Frequency Modulation KEEE343 Communication Theory Lecture #15, April 28, Prof. Young-Chai Ko

Size: px
Start display at page:

Download "Frequency Modulation KEEE343 Communication Theory Lecture #15, April 28, Prof. Young-Chai Ko"

Transcription

1 Frequency Modulation KEEE343 Communication Theory Lecture #15, April 28, 2011 Prof. Young-Chai Ko

2 Summary Angle Modulation Properties of Angle Modulation Narrowband Frequency Modulation

3 Properties of Angle-Modulated Wave Property 1: Constancy of transmitted wave The amplitude of PM and FM waves is maintained at a constant value equal to the carrier amplitude for all time. The average transmitted power of angle-modulated wave is a constant P av = 1 2 A2 c Property 2: Nonlinearity of the modulated process m(t) =m 1 (t)+m 2 (t) s(t) =A c cos [2 f c t + k p (m 1 (t)+m 2 (t))] s 1 (t) =A c cos(2 f c t + k p m 1 (t)), s(t) 6= s 1 (t)+s 2 (t) s 2 (t) =A c cos(2 f c t + k p m 2 (t))

4 [Ref: Haykin & Moher, Textbook]

5 Property 3: Irregularity of zero-crossings Zero-crossings are defined as the instants of time at which a waveform changes its amplitude from a positive to negative value or the other way around The irregularity of zero-crossings in angle-modulation wave is attributed to the nonlinear character of the modulation process. The message signal m(t) increases or decreases linearly with time t, in which case the instantaneous frequency f i (t) of the PM wave changes form the unmodulated carrier frequency f c to a new constant value dependent on the constant value of m(t)

6 Property 4: Visualization difficulty of message waveform The difficulty in visualizing the message waveform in angle-modulated waves is also attributed to the nonlinear character of angle-modulated waves. Property 5: Tradeoff of increased transmission bandwidth for improved noise performance The transmission of a message signal by modulating the angle of a sinusoidal carrier wave is less sensitive to the presence of additive noise

7 Example of Zero-Crossing Consider a modulating wave m(t) given as m(t) = at, t 0 0, t < 0 where a is the slope parameter. In what follows we study the zero-crossing of PM and FM waves for the following set of parameters f c = 1 4 [Hz] a = 1 volt/s

8 [Ref: Haykin & Moher, Textbook]

9 Phase modulation: phase-sensitivity factor PM wave is k p = 2 radians/volt. Then, the s(t) = Ac cos(2 f c t + k p at), t 0 A c cos(2 f c t), t < 0 t n /2 Let denote the instance of time at which the PM wave experiences a zerocrossing; this occurs whenever the angle of the PM wave is an odd multiple of. Then we may set up 2 f c t n + k p at n = 2 + n, n =0, 1, 2,... t n as the linear equation for. Solving this equation for, we get the linear formula t n = n 2f c + k p a = 1 2 t n + n, n =0, 1, 2,... f c =1/4 [Hz] and a = 1 volt/s

10 Frequency modulation Let k f =1. Then the FM wave is s(t) = Ac cos(2 f c t + k f at 2 ), t 0 A c cos(2 f c t), t < 0 Invoking the definition of a zero-crossing, we may set up 2 f c t n + k f at 2 n = 2 + n, n =0, 1, 2,... t n = 1 ak f f c + s f 2 c + ak f n!, n =0, 1, 2,... t n = p n, n =0, 1, 2,... f c =1/4 [Hz] and a = 1 volt/s

11 Comparing the zero-crossing results derived for PM and FM waves, we may make the following observations once the linear modulating wave begins to act on the sinusoidal carrier wave: For PM, regularity of the zero-crossing is maintained; the instantaneous frequency changes from the unmodulated value of f c =1/4Hz to the new constant value of f c + k p (a/2 )= 1 2 Hz. For FM, the zero-crossings assume an irregular form; as expected, the instantaneous frequency increases linearly with time t

12 Relationship between PM and FM An FM wave can be generated by first integrating the message signal m(t) with respect to time t and thus using the resulting signal as the input to a phase modulation. A PM wave can be generated by first differentiating m(t) with respect to time t and then using the resulting signal as the input to a frequency modulator. We may deduce the properties of phase modulation from those frequency modulation and vice versa.

13 [Ref: Haykin & Moher, Textbook]

14 Narrow-Band Frequency Modulation Narrow-Band FM means that the message signal has narrow bandwidth. Consider the single-tone wave as a message signal, which is extremely narrow banded: m(t) =A m cos(2 f m t) FM signal Instantaneous frequency f i (t) = f c + k f A m cos(2 f m t) = f c + f cos(2 f m t) f = k f A m Phase i(t) = 2 Z t 0 f i ( ) d =2 = 2 f c t + f f m sin(2 f m t) apple f c t + f 2 f m sin(2 f m t)

15 Definitions Phase deviation of the FM wave Modulation index of the FM wave: = f f m f m Then, FM wave is s(t) =A c cos[2 f c t + sin(2 f m t)] s(t) =A c cos(2 f c t) cos( sin(2 f m t)) A c sin(2 f c t)sin( sin(2 f m t)) For small compared to 1 radian, we can rewrite cos[ (2 f m t)] 1, sin[ sin(2 f m t)] sin(2 f m t) s(t) A c cos(2 f c t) A c sin(2 f c t)sin(2 f m t)

16 [Ref: Haykin & Moher, Textbook]

17 Polar Representation from Cartesian Consider the modulated signal which can be rewritten as where s(t) =a(t) cos(2 f c t + (t)) s(t) =s I (t) cos(2 f c t) s Q (t)sin(2 f c t) s I (t) =a(t) cos( (t)), and, s Q (t) =a(t)sin( (t)) and a(t) = s 2 I(t)+s 2 Q(t) 1 2, and (t) = tan 1 apple sq (t) s I (t)

18 Approximated narrow-band FM signal can be written as s(t) A c cos(2 f c t) A c sin(2 f c t)sin(2 f m t) Envelope a(t) =A c 1+ 2 sin 2 (2 f m t) 1/2 Ac /2 2 sin 2 (2 f m t) Angle (t) =2 f c t + (t) =2 f c t + tan 1 ( sin(2 f m t)) for small Using the power series of the tangent function such as tan 1 (x) x 1 3 x3 +

19 Angle can be approximated as (t) 2 f c t + sin(2 f m t) sin 3 (2 f m t) Ideally, we should have (t) 2 f c t + sin(2 f m t) The harmonic distortion value is D(t) = 3 3 sin3 (2 f m t) The maximum absolute value of D(t) is D max = 3 3

20 For example for D max = =0.3, = % which is small enough for it to be ignored in practice.

21 Amplitude Distortion of Narrow-band FM Ideally, FM wave has a constant envelope But, the modulated wave produced by the narrow-band FM differ from this ideal condition in two fundamental respects: The envelope contains a residual amplitude modulation that varies with time The angle i(t) contains harmonic distortion in the form of thirdand higher order harmonics of the modulation frequency f m

Angle Modulation KEEE343 Communication Theory Lecture #12, April 14, Prof. Young-Chai Ko

Angle Modulation KEEE343 Communication Theory Lecture #12, April 14, Prof. Young-Chai Ko Angle Modulation KEEE343 Communication Theory Lecture #12, April 14, 2011 Prof. Young-Chai Ko koyc@korea.ac.kr Summary Frequency Division Multiplexing (FDM) Angle Modulation Frequency-Division Multiplexing

More information

Vestigial Sideband Modulation KEEE343 Communication Theory Lecture #11, April 7, Prof. Young-Chai Ko

Vestigial Sideband Modulation KEEE343 Communication Theory Lecture #11, April 7, Prof. Young-Chai Ko Vestigial Sideband Modulation KEEE343 Communication Theory Lecture #11, April 7, 2011 Prof. Young-Chai Ko koyc@korea.ac.kr Summary Vestigial sideband modulation Baseband representation of modulated wave

More information

Lecture Topics. Doppler CW Radar System, FM-CW Radar System, Moving Target Indication Radar System, and Pulsed Doppler Radar System

Lecture Topics. Doppler CW Radar System, FM-CW Radar System, Moving Target Indication Radar System, and Pulsed Doppler Radar System Lecture Topics Doppler CW Radar System, FM-CW Radar System, Moving Target Indication Radar System, and Pulsed Doppler Radar System 1 Remember that: An EM wave is a function of both space and time e.g.

More information

Lecture 6. Angle Modulation and Demodulation

Lecture 6. Angle Modulation and Demodulation Lecture 6 and Demodulation Agenda Introduction to and Demodulation Frequency and Phase Modulation Angle Demodulation FM Applications Introduction The other two parameters (frequency and phase) of the carrier

More information

Outline. Communications Engineering 1

Outline. Communications Engineering 1 Outline Introduction Signal, random variable, random process and spectra Analog modulation Analog to digital conversion Digital transmission through baseband channels Signal space representation Optimal

More information

(b) What are the differences between FM and PM? (c) What are the differences between NBFM and WBFM? [9+4+3]

(b) What are the differences between FM and PM? (c) What are the differences between NBFM and WBFM? [9+4+3] Code No: RR220401 Set No. 1 1. (a) The antenna current of an AM Broadcast transmitter is 10A, if modulated to a depth of 50% by an audio sine wave. It increases to 12A as a result of simultaneous modulation

More information

Part-I. Experiment 6:-Angle Modulation

Part-I. Experiment 6:-Angle Modulation Part-I Experiment 6:-Angle Modulation 1. Introduction 1.1 Objective This experiment deals with the basic performance of Angle Modulation - Phase Modulation (PM) and Frequency Modulation (FM). The student

More information

Solution to Chapter 4 Problems

Solution to Chapter 4 Problems Solution to Chapter 4 Problems Problem 4.1 1) Since F[sinc(400t)]= 1 modulation index 400 ( f 400 β f = k f max[ m(t) ] W Hence, the modulated signal is ), the bandwidth of the message signal is W = 00

More information

UNIT 1 QUESTIONS WITH ANSWERS

UNIT 1 QUESTIONS WITH ANSWERS UNIT 1 QUESTIONS WITH ANSWERS 1. Define modulation? Modulation is a process by which some characteristics of high frequency carrier signal is varied in accordance with the instantaneous value of the modulating

More information

Elements of Communication System Channel Fig: 1: Block Diagram of Communication System Terminology in Communication System

Elements of Communication System Channel Fig: 1: Block Diagram of Communication System Terminology in Communication System Content:- Fundamentals of Communication Engineering : Elements of a Communication System, Need of modulation, electromagnetic spectrum and typical applications, Unit V (Communication terminologies in communication

More information

1B Paper 6: Communications Handout 2: Analogue Modulation

1B Paper 6: Communications Handout 2: Analogue Modulation 1B Paper 6: Communications Handout : Analogue Modulation Ramji Venkataramanan Signal Processing and Communications Lab Department of Engineering ramji.v@eng.cam.ac.uk Lent Term 16 1 / 3 Modulation Modulation

More information

Angle Modulated Systems

Angle Modulated Systems Angle Modulated Systems Angle of carrier signal is changed in accordance with instantaneous amplitude of modulating signal. Two types Frequency Modulation (FM) Phase Modulation (PM) Use Commercial radio

More information

ECE513 RF Design for Wireless

ECE513 RF Design for Wireless 1 ECE513 RF Design for Wireless MODULE 1 RF Systems LECTURE 1 Modulation Techniques Chapter 1, Sections 1.1 1.3 Professor Michael Steer http://www4.ncsu.edu/~mbs 2 Module 1: RF Systems Amplifiers, Mixers

More information

Principles of Communications ECS 332

Principles of Communications ECS 332 Principles of Communications ECS 332 Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th 5. Angle Modulation Office Hours: BKD, 6th floor of Sirindhralai building Wednesday 4:3-5:3 Friday 4:3-5:3 Example

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05220405 Set No. 1 II B.Tech II Semester Regular Examinations, Apr/May 2007 ANALOG COMMUNICATIONS ( Common to Electronics & Communication Engineering and Electronics & Telematics) Time: 3 hours

More information

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS. College of Engineering Department of Electrical and Computer Engineering

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS. College of Engineering Department of Electrical and Computer Engineering THE STATE UNIVERSITY OF NEW JERSEY RUTGERS College of Engineering Department of Electrical and Computer Engineering 332:322 Principles of Communications Systems Spring Problem Set 3 1. Discovered Angle

More information

UNIT I FUNDAMENTALS OF ANALOG COMMUNICATION Introduction In the Microbroadcasting services, a reliable radio communication system is of vital importance. The swiftly moving operations of modern communities

More information

UNIT-2 Angle Modulation System

UNIT-2 Angle Modulation System UNIT-2 Angle Modulation System Introduction There are three parameters of a carrier that may carry information: Amplitude Frequency Phase Frequency Modulation Power in an FM signal does not vary with modulation

More information

FM AND BESSEL ZEROS TUTORIAL QUESTIONS using the WAVE ANALYSER without a WAVE ANALYSER...137

FM AND BESSEL ZEROS TUTORIAL QUESTIONS using the WAVE ANALYSER without a WAVE ANALYSER...137 FM AND BESSEL ZEROS PREPARATION... 132 introduction... 132 EXPERIMENT... 133 spectral components... 134 locate the carrier... 134 the method of Bessel zeros... 136 looking for a Bessel zero... 136 using

More information

DIGITAL COMMUNICATIONS SYSTEMS. MSc in Electronic Technologies and Communications

DIGITAL COMMUNICATIONS SYSTEMS. MSc in Electronic Technologies and Communications DIGITAL COMMUNICATIONS SYSTEMS MSc in Electronic Technologies and Communications Bandpass binary signalling The common techniques of bandpass binary signalling are: - On-off keying (OOK), also known as

More information

EE-4022 Experiment 3 Frequency Modulation (FM)

EE-4022 Experiment 3 Frequency Modulation (FM) EE-4022 MILWAUKEE SCHOOL OF ENGINEERING 2015 Page 3-1 Student Objectives: EE-4022 Experiment 3 Frequency Modulation (FM) In this experiment the student will use laboratory modules including a Voltage-Controlled

More information

B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering)

B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering) Code: 13A04404 R13 B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering) Time: 3 hours Max. Marks: 70 PART A

More information

page 7.51 Chapter 7, sections , pp Angle Modulation No Modulation (t) =2f c t + c Instantaneous Frequency 2 dt dt No Modulation

page 7.51 Chapter 7, sections , pp Angle Modulation No Modulation (t) =2f c t + c Instantaneous Frequency 2 dt dt No Modulation page 7.51 Chapter 7, sections 7.1-7.14, pp. 322-368 Angle Modulation s(t) =A c cos[(t)] No Modulation (t) =2f c t + c s(t) =A c cos[2f c t + c ] Instantaneous Frequency f i (t) = 1 d(t) 2 dt or w i (t)

More information

ELEC3242 Communications Engineering Laboratory Frequency Shift Keying (FSK)

ELEC3242 Communications Engineering Laboratory Frequency Shift Keying (FSK) ELEC3242 Communications Engineering Laboratory 1 ---- Frequency Shift Keying (FSK) 1) Frequency Shift Keying Objectives To appreciate the principle of frequency shift keying and its relationship to analogue

More information

Analog Communication.

Analog Communication. Analog Communication Vishnu N V Tele is Greek for at a distance, and Communicare is latin for to make common. Telecommunication is the process of long distance communications. Early telecommunications

More information

Linear Frequency Modulation (FM) Chirp Signal. Chirp Signal cont. CMPT 468: Lecture 7 Frequency Modulation (FM) Synthesis

Linear Frequency Modulation (FM) Chirp Signal. Chirp Signal cont. CMPT 468: Lecture 7 Frequency Modulation (FM) Synthesis Linear Frequency Modulation (FM) CMPT 468: Lecture 7 Frequency Modulation (FM) Synthesis Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University January 26, 29 Till now we

More information

Alternative View of Frequency Modulation

Alternative View of Frequency Modulation Alternative View of Frequency Modulation dsauersanjose@aol.com 8/16/8 When a spectrum analysis is done on a FM signal, a odd set of side bands show up. This suggests that the Frequency modulation is a

More information

Problem Sheet 1 Probability, random processes, and noise

Problem Sheet 1 Probability, random processes, and noise Problem Sheet 1 Probability, random processes, and noise 1. If F X (x) is the distribution function of a random variable X and x 1 x 2, show that F X (x 1 ) F X (x 2 ). 2. Use the definition of the cumulative

More information

EE456 Digital Communications

EE456 Digital Communications EE456 Digital Communications Professor Ha Nguyen September 216 EE456 Digital Communications 1 Angle Modulation In AM signals the information content of message m(t) is embedded as amplitude variation of

More information

Frequency Modulation and Demodulation

Frequency Modulation and Demodulation Frequency Modulation and Demodulation November 2, 27 This lab is divided into two parts. In Part I you will learn how to design an FM modulator and in Part II you will be able to demodulate an FM signal.

More information

ELEC3242 Communications Engineering Laboratory Amplitude Modulation (AM)

ELEC3242 Communications Engineering Laboratory Amplitude Modulation (AM) ELEC3242 Communications Engineering Laboratory 1 ---- Amplitude Modulation (AM) 1. Objectives 1.1 Through this the laboratory experiment, you will investigate demodulation of an amplitude modulated (AM)

More information

Thus there are three basic modulation techniques: 1) AMPLITUDE SHIFT KEYING 2) FREQUENCY SHIFT KEYING 3) PHASE SHIFT KEYING

Thus there are three basic modulation techniques: 1) AMPLITUDE SHIFT KEYING 2) FREQUENCY SHIFT KEYING 3) PHASE SHIFT KEYING CHAPTER 5 Syllabus 1) Digital modulation formats 2) Coherent binary modulation techniques 3) Coherent Quadrature modulation techniques 4) Non coherent binary modulation techniques. Digital modulation formats:

More information

Signal Characteristics

Signal Characteristics Data Transmission The successful transmission of data depends upon two factors:» The quality of the transmission signal» The characteristics of the transmission medium Some type of transmission medium

More information

two computers. 2- Providing a channel between them for transmitting and receiving the signals through it.

two computers. 2- Providing a channel between them for transmitting and receiving the signals through it. 1. Introduction: Communication is the process of transmitting the messages that carrying information, where the two computers can be communicated with each other if the two conditions are available: 1-

More information

Transmission of Analog Signal - II

Transmission of Analog Signal - II CS311: DATA COMMUNICATION Transmission of Analog Signal - II Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in Transmission of Analog Signal-II On completion,

More information

15.Calculate the local oscillator frequency if incoming frequency is F1 and translated carrier frequency

15.Calculate the local oscillator frequency if incoming frequency is F1 and translated carrier frequency DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT NAME:COMMUNICATION THEORY YEAR/SEM: II/IV SUBJECT CODE: EC 6402 UNIT I:l (AMPLITUDE MODULATION) PART A 1. Compute the bandwidth of the AMP

More information

Pulse Code Modulation

Pulse Code Modulation Pulse Code Modulation EE 44 Spring Semester Lecture 9 Analog signal Pulse Amplitude Modulation Pulse Width Modulation Pulse Position Modulation Pulse Code Modulation (3-bit coding) 1 Advantages of Digital

More information

4.1 Introduction 4.2 Basic Definitions 43F 4.3 Frequency Modulation 4.4 Phase-locked Loop

4.1 Introduction 4.2 Basic Definitions 43F 4.3 Frequency Modulation 4.4 Phase-locked Loop Chapter 4 Phase and Frequency Modulation Wireless Information Transmission System Lab. Institute of Communications Engineering g National Sun Yat-sen University Outline 4.1 Introduction 4.2 Basic Definitions

More information

Modulation Methods Frequency Modulation

Modulation Methods Frequency Modulation Modulation Methods Frequency Modulation William Sheets K2MQJ Rudolf F. Graf KA2CWL The use of frequency modulation (called FM) is another method of adding intelligence to a carrier signal. While simple

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 8 AMPLITUDE MODULATION AND DEMODULATION OBJECTIVES The focus of this lab is to familiarize the student

More information

Signals. Periodic vs. Aperiodic. Signals

Signals. Periodic vs. Aperiodic. Signals Signals 1 Periodic vs. Aperiodic Signals periodic signal completes a pattern within some measurable time frame, called a period (), and then repeats that pattern over subsequent identical periods R s.

More information

ELE636 Communication Systems

ELE636 Communication Systems ELE636 Communication Systems Chapter 5 : Angle (Exponential) Modulation 1 Phase-locked Loop (PLL) The PLL can be used to track the phase and the frequency of the carrier component of an incoming signal.

More information

EE-4022 Experiment 2 Amplitude Modulation (AM)

EE-4022 Experiment 2 Amplitude Modulation (AM) EE-4022 MILWAUKEE SCHOOL OF ENGINEERING 2015 Page 2-1 Student objectives: EE-4022 Experiment 2 Amplitude Modulation (AM) In this experiment the student will use laboratory modules to implement operations

More information

RF & Communications Handbook

RF & Communications Handbook RF & Communications Handbook Copyright 2007 National Instruments Corporation. All rights reserved. Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic

More information

Communications IB Paper 6 Handout 2: Analogue Modulation

Communications IB Paper 6 Handout 2: Analogue Modulation Communications IB Paper 6 Handout 2: Analogue Modulation Jossy Sayir Signal Processing and Communications Lab Department of Engineering University of Cambridge jossy.sayir@eng.cam.ac.uk Lent Term c Jossy

More information

Spring 2018 EE 445S Real-Time Digital Signal Processing Laboratory Prof. Evans. Homework #1 Sinusoids, Transforms and Transfer Functions

Spring 2018 EE 445S Real-Time Digital Signal Processing Laboratory Prof. Evans. Homework #1 Sinusoids, Transforms and Transfer Functions Spring 2018 EE 445S Real-Time Digital Signal Processing Laboratory Prof. Homework #1 Sinusoids, Transforms and Transfer Functions Assigned on Friday, February 2, 2018 Due on Friday, February 9, 2018, by

More information

ELEC 350 Communications Theory and Systems: I. Analog Signal Transmission and Reception. ELEC 350 Fall

ELEC 350 Communications Theory and Systems: I. Analog Signal Transmission and Reception. ELEC 350 Fall ELEC 350 Communiations Theory and Systems: I Analog Signal Transmission and Reeption ELEC 350 Fall 2007 1 ELEC 350 Fall 2007 2 Analog Modulation A large number o signals are analog speeh musi video These

More information

Chapter 8 Frequency Modulation (FM)

Chapter 8 Frequency Modulation (FM) Chapter 8 Frequency Modulation (FM) Contents Slide 1 Frequency Modulation (FM) Slide 2 FM Signal Definition (cont.) Slide 3 Discrete-Time FM Modulator Slide 4 Single Tone FM Modulation Slide 5 Single Tone

More information

CME 312-Lab Communication Systems Laboratory

CME 312-Lab Communication Systems Laboratory Objective: By the end of this experiment, the student should be able to: 1. Demonstrate the Modulation and Demodulation of the AM. 2. Observe the relation between modulation index and AM signal envelope.

More information

Glossary of VCO terms

Glossary of VCO terms Glossary of VCO terms VOLTAGE CONTROLLED OSCILLATOR (VCO): This is an oscillator designed so the output frequency can be changed by applying a voltage to its control port or tuning port. FREQUENCY TUNING

More information

(Refer Slide Time: 3:11)

(Refer Slide Time: 3:11) Digital Communication. Professor Surendra Prasad. Department of Electrical Engineering. Indian Institute of Technology, Delhi. Lecture-2. Digital Representation of Analog Signals: Delta Modulation. Professor:

More information

Block Diagram of FM Receiver

Block Diagram of FM Receiver FM Receivers FM receivers, like AM receivers, utilize the superheterodyne principle, but they operate at uch higher frequencies (88-108 MHz). A liiter is often used to ensure the received signal is constant

More information

ECE 201: Introduction to Signal Analysis

ECE 201: Introduction to Signal Analysis ECE 201: Introduction to Signal Analysis Prof. Paris Last updated: October 9, 2007 Part I Spectrum Representation of Signals Lecture: Sums of Sinusoids (of different frequency) Introduction Sum of Sinusoidal

More information

Signals and Systems Lecture 9 Communication Systems Frequency-Division Multiplexing and Frequency Modulation (FM)

Signals and Systems Lecture 9 Communication Systems Frequency-Division Multiplexing and Frequency Modulation (FM) Signals and Systems Lecture 9 Communication Systems Frequency-Division Multiplexing and Frequency Modulation (FM) April 11, 2008 Today s Topics 1. Frequency-division multiplexing 2. Frequency modulation

More information

Each individual is to report on the design, simulations, construction, and testing according to the reporting guidelines attached.

Each individual is to report on the design, simulations, construction, and testing according to the reporting guidelines attached. EE 352 Design Project Spring 2015 FM Receiver Revision 0, 03-02-15 Interim report due: Friday April 3, 2015, 5:00PM Project Demonstrations: April 28, 29, 30 during normal lab section times Final report

More information

THE SINUSOIDAL WAVEFORM

THE SINUSOIDAL WAVEFORM Chapter 11 THE SINUSOIDAL WAVEFORM The sinusoidal waveform or sine wave is the fundamental type of alternating current (ac) and alternating voltage. It is also referred to as a sinusoidal wave or, simply,

More information

Direct-Conversion I-Q Modulator Simulation by Andy Howard, Applications Engineer Agilent EEsof EDA

Direct-Conversion I-Q Modulator Simulation by Andy Howard, Applications Engineer Agilent EEsof EDA Direct-Conversion I-Q Modulator Simulation by Andy Howard, Applications Engineer Agilent EEsof EDA Introduction This article covers an Agilent EEsof ADS example that shows the simulation of a directconversion,

More information

Lecture 2: SIGNALS. 1 st semester By: Elham Sunbu

Lecture 2: SIGNALS. 1 st semester By: Elham Sunbu Lecture 2: SIGNALS 1 st semester 1439-2017 1 By: Elham Sunbu OUTLINE Signals and the classification of signals Sine wave Time and frequency domains Composite signals Signal bandwidth Digital signal Signal

More information

Complex Sounds. Reading: Yost Ch. 4

Complex Sounds. Reading: Yost Ch. 4 Complex Sounds Reading: Yost Ch. 4 Natural Sounds Most sounds in our everyday lives are not simple sinusoidal sounds, but are complex sounds, consisting of a sum of many sinusoids. The amplitude and frequency

More information

Experiment One: Generating Frequency Modulation (FM) Using Voltage Controlled Oscillator (VCO)

Experiment One: Generating Frequency Modulation (FM) Using Voltage Controlled Oscillator (VCO) Experiment One: Generating Frequency Modulation (FM) Using Voltage Controlled Oscillator (VCO) Modified from original TIMS Manual experiment by Mr. Faisel Tubbal. Objectives 1) Learn about VCO and how

More information

EC2252: COMMUNICATION THEORY SEM / YEAR: II year DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

EC2252: COMMUNICATION THEORY SEM / YEAR: II year DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC2252: COMMUNICATION THEORY SEM / YEAR: II year DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUBJECT CODE : EC2252 SEM / YEAR : II year SUBJECT NAME : COMMUNICATION THEORY UNIT

More information

ELEC 350 Communications Theory and Systems: I. Review. ELEC 350 Fall

ELEC 350 Communications Theory and Systems: I. Review. ELEC 350 Fall ELEC 350 Communications Theory and Systems: I Review ELEC 350 Fall 007 1 Final Examination Saturday, December 15-3 hours Two pages of notes allowed Calculator Tables provided Fourier transforms Table.1

More information

EEE 309 Communication Theory

EEE 309 Communication Theory EEE 309 Communication Theory Semester: January 2017 Dr. Md. Farhad Hossain Associate Professor Department of EEE, BUET Email: mfarhadhossain@eee.buet.ac.bd Office: ECE 331, ECE Building Types of Modulation

More information

CHAPTER 3 Noise in Amplitude Modulation Systems

CHAPTER 3 Noise in Amplitude Modulation Systems CHAPTER 3 Noise in Amplitude Modulation Systems NOISE Review: Types of Noise External (Atmospheric(sky),Solar(Cosmic),Hotspot) Internal(Shot, Thermal) Parameters of Noise o Signal to Noise ratio o Noise

More information

Lecture 3 Complex Exponential Signals

Lecture 3 Complex Exponential Signals Lecture 3 Complex Exponential Signals Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/3/1 1 Review of Complex Numbers Using Euler s famous formula for the complex exponential The

More information

Modulation. Digital Data Transmission. COMP476 Networked Computer Systems. Analog and Digital Signals. Analog and Digital Examples.

Modulation. Digital Data Transmission. COMP476 Networked Computer Systems. Analog and Digital Signals. Analog and Digital Examples. Digital Data Transmission Modulation Digital data is usually considered a series of binary digits. RS-232-C transmits data as square waves. COMP476 Networked Computer Systems Analog and Digital Signals

More information

4.1 REPRESENTATION OF FM AND PM SIGNALS An angle-modulated signal generally can be written as

4.1 REPRESENTATION OF FM AND PM SIGNALS An angle-modulated signal generally can be written as 1 In frequency-modulation (FM) systems, the frequency of the carrier f c is changed by the message signal; in phase modulation (PM) systems, the phase of the carrier is changed according to the variations

More information

Modulations Analog Modulations Amplitude modulation (AM) Linear modulation Frequency modulation (FM) Phase modulation (PM) cos Angle modulation FM PM Digital Modulations ASK FSK PSK MSK MFSK QAM PAM Etc.

More information

Lab10: FM Spectra and VCO

Lab10: FM Spectra and VCO Lab10: FM Spectra and VCO Prepared by: Keyur Desai Dept. of Electrical Engineering Michigan State University ECE458 Lab 10 What is FM? A type of analog modulation Remember a common strategy in analog modulation?

More information

EE4512 Analog and Digital Communications Chapter 6. Chapter 6 Analog Modulation and Demodulation

EE4512 Analog and Digital Communications Chapter 6. Chapter 6 Analog Modulation and Demodulation Chapter 6 Analog Modulation and Demodulation Chapter 6 Analog Modulation and Demodulation Amplitude Modulation Pages 306-309 309 The analytical signal for double sideband, large carrier amplitude modulation

More information

ELG3175: Introduction to Communication Systems. Laboratory II: Amplitude Modulation

ELG3175: Introduction to Communication Systems. Laboratory II: Amplitude Modulation Introduction: ELG3175: Introduction to Communication Systems Laboratory II: Amplitude Modulation In this lab, we shall investigate some fundamental aspects of the conventional AM and DSB-SC modulation

More information

Section 8.4: The Equations of Sinusoidal Functions

Section 8.4: The Equations of Sinusoidal Functions Section 8.4: The Equations of Sinusoidal Functions In this section, we will examine transformations of the sine and cosine function and learn how to read various properties from the equation. Transformed

More information

COMMUNICATION SYSTEMS-II (In continuation with Part-I)

COMMUNICATION SYSTEMS-II (In continuation with Part-I) MODULATING A SIGNAL COMMUNICATION SYSTEMS-II (In continuation with Part-I) TRANSMITTING SIGNALS : In order to transmit the original low frequency baseband message efficiently over long distances, the signal

More information

Signals A Preliminary Discussion EE442 Analog & Digital Communication Systems Lecture 2

Signals A Preliminary Discussion EE442 Analog & Digital Communication Systems Lecture 2 Signals A Preliminary Discussion EE442 Analog & Digital Communication Systems Lecture 2 The Fourier transform of single pulse is the sinc function. EE 442 Signal Preliminaries 1 Communication Systems and

More information

Application Note 106 IP2 Measurements of Wideband Amplifiers v1.0

Application Note 106 IP2 Measurements of Wideband Amplifiers v1.0 Application Note 06 v.0 Description Application Note 06 describes the theory and method used by to characterize the second order intercept point (IP 2 ) of its wideband amplifiers. offers a large selection

More information

Amplitude Modulation. Ahmad Bilal

Amplitude Modulation. Ahmad Bilal Amplitude Modulation Ahmad Bilal 5-2 ANALOG AND DIGITAL Analog-to-analog conversion is the representation of analog information by an analog signal. Topics discussed in this section: Amplitude Modulation

More information

TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY An Overview of Modulation Techniques: chapter 3.1 3.3.1 2 Introduction (3.1) Analog Modulation Amplitude Modulation Phase and

More information

CHAPTER 2 DIGITAL MODULATION

CHAPTER 2 DIGITAL MODULATION 2.1 INTRODUCTION CHAPTER 2 DIGITAL MODULATION Referring to Equation (2.1), if the information signal is digital and the amplitude (lv of the carrier is varied proportional to the information signal, a

More information

Subcarrier Placement in a PCM-FM-FM/FM Modulation Scheme

Subcarrier Placement in a PCM-FM-FM/FM Modulation Scheme Subcarrier Placement in a PCM-FM-FM/FM Modulation Scheme presented to The International Foundation for Telemetering International Telemetering Conference '91 Student Paper Contest by Juliette Lyn Moser

More information

COMM 601: Modulation I

COMM 601: Modulation I Prof. Ahmed El-Mahdy, Communications Department The German University in Cairo Text Books [1] Couch, Digital and Analog Communication Systems, 7 th edition, Prentice Hall, 2007. [2] Simon Haykin, Communication

More information

AMPLITUDE MODULATION

AMPLITUDE MODULATION AMPLITUDE MODULATION PREPARATION...2 theory...3 depth of modulation...4 measurement of m... 5 spectrum... 5 other message shapes.... 5 other generation methods...6 EXPERIMENT...7 aligning the model...7

More information

TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY 2 Basic Definitions Time and Frequency db conversion Power and dbm Filter Basics 3 Filter Filter is a component with frequency

More information

Communication Systems Lecture-12: Delta Modulation and PTM

Communication Systems Lecture-12: Delta Modulation and PTM Communication Systems Lecture-12: Delta Modulation and PTM Department of Electrical and Computer Engineering Lebanese American University chadi.abourjeily@lau.edu.lb October 26, 2017 Delta Modulation (1)

More information

CMPT 468: Frequency Modulation (FM) Synthesis

CMPT 468: Frequency Modulation (FM) Synthesis CMPT 468: Frequency Modulation (FM) Synthesis Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University October 6, 23 Linear Frequency Modulation (FM) Till now we ve seen signals

More information

ANALOG COMMUNICATIONS. BY P.Swetha, Assistant Professor (Units 1, 2 & 5) K.D.K.Ajay, Assistant Professor (Units 3 & 4)

ANALOG COMMUNICATIONS. BY P.Swetha, Assistant Professor (Units 1, 2 & 5) K.D.K.Ajay, Assistant Professor (Units 3 & 4) ANALOG COMMUNICATIONS BY P.Swetha, Assistant Professor (Units 1, 2 & 5) K.D.K.Ajay, Assistant Professor (Units 3 & 4) (R15A0409) ANALOG COMMUNICATIONS Course Objectives: Objective of the course is to:

More information

ANALOGUE TRANSMISSION OVER FADING CHANNELS

ANALOGUE TRANSMISSION OVER FADING CHANNELS J.P. Linnartz EECS 290i handouts Spring 1993 ANALOGUE TRANSMISSION OVER FADING CHANNELS Amplitude modulation Various methods exist to transmit a baseband message m(t) using an RF carrier signal c(t) =

More information

DEPARTMENT OF COMPUTER GCE@Bodi_ SCIENCE GCE@Bodi_ AND ENIGNEERING GCE@Bodi_ GCE@Bodi_ GCE@Bodi_ Analog and Digital Communication GCE@Bodi_ DEPARTMENT OF CsE Subject Name: Analog and Digital Communication

More information

5.1. Amplitude Modula1on

5.1. Amplitude Modula1on 5.1. Amplitude Modula1on The complex envelope of an AM signal is given by g(t) = A c [1+ m(t)] where the constant A c has been included to specify the power level and m(t) is the modula

More information

Solutions to some sampled questions of previous finals

Solutions to some sampled questions of previous finals Solutions to some sampled questions of previous finals First exam: Problem : he modulating signal m(a m coπf m is used to generate the VSB signal β cos[ π ( f c + f m ) t] + (1 β ) cos[ π ( f c f m ) t]

More information

2011 PSW American Society for Engineering Education Conference

2011 PSW American Society for Engineering Education Conference Communications Laboratory with Commercial Test and Training Instrument Peter Kinman and Daniel Murdock California State University Fresno Abstract A communications laboratory course has been designed around

More information

RECOMMENDATION ITU-R SM.1268*

RECOMMENDATION ITU-R SM.1268* Rec. ITU-R SM.1268 1 RECOMMENDATION ITU-R SM.1268* METHOD OF MEASURING THE MAXIMUM FREQUENCY DEVIATION OF FM BROADCAST EMISSIONS AT MONITORING STATIONS (Question ITU-R 67/1) Rec. ITU-R SM.1268 (1997) The

More information

EE390 Final Exam Fall Term 2002 Friday, December 13, 2002

EE390 Final Exam Fall Term 2002 Friday, December 13, 2002 Name Page 1 of 11 EE390 Final Exam Fall Term 2002 Friday, December 13, 2002 Notes 1. This is a 2 hour exam, starting at 9:00 am and ending at 11:00 am. The exam is worth a total of 50 marks, broken down

More information

Let us consider the following block diagram of a feedback amplifier with input voltage feedback fraction,, be positive i.e. in phase.

Let us consider the following block diagram of a feedback amplifier with input voltage feedback fraction,, be positive i.e. in phase. P a g e 2 Contents 1) Oscillators 3 Sinusoidal Oscillators Phase Shift Oscillators 4 Wien Bridge Oscillators 4 Square Wave Generator 5 Triangular Wave Generator Using Square Wave Generator 6 Using Comparator

More information

Wireless Communication Fading Modulation

Wireless Communication Fading Modulation EC744 Wireless Communication Fall 2008 Mohamed Essam Khedr Department of Electronics and Communications Wireless Communication Fading Modulation Syllabus Tentatively Week 1 Week 2 Week 3 Week 4 Week 5

More information

CEPT/ERC Recommendation ERC E (Funchal 1998)

CEPT/ERC Recommendation ERC E (Funchal 1998) Page 1 Distribution: B CEPT/ERC Recommendation ERC 54-01 E (Funchal 1998) METHOD OF MEASURING THE MAXIMUM FREQUENCY DEVIATION OF FM BROADCAST EMISSIONS IN THE BAND 87.5 MHz TO 108 MHz AT MONITORING STATIONS

More information

The quality of the transmission signal The characteristics of the transmission medium. Some type of transmission medium is required for transmission:

The quality of the transmission signal The characteristics of the transmission medium. Some type of transmission medium is required for transmission: Data Transmission The successful transmission of data depends upon two factors: The quality of the transmission signal The characteristics of the transmission medium Some type of transmission medium is

More information

Part A: Question & Answers UNIT I AMPLITUDE MODULATION

Part A: Question & Answers UNIT I AMPLITUDE MODULATION PANDIAN SARASWATHI YADAV ENGINEERING COLLEGE DEPARTMENT OF ELECTRONICS & COMMUNICATON ENGG. Branch: ECE EC6402 COMMUNICATION THEORY Semester: IV Part A: Question & Answers UNIT I AMPLITUDE MODULATION 1.

More information

CSE4214 Digital Communications. Bandpass Modulation and Demodulation/Detection. Bandpass Modulation. Page 1

CSE4214 Digital Communications. Bandpass Modulation and Demodulation/Detection. Bandpass Modulation. Page 1 CSE414 Digital Communications Chapter 4 Bandpass Modulation and Demodulation/Detection Bandpass Modulation Page 1 1 Bandpass Modulation n Baseband transmission is conducted at low frequencies n Passband

More information

Lecture 15: Introduction to Mixers

Lecture 15: Introduction to Mixers EECS 142 Lecture 15: Introduction to Mixers Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California, Berkeley EECS 142 Lecture

More information

CHARACTERIZATION and modeling of large-signal

CHARACTERIZATION and modeling of large-signal IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 53, NO. 2, APRIL 2004 341 A Nonlinear Dynamic Model for Performance Analysis of Large-Signal Amplifiers in Communication Systems Domenico Mirri,

More information