enabled by miniaturized antenna and microfluidic channel

Wirelessly powered micro-tracer enabled by miniaturized antenna and microfluidic channel Journal of Physics: Conference Series PAPER OPEN ACCESS Wirelessly powered micro-tracer enabled by miniaturized antenna and microfluidic channel To cite this article: G Duan et al 2015 J. Phys.: Conf.

More information

Design and Simulation of 5GHz Down-Conversion Self-Oscillating Mixer

Design and Simulation of 5GHz Down-Conversion Self-Oscillating Mixer Australian Journal of Basic and Applied Sciences, 5(12): 2595-2599, 2011 ISSN 1991-8178 Design and Simulation of 5GHz Down-Conversion Self-Oscillating Mixer 1 Alishir Moradikordalivand, 2 Sepideh Ebrahimi

More information

Characteristics of Crystal. Piezoelectric effect of Quartz Crystal

Characteristics of Crystal. Piezoelectric effect of Quartz Crystal Characteristics of Crystal Piezoelectric effect of Quartz Crystal The quartz crystal has a character when the pressure is applied to the direction of the crystal axis, the electric change generates on

More information

A COMPACT WIDEBAND MATCHING 0.18-µM CMOS UWB LOW-NOISE AMPLIFIER USING ACTIVE FEED- BACK TECHNIQUE

A COMPACT WIDEBAND MATCHING 0.18-µM CMOS UWB LOW-NOISE AMPLIFIER USING ACTIVE FEED- BACK TECHNIQUE Progress In Electromagnetics Research C, Vol. 16, 161 169, 2010 A COMPACT WIDEBAND MATCHING 0.18-µM CMOS UWB LOW-NOISE AMPLIFIER USING ACTIVE FEED- BACK TECHNIQUE J.-Y. Li, W.-J. Lin, and M.-P. Houng Department

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2011

EE C245 ME C218 Introduction to MEMS Design Fall 2011 EE C245/ME C218: ntrductin t MEMS Lecture 2m: Benefits f Scaling Lecture Outline EE C245 ME C218 ntrductin t MEMS Design Fall 211 Prf. Clark T.-C. Nguyen Reading: Senturia, Chapter 1 Lecture Tpics: Benefits

More information

This article was originally published in a journal published by Elsevier, and the attached copy is provided by Elsevier for the author s benefit and for the benefit of the author s institution, for non-commercial

More information

High-Q UHF Micromechanical Radial-Contour Mode Disk Resonators

High-Q UHF Micromechanical Radial-Contour Mode Disk Resonators 1298 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 14, NO. 6, DECEMBER 2005 High-Q UHF Micromechanical Radial-Contour Mode Disk Resonators John R. Clark, Member, IEEE, Wan-Thai Hsu, Member, IEEE, Mohamed

More information

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong Research and Development Activities in RF and Analog IC Design Howard Luong Analog Research Laboratory Department of Electrical and Electronic Engineering Hong Kong University of Science and Technology

More information

RF MEMS Circuits Applications of MEMS switch and tunable capacitor

RF MEMS Circuits Applications of MEMS switch and tunable capacitor RF MEMS Circuits Applications of MEMS switch and tunable capacitor Dr. Jeffrey DeNatale, Manager, MEMS Department Electronics Division jdenatale@rwsc.com 85-373-4439 Panamerican Advanced Studies Institute

More information

EE C247B ME C218. EE C245: Introduction to MEMS Design. Spring EE C247B/ME C218: Introduction to MEMS Lecture 3m: Benefits of Scaling II

EE C247B ME C218. EE C245: Introduction to MEMS Design. Spring EE C247B/ME C218: Introduction to MEMS Lecture 3m: Benefits of Scaling II EE C247B/ME C218: ntroduction to MEMS Basic Concept: Scaling Guitar Strings Guitar String Vib. Amplitude EE C247B ME C218 ntroduction to MEMS Design Spring 2015 Prof. Clark T.- Freq. [Bannon 1996] Freq.

More information

High Frequency Gallium Arsenide MEMS Based Disk Resonator

High Frequency Gallium Arsenide MEMS Based Disk Resonator High Frequency Gallium Arsenide MEMS Based Disk Resonator Mude Sreenivasulu 1,Dr.Valasani Ushashree 2, Dr.P.Chandra Sekhar reddy 3, S.Rajendra Kumar 4 1 (Research Scholar & Assoc Professor, SJCET, ECE

More information

Characterization of Rotational Mode Disk Resonator Quality Factors in Liquid

Characterization of Rotational Mode Disk Resonator Quality Factors in Liquid Characterization of Rotational Mode Disk Resonator Quality Factors in Liquid Amir Rahafrooz and Siavash Pourkamali Department of Electrical and Computer Engineering University of Denver Denver, CO, USA

More information

SiTime University Turbo Seminar Series. December 2012 Reliability & Resilience

SiTime University Turbo Seminar Series. December 2012 Reliability & Resilience SiTime University Turbo Seminar Series December 2012 Reliability & Resilience Agenda SiTime s Silicon MEMS Oscillator Construction Built for High Volume Mass Production Best Electro Magnetic Susceptibility

More information

A Highly Stable CMOS Self-Compensated Oscillator (SCO) Based on an LC Tank Temperature Null Concept

A Highly Stable CMOS Self-Compensated Oscillator (SCO) Based on an LC Tank Temperature Null Concept A Highly Stable CMOS Self-Compensated Oscillator (SCO) Based on an LC Tank Null Concept A. Ahmed, B. Hanafi, S. Hosny, N. Sinoussi, A. Hamed, M. Samir, M. Essam, A. El-Kholy, M. Weheiba, A. Helmy Timing

More information

VHF Free-Free Beam High-Q Micromechanical Resonators

VHF Free-Free Beam High-Q Micromechanical Resonators VHF Free-Free Beam High-Q Micromechanical Resonators Kun Wang, Member, IEEE, Ark-Chew Wong, Student Member, IEEE, and Clark T.-C. Nguyen, Member, IEEE Abstract Free-free beam, flexural-mode, micromechanical

More information

Advanced bridge instrument for the measurement of the phase noise and of the short-term frequency stability of ultra-stable quartz resonators

Advanced bridge instrument for the measurement of the phase noise and of the short-term frequency stability of ultra-stable quartz resonators Advanced bridge instrument for the measurement of the phase noise and of the short-term frequency stability of ultra-stable quartz resonators F. Sthal, X. Vacheret, S. Galliou P. Salzenstein, E. Rubiola

More information

Simulation of Cantilever RF MEMS switch

Simulation of Cantilever RF MEMS switch International Research Journal of Applied and Basic Sciences 2014 Available online at www.irjabs.com ISSN 2251-838X / Vol, 8 (4): 442-446 Science Explorer Publications Simulation of Cantilever RF MEMS

More information

Waveguide-Mounted RF MEMS for Tunable W-band Analog Type Phase Shifter

Waveguide-Mounted RF MEMS for Tunable W-band Analog Type Phase Shifter Waveguide-Mounted RF MEMS for Tunable W-band Analog Type Phase Shifter D. PSYCHOGIOU 1, J. HESSELBARTH 1, Y. LI 2, S. KÜHNE 2, C. HIEROLD 2 1 Laboratory for Electromagnetic Fields and Microwave Electronics

More information

Out-of-plane translatory MEMS actuator with extraordinary large stroke for optical path length modulation in miniaturized FTIR spectrometers

Out-of-plane translatory MEMS actuator with extraordinary large stroke for optical path length modulation in miniaturized FTIR spectrometers P 12 Out-of-plane translatory MEMS actuator with extraordinary large stroke for optical path length modulation in miniaturized FTIR spectrometers Sandner, Thilo; Grasshoff, Thomas; Schenk, Harald; Kenda*,

More information

1-13GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS

1-13GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS -3GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS Hyohyun Nam and Jung-Dong Park a Division of Electronics and Electrical Engineering, Dongguk University, Seoul E-mail

More information

Electrostatic actuation of silicon optomechanical resonators Suresh Sridaran and Sunil A. Bhave OxideMEMS Lab, Cornell University, Ithaca, NY, USA

Electrostatic actuation of silicon optomechanical resonators Suresh Sridaran and Sunil A. Bhave OxideMEMS Lab, Cornell University, Ithaca, NY, USA Electrostatic actuation of silicon optomechanical resonators Suresh Sridaran and Sunil A. Bhave OxideMEMS Lab, Cornell University, Ithaca, NY, USA Optomechanical systems offer one of the most sensitive

More information

Miniaturising Motion Energy Harvesters: Limits and Ways Around Them

Miniaturising Motion Energy Harvesters: Limits and Ways Around Them Miniaturising Motion Energy Harvesters: Limits and Ways Around Them Eric M. Yeatman Imperial College London Inertial Harvesters Mass mounted on a spring within a frame Frame attached to moving host (person,

More information

RF/Microwave Circuits I. Introduction Fall 2003

RF/Microwave Circuits I. Introduction Fall 2003 Introduction Fall 03 Outline Trends for Microwave Designers The Role of Passive Circuits in RF/Microwave Design Examples of Some Passive Circuits Software Laboratory Assignments Grading Trends for Microwave

More information

Reconfigurable 4-Frequency CMOS Oscillator Based on AlN Contour-Mode MEMS Resonators

Reconfigurable 4-Frequency CMOS Oscillator Based on AlN Contour-Mode MEMS Resonators From the SelectedWorks of Chengjie Zuo October, 2010 Reconfigurable 4-Frequency CMOS Oscillator Based on AlN Contour-Mode MEMS Resonators Matteo Rinaldi, University of Pennsylvania Chengjie Zuo, University

More information

Quadrature GPS Receiver Front-End in 0.13μm CMOS: The QLMV cell

Quadrature GPS Receiver Front-End in 0.13μm CMOS: The QLMV cell 1 Quadrature GPS Receiver Front-End in 0.13μm CMOS: The QLMV cell Yee-Huan Ng, Po-Chia Lai, and Jia Ruan Abstract This paper presents a GPS receiver front end design that is based on the single-stage quadrature

More information

INFLUENCE OF AUTOMATIC LEVEL CONTROL ON MICROMECHANICAL RESONATOR OSCILLATOR PHASE NOISE

INFLUENCE OF AUTOMATIC LEVEL CONTROL ON MICROMECHANICAL RESONATOR OSCILLATOR PHASE NOISE S. Lee and C. T.-C. Nguyen, Influence of automatic level control on micromechanical resonator oscsillator phase noise, Proceedings, 3 IEEE Int. Frequency Control Symposium, Tampa, Florida, May 5-8, 3,

More information

A RECONFIGURABLE IMPEDANCE MATCHING NETWORK EMPLOYING RF-MEMS SWITCHES

A RECONFIGURABLE IMPEDANCE MATCHING NETWORK EMPLOYING RF-MEMS SWITCHES Author manuscript, published in "DTIP 2007, Stresa, lago Maggiore : Italy (2007)" Stresa, Italy, 25-27 April 2007 EMPLOYING RF-MEMS SWITCHES M. Bedani *, F. Carozza *, R. Gaddi *, A. Gnudi *, B. Margesin

More information

VIBRATING mechanical tank components, such as crystal. High-Order Medium Frequency Micromechanical Electronic Filters

VIBRATING mechanical tank components, such as crystal. High-Order Medium Frequency Micromechanical Electronic Filters 534 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 8, NO. 4, DECEMBER 1999 High-Order Medium Frequency Micromechanical Electronic Filters Kun Wang, Student Member, IEEE, and Clark T.-C. Nguyen, Member,

More information

A 900MHz / 1.8GHz CMOS Receiver for Dual Band Applications*

A 900MHz / 1.8GHz CMOS Receiver for Dual Band Applications* FA 8.2: S. Wu, B. Razavi A 900MHz / 1.8GHz CMOS Receiver for Dual Band Applications* University of California, Los Angeles, CA This dual-band CMOS receiver for GSM and DCS1800 applications incorporates

More information

Cascaded Channel-Select Filter Array Architecture Using High-K Transducers for Spectrum Analysis

Cascaded Channel-Select Filter Array Architecture Using High-K Transducers for Spectrum Analysis Cascaded Channel-Select Filter Array Architecture Using High-K Transducers for Spectrum Analysis Eugene Hwang, Tanay A. Gosavi, Sunil A. Bhave School of Electrical and Computer Engineering Cornell University

More information

A 7-GHz 1.8-dB NF CMOS Low-Noise Amplifier

A 7-GHz 1.8-dB NF CMOS Low-Noise Amplifier 852 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 37, NO. 7, JULY 2002 A 7-GHz 1.8-dB NF CMOS Low-Noise Amplifier Ryuichi Fujimoto, Member, IEEE, Kenji Kojima, and Shoji Otaka Abstract A 7-GHz low-noise amplifier

More information

SiTime University Turbo Seminar Series. July SiTime MEMS Advantages

SiTime University Turbo Seminar Series. July SiTime MEMS Advantages SiTime University Turbo Seminar Series July 29-30 2013 SiTime MEMS Advantages Agenda Benefits of SiTime s MEMS Fabrication Process Advantages of Silicon MEMS Design for High Q and low Stress Sensitivity

More information