EE4512 Analog and Digital Communications Chapter 6. Chapter 6 Analog Modulation and Demodulation

Size: px
Start display at page:

Download "EE4512 Analog and Digital Communications Chapter 6. Chapter 6 Analog Modulation and Demodulation"

Transcription

1 Chapter 6 Analog Modulation and Demodulation

2 Chapter 6 Analog Modulation and Demodulation Amplitude Modulation Pages

3 The analytical signal for double sideband, large carrier amplitude modulation (DSB-LC AM) is: s DSB-LC AM AM(t) ) = A C (c + s(t)) cos (2π f C t) where c is the DC bias or offset and A C is the carrier amplitude. The continuous analog signal s(t) is a baseband signal with the information content (voice or music) to be transmitted.

4 The baseband power spectral density (PSD) spectrum of the information signal s(t) ) or S(f) ) for voice has significant components below 500 Hz and a bandwidth of < 8 khz: S(f) ) = F(s(t)) The single-sided sided spectrum of the modulated signal is: F(A C (c + s(t)) cos (2π f C t)) = S(f f C ) db Power Spectral Density of s(t) 500 Hz 8 khz

5 The single-sided sided (positive frequency axis) spectrum of the modulated signal replicates the baseband spectrum as a double-sided spectrum about the carrier frequency. Double-sided spectrum Carrier 25 khz Baseband spectrum

6 The double-sided modulated spectrum about the carrier frequency has an lower (LSB)) and upper (USB)) sideband.

7 The modulated DSB-LC AM signal shows an outer envelope that follows the polar baseband signal s(t).

8 The analytical signal for double sideband, suppressed carrier amplitude modulation (DSB-SC SC AM) is: s DSB-SC SC AM AM(t) ) = A C s(t) cos (2π f C t) where A C is the carrier amplitude. The single-sided sided spectrum of the modulated signal replicates the baseband spectrum as a double-sided spectrum about the carrier frequency but without a carrier component.

9 The analytical signal for double sideband, suppressed carrier amplitude modulation (DSB-SC SC AM) is: s DSB-SC SC AM AM(t) ) = A C s(t) cos (2π f C t) where A C is the carrier amplitude. The modulated signal s DSB-SC SC AM(t (t)) looks similar to s(t) but has a temporal but not spectral carrier component.

10 The DSB-LC AM and the DSB-SC SC AM modulated signals have the same sidebands. DSB-LC AM Carrier 25 khz DSB-SC AM No carrier

11 The modulated DSB-LC AM and the DSC-SC AM signals are different.

12 The modulated DSB-SC SC AM signal has an envelope that follows the polar baseband signal s(t) but not an outer envelope.

13 Chapter 6 Analog Modulation and Demodulation Coherent Demodulation of AM Signals Pages

14 The DSB-SC SC AM signal can be simulated in SystemVue. SVU Figure 1.64 modified

15 The DSB-SC SC AM coherent receiver has a bandpass filter centered at f C and with a bandwidth of twice the bandwidth of s(t) because of the SVU Figure 1.64 modified LSB and USB.. The output of the multiplier is lowpass filtered with a bandwidth equal to z(t) the bandwidth of s(t). r(t) = γ s DSB DSB-SC SC(t) ) + n(t) Bandpass filter Lowpass filter S&M Figure 6-46

16 EE4512 Analog and Digital Communications Chapter 5 The DSB-SC SC AM received signal is r(t) = γ s DSB-SC SC(t) ) + n(t). The bandpass filter passes the modulated signal but filters the noise: z(t) ) = γ s DSB DSB-SC SC(t) ) + n o (t) S&M Eq. 6.3 n o (t) has a Gaussian distribution. The bandpass filter has a center frequency of f C = 25 khz and a -33 db bandwidth of 8 khz (25 ± 4 khz). Bandpass filter n o (t) Gaussian noise

17 EE4512 Analog and Digital Communications Chapter 5 The filter noise n o (t) has a flat power spectral density within the bandwidth of the bandpass filter: n o (t) PSD 21 khz 29 khz f C = 25 khz

18 The filter noise n o (t) can be described as a quadrature representation: n o (t) = W(t) cos (2π f C t) ) + Z(t) sin (2π( f C t) ) S&M Eq. 5.62R In the coherent receiver the noise is processed: n o (t) cos (2π f C t) = W(t) cos 2 (2π f C t) ) + S&M Eq. 6.5 Z(t) cos (2π f C t) sin (2π f C t) PSD 21 khz 29 khz f C = 25 khz

19 Applying the trignometric identity the filter noise n o (t) is: n o (t) cos (2π f C t) = ½ W(t) + ½ W(t) cos (4π f C t) ) + ½ Z(t) sin (4π f C t) ) S&M Eq. 6.5 After the lowpass filter in the receiver the demodulated signal is: s demod (t) = ½ γ A C s(t) + ½ W(t) S&M Eq. 6.7 PSD 21 khz 29 khz f C = 25 khz

20 The transmitted DSB-SC SC AM signal is: s DSB-SC SC AM AM(t) ) = A C s(t) cos (2π f C t) The average normalized bi-sided power of s DSB-SC SC(t) ) is found in the spectral domain with S(f) ) = F (s(t)): 2 1 P trans =A [ S(f f C) + S(f+f C) ] df 2 2 S&M Eq. 6.8

21 The dual-sided spectral do not overlap (at zero frequency) and the cross terms are zero so that: P trans =A [ S DSB-SC(f f C) + S DSB-SC(f+f C )] df 2 2 A P trans = P 2 s where P s is the average normalized power of s(t). S&M Eq. 6.9

22 The average normalized power of s(t) is found in the spectral domain: 2 2 P s = S(f) df = S(f + f C) df S&M Eq In a noiseless channel the power in the demodulated DSB-SC SC AM signal is: γ P = γ A P= P 4 2 demod, noiseless s trans S&M Eq. 6.11

23 The average normalized power of the processed noise is: 1 P processed noise = N o(2 B) 4 The signal-to to-noise power ratio then is: 2 γ P trans 2 γ Ptrans SNRcoherent DSB-SC = 2 = 1 N(2 B) N o B 4 o 2 B S&M Eq. 6.12

24 The DSB-SC SC AM coherent receiver requires a phase and frequency synchronous reference signal. If the reference signal has a SVU Figure 1.64 modified phase error φ then: SNR coherent DSB-SC phase error 2 2 γ cos ϕ P N B o trans = S&M Eq cos (2π f C t + φ) S&M Figure 6-76

25 The DSB-SC SC AM coherent receiver requires a phase and frequency synchronous reference signal. If the reference signal has a SVU Figure 1.64 modified frequency error f then: S demod frequency error (t (t)) = ½ γ A C s(t) cos (2π f f t) + ½ X(t) cos (2π f f t) + ½ Y(t) ) sin (2π f f t) S&M Eq cos (2π f C t + φ) S&M Figure 6-76

26 Although the noise component remains the same, the amplitude of the demodulated signal varies with f: S demod frequency error (t (t)) = ½ γ A C s(t) cos (2π f f t) + ½ X(t) cos (2π f f t) + ½ Y(t) ) sin (2π f f t) S&M Eq cos (2π f C t + φ) SVU Figure 1.64 modified S&M Figure 6-76

27 The frequency error DSB-SC SC AM signal can be simulated in SystemVue. SVU Figure 1.64 modified Frequency sweep

28 Chapter 6 Analog Modulation and Demodulation Non-coherent Demodulation of AM Signals Pages

29 The non-coherent AM (DSB-LC) receiver uses an envelope detector implemented as a semiconductor diode and a low- pass filter: The DSB-LC AM analytical signal is: s DSB-LC AM AM(t) ) = A C (c + s(t)) cos (2π f C t) where c is the DC bias (offset).

30 EE4512 Analog and Digital Communications Chapter 5 The envelope detector is a half-wave rectifier and provides a DC bias (c)) to the processed DSB-LC AM signal : c = DC bias

31 EE4512 Analog and Digital Communications Chapter 5 The output of the half-wave diode rectifier is low-pass filtered to remove the carrier frequency and outputs the envelope which is the information:

32 The DSB-LC AM signal can be decomposed as: s DSB-LC AM AM(t) ) = s(t) cos (2π f C t) + A C c cos (2π f C t) S&M Eq. 6.20R The average normalized power of the information term: 2 AC P info term = P 2 S S&M Eq. 6.23

33 The average normalized transmitted power is: P P T 1 = carrier term T 0 C C 2 2 AC c carrier term = 2 [ ] A c cos(2πf t) dt Since s(t) ) + c must be >= 0 to avoid distortion in the DSB-LC AM signal: c min [s(t[ s(t)] or c 2 s 2 (t) for all t. 2 S&M Eq. 6.24

34 Therefore c 2 P s and for DSB-LC AM: P P S&M Eq carrier term info term The power efficiency η of a DSB-LC AM signal is: Pinfo term Pinfo term η = = 0.5 P + P P carrier term info term trans DSB-LC AM term S&M Eq. 6.29

35 The DSB-LC AM signal wastes at least half the transmitted power because the power in the carrier term has no information: P P η 0.5 carrier term info term The modulation index m is defined as: [ ] min[ s(t) + c] [ ] [ ] max s(t) + c m = S&M Eq max s(t) + c + min s(t) + c

36 The modulation index m defines the power efficiency but m must be less than 1. If m > 1 then min [s(t[ s(t) ) + c] < 0 and distortion occurs. [ ] min[ s(t) + c] [ ] [ ] max s(t) + c m = S&M Eq max s(t) + c + min s(t) + c

37 The average normalized power of the demodulation noiseless DSB-LC AM signal is: P demod, noiseless = 2 2 γ Pinfo term Then the signal-to to-noise power ratio for the DSB-LC AM signal is: S&M Eq γ Pinfo term γ Ptrans DSB-LC SNRnoncoherent DSB-LC = = N (2 B) N B o 2 B o S&M Eq. 6.39

38 Chapter 6 Analog Modulation and Demodulation Coherent and Non-Coherent AM Demodulation Pages

39 The coherent AM (DSB-LC) analog communication system can be simulated in SystemVue. SVU Figure 1.64

40 The non-coherent AM (DSB-LC) analog communication system can also be simulated in SystemVue. SVU Figure 1.67

41 The non-coherent AM (DSB-LC) receiver is the crystal radio which needs no batteries! Power for the high- impedance ceramic earphone is obtained directly from the transmitted signal.. For simplicity, the RF BPF is omitted and the audio frequency filter is a simple RC network. SVU Figure 1.67

42 Chapter 6 Analog Modulation and Demodulation Frequency Modulation and Phase Modulation Pages

43 The analytical signal for an analog phase modulated (PM) signal is: (t)) = A C cos [2π f C t + α s(t)] S&M Eq s PM (t where α is the phase modulation constant rad/v and A C is the carrier amplitude. The continuous analog signal s(t) is a baseband signal with the information content (voice or music) to be transmitted.

44 The analytical signal for an analog frequency modulated (FM) signal is: s FM (t (t)) = A C cos{ { 2π 2 [f C + k s(t)] t + φ] ] S&M Eq where k is the frequency modulation constant Hz / V, A C is the carrier amplitude and φ is the initial phase angle at t = 0. The continuous analog signal s(t) is a baseband signal with the information content.

45 The instantaneous phase of the PM signal is: Ψ PM (t (t)) = 2π2 f C t + α s(t) ) S&M Eq The instantaneous phase of the FM signal is: Ψ FM (t (t)) = 2π [f C + k s(t)] t + φ] ] S&M Eq The instantaneous phase is also call the angle of the signal. The instantaneous frequency is the time rate of change of the angle: f(t) ) = (1/2π) dψ(t) / dt S&M Eq. 6.58

46 The instantaneous frequency of the unmodulated carrier signal is: f carrier (t (t)) = dψd carrier (t) ) / dt = d/dt {2π f C t + φ} } S&M Eq The instantaneous phase is also: t t Ψ(t) = f (λ)( ) dλ d = f (λ)( ) dλ d + φ S&M Eq There are practical limits on instantaneous frequency and instantaneous phase. To avoid ambiguity and distortion in FM signals due to phase wrapping: k s(t) f C for all t S&M Eq. 6.61

47 To avoid ambiguity and distortion in PM signals due to phase wrapping: -π < α s(t) π radians for all t S&M Eq Since FM and PM are both change the angle of the carrier signal as a function of the analog information signal s(t), FM and PM are called angle modulation. For example, is this signal FM, PM or neither: t x(t) ) = A C cos { 2π2 f C t + k s(λ) ) dλ d + φ} S&M Eq

48 The instantaneous phase of the signal is: t Ψ x (t) ) = 2π2 f C t + k s(λ) ) dλ d + φ S&M Eq. p which is not a linear function of s(t) ) so the signal is not PM. The instantaneous frequency of the signal is: f x (t) ) = (1/2π) dψ x (t) ) / dt = f C + k s(t) ) / 2π2 and the frequency difference f x f C is a linear function of s(t) so the signal is FM. The maximum phase deviation of a PM signal is max αs(t) ). The maximum frequency deviation of a FM signal is f f = max k s(t) ).

49 The spectrum of a PM or FM signal can be developed as follows: S&M Eqs through 6.71 v(t) = A C sin(2π ft C + β sin 2π ft) m v(t) = Re { exp(j 2π ft C +j β sin 2π ft) m } now exp(j 2π ft C +j β sin 2π ft) m = cos (2π ft C + β sin 2π ft) m + j sin (2π ft C + β sin 2π ft) m v(t) = Im { A exp(2π ft + jβ sin 2π ft) } now C C exp(j β sin 2π f t) = c exp(j 2π n f t) after further development m n m n = - exp(j β sin 2π ft) = J( β) exp(j 2π n f t) m n m n = - m Bessel function of the first kind

50 Bessel functions of the first kind J n (β) are tabulated for FM with single tone f m angle modulation (S&M Table 6.1): β n

51 For single tone f m angle modulation the spectrum is periodic and infinite in extent: C n m C n = - v(t) = A J ( β) sin[2π (n f + f ) t] S&M Eq n β

52 The complexity of the Bessel function solution for the spectrum of a single tone angle modulation can be simplified by the Carson s s Rule approximation for the bandwidth B.. Since β = f f / f m : B = 2 (β( + 1) f m = 2 ( f( f + f m ) Hz S&M Eq n β

53 Carson s s Rule for the approximate bandwidth of an angle modulated signal was developed by John R. Carson in 1922 while he worked at AT&T. Prior to this in 1915 he presaged the concept of bandwidth efficiency in AM by proposing the suppression of a sideband (see S&M p ) 333): B = 2 (β( + 1) f m = 2 ( f( f + f m ) Hz

54 The normalized power within the Carson s s Rule bandwidth for a single tone angle modulated signals is: P in-band, sinusoid 2 β+1 AC = 2 n = -(β+1) 2 J ( β ) Note that J -n (β)) = ± J n (β)) so that J -n2 (β)) = J n2 (β)) and for the normalized power calculation the sign of J(β) is not used. n S&M Eq Spectrum of single tone FM modulation

55 Chapter 6 Analog Modulation and Demodulation Frequency Modulation Pages

56 The analog FM transmitter and receiver can be simulated in SystemVue.. A bandpass audio filter removes the low frequency components in the voice signal for clarity. SVU Figure 1.68

57 A phase-locked loop (PLL) token has a frequency output which tracks the frequency deviation f f which is proportional to the voice signal. SVU Figure 1.68

58 The PLL token is somewhat complex. SVU Figure 1.68

59 The analog FM power spectral density PSD of the voice signal has a bandwidth predicted only by Carson s s Rule since it is not a single tone. Voice PSD

60 Here f max = 4 khz, k = 25 Hz/V and f max = 40(25) = 1 khz. The Carson s s Rule approximate maximum bandwidth B = 2 ( f( f + f m ) = 10 khz or ± 5 khz (but seems wrong!) Voice 40 f C PSD Bandwidth

61 A 200 Hz single tone FM signal has a PSD with periodic terms at f C ± n f m = 25 ± 0.2 n khz. PSD f C 200 Hz

62 Here f m = 200 Hz, k = 25 Hz/V and f max = 40(25) = 1 khz. The Carson s s Rule approximate maximum bandwidth B = 2 ( f( f + f m ) = 2.4 khz or ± 1.2 khz: PSD f C 200 Hz Bandwidth

63 Since β = f f / f m = 1 khz / 0.2 khz = 5 and the Bessel function predicts a bandwidth of 2 n f m = 2(12)(200) = 4.8 khz (since n = 12 for β = 5 from Table 6.1): PSD f C 200 Hz Bandwidth

64 Chapter 6 Analog Modulation and Demodulation Noise in FM and PM Systems Pages

65 A general angle modulated transmitted signal, where Ψ(t) is the instantaneous phase, is: s angle-modulated modulated(t The received signals is: r angle-modulated modulated(t (t)) = A C cos [Ψ(t)] S&M Eq (t)) = γ A C cos [Ψ(t)] + n(t) ) S&M Eq. 6.87

66 The analytical signal for PM is: s PM (t) ) = A C cos [Ψ(t)] = A C cos [2π f C t + α s(t)] S&M Eq After development the SNR for demodulated PM is: SNR PM = (αγ( A C ) 2 P S / (2 N o f max ) S&M Eq where π < α s(t) π for all t.

67 The analytical signal for FM is: s FM (t) ) = A C cos [Ψ(t)] = A C cos [2π f C t + k s(λ) ) dλ] d S&M Eq After development the SNR for demodulated FM is: SNR FM = 1.5 (k γ A C /(2π) ) 2 P S / (N o f max3 ) S&M Eq where k s(t) f C for all t.

68 End of Chapter 6 Analog Modulation and Demodulation

Outline. Communications Engineering 1

Outline. Communications Engineering 1 Outline Introduction Signal, random variable, random process and spectra Analog modulation Analog to digital conversion Digital transmission through baseband channels Signal space representation Optimal

More information

Problems from the 3 rd edition

Problems from the 3 rd edition (2.1-1) Find the energies of the signals: a) sin t, 0 t π b) sin t, 0 t π c) 2 sin t, 0 t π d) sin (t-2π), 2π t 4π Problems from the 3 rd edition Comment on the effect on energy of sign change, time shifting

More information

Amplitude Modulation II

Amplitude Modulation II Lecture 6: Amplitude Modulation II EE 3770: Communication Systems Lecture 6 Amplitude Modulation II AM Limitations DSB-SC Modulation SSB Modulation VSB Modulation Multiplexing Mojtaba Vaezi 6-1 Contents

More information

AM Limitations. Amplitude Modulation II. DSB-SC Modulation. AM Modifications

AM Limitations. Amplitude Modulation II. DSB-SC Modulation. AM Modifications Lecture 6: Amplitude Modulation II EE 3770: Communication Systems AM Limitations AM Limitations DSB-SC Modulation SSB Modulation VSB Modulation Lecture 6 Amplitude Modulation II Amplitude modulation is

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05220405 Set No. 1 II B.Tech II Semester Regular Examinations, Apr/May 2007 ANALOG COMMUNICATIONS ( Common to Electronics & Communication Engineering and Electronics & Telematics) Time: 3 hours

More information

EE470 Electronic Communication Theory Exam II

EE470 Electronic Communication Theory Exam II EE470 Electronic Communication Theory Exam II Open text, closed notes. For partial credit, you must show all formulas in symbolic form and you must work neatly!!! Date: November 6, 2013 Name: 1. [16%]

More information

Communication Channels

Communication Channels Communication Channels wires (PCB trace or conductor on IC) optical fiber (attenuation 4dB/km) broadcast TV (50 kw transmit) voice telephone line (under -9 dbm or 110 µw) walkie-talkie: 500 mw, 467 MHz

More information

B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering)

B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering) Code: 13A04404 R13 B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering) Time: 3 hours Max. Marks: 70 PART A

More information

Modulations Analog Modulations Amplitude modulation (AM) Linear modulation Frequency modulation (FM) Phase modulation (PM) cos Angle modulation FM PM Digital Modulations ASK FSK PSK MSK MFSK QAM PAM Etc.

More information

Angle Modulated Systems

Angle Modulated Systems Angle Modulated Systems Angle of carrier signal is changed in accordance with instantaneous amplitude of modulating signal. Two types Frequency Modulation (FM) Phase Modulation (PM) Use Commercial radio

More information

Lecture 6. Angle Modulation and Demodulation

Lecture 6. Angle Modulation and Demodulation Lecture 6 and Demodulation Agenda Introduction to and Demodulation Frequency and Phase Modulation Angle Demodulation FM Applications Introduction The other two parameters (frequency and phase) of the carrier

More information

ELEC 350 Communications Theory and Systems: I. Review. ELEC 350 Fall

ELEC 350 Communications Theory and Systems: I. Review. ELEC 350 Fall ELEC 350 Communications Theory and Systems: I Review ELEC 350 Fall 007 1 Final Examination Saturday, December 15-3 hours Two pages of notes allowed Calculator Tables provided Fourier transforms Table.1

More information

Amplitude Modulation Chapter 2. Modulation process

Amplitude Modulation Chapter 2. Modulation process Question 1 Modulation process Modulation is the process of translation the baseband message signal to bandpass (modulated carrier) signal at frequencies that are very high compared to the baseband frequencies.

More information

Amplitude Modulation, II

Amplitude Modulation, II Amplitude Modulation, II Single sideband modulation (SSB) Vestigial sideband modulation (VSB) VSB spectrum Modulator and demodulator NTSC TV signsals Quadrature modulation Spectral efficiency Modulator

More information

Chapter 3: Analog Modulation Cengage Learning Engineering. All Rights Reserved.

Chapter 3: Analog Modulation Cengage Learning Engineering. All Rights Reserved. Contemporary Communication Systems using MATLAB Chapter 3: Analog Modulation 2013 Cengage Learning Engineering. All Rights Reserved. 3.1 Preview In this chapter we study analog modulation & demodulation,

More information

(b) What are the differences between FM and PM? (c) What are the differences between NBFM and WBFM? [9+4+3]

(b) What are the differences between FM and PM? (c) What are the differences between NBFM and WBFM? [9+4+3] Code No: RR220401 Set No. 1 1. (a) The antenna current of an AM Broadcast transmitter is 10A, if modulated to a depth of 50% by an audio sine wave. It increases to 12A as a result of simultaneous modulation

More information

Modulation is the process of impressing a low-frequency information signal (baseband signal) onto a higher frequency carrier signal

Modulation is the process of impressing a low-frequency information signal (baseband signal) onto a higher frequency carrier signal Modulation is the process of impressing a low-frequency information signal (baseband signal) onto a higher frequency carrier signal Modulation is a process of mixing a signal with a sinusoid to produce

More information

Analog Communication.

Analog Communication. Analog Communication Vishnu N V Tele is Greek for at a distance, and Communicare is latin for to make common. Telecommunication is the process of long distance communications. Early telecommunications

More information

Speech, music, images, and video are examples of analog signals. Each of these signals is characterized by its bandwidth, dynamic range, and the

Speech, music, images, and video are examples of analog signals. Each of these signals is characterized by its bandwidth, dynamic range, and the Speech, music, images, and video are examples of analog signals. Each of these signals is characterized by its bandwidth, dynamic range, and the nature of the signal. For instance, in the case of audio

More information

DT Filters 2/19. Atousa Hajshirmohammadi, SFU

DT Filters 2/19. Atousa Hajshirmohammadi, SFU 1/19 ENSC380 Lecture 23 Objectives: Signals and Systems Fourier Analysis: Discrete Time Filters Analog Communication Systems Double Sideband, Sub-pressed Carrier Modulation (DSBSC) Amplitude Modulation

More information

3.1 Introduction to Modulation

3.1 Introduction to Modulation Haberlesme Sistemlerine Giris (ELE 361) 9 Eylul 2017 TOBB Ekonomi ve Teknoloji Universitesi, Guz 2017-18 Dr. A. Melda Yuksel Turgut & Tolga Girici Lecture Notes Chapter 3 Amplitude Modulation Speech, music,

More information

1B Paper 6: Communications Handout 2: Analogue Modulation

1B Paper 6: Communications Handout 2: Analogue Modulation 1B Paper 6: Communications Handout : Analogue Modulation Ramji Venkataramanan Signal Processing and Communications Lab Department of Engineering ramji.v@eng.cam.ac.uk Lent Term 16 1 / 3 Modulation Modulation

More information

Master Degree in Electronic Engineering

Master Degree in Electronic Engineering Master Degree in Electronic Engineering Analog and telecommunication electronic course (ATLCE-01NWM) Miniproject: Baseband signal transmission techniques Name: LI. XINRUI E-mail: s219989@studenti.polito.it

More information

Introduction to Amplitude Modulation

Introduction to Amplitude Modulation 1 Introduction to Amplitude Modulation Introduction to project management. Problem definition. Design principles and practices. Implementation techniques including circuit design, software design, solid

More information

Signals and Systems Lecture 9 Communication Systems Frequency-Division Multiplexing and Frequency Modulation (FM)

Signals and Systems Lecture 9 Communication Systems Frequency-Division Multiplexing and Frequency Modulation (FM) Signals and Systems Lecture 9 Communication Systems Frequency-Division Multiplexing and Frequency Modulation (FM) April 11, 2008 Today s Topics 1. Frequency-division multiplexing 2. Frequency modulation

More information

ECE 359 Spring 2003 Handout # 16 April 15, SNR for ANGLE MODULATION SYSTEMS. v(t) = A c cos(2πf c t + φ(t)) for FM. for PM.

ECE 359 Spring 2003 Handout # 16 April 15, SNR for ANGLE MODULATION SYSTEMS. v(t) = A c cos(2πf c t + φ(t)) for FM. for PM. ECE 359 Spring 23 Handout # 16 April 15, 23 Recall that for angle modulation: where The modulation index: ag replacements SNR for ANGLE MODULATION SYSTEMS v(t) = A c cos(2πf c t + φ(t)) t 2πk f m(t )dt

More information

Angle Modulation. Frequency Modulation

Angle Modulation. Frequency Modulation Angle Modulation Contrast to AM Generalized sinusoid: v(t)=v max sin(ωt+φ) Instead of Varying V max, Vary (ωt+φ) Angle and Pulse Modulation - 1 Frequency Modulation Instantaneous Carrier Frequency f i

More information

EE3723 : Digital Communications

EE3723 : Digital Communications EE3723 : Digital Communications Week 8-9: Bandpass Modulation MPSK MASK, OOK MFSK 04-May-15 Muhammad Ali Jinnah University, Islamabad - Digital Communications - EE3723 1 In-phase and Quadrature (I&Q) Representation

More information

ECE5713 : Advanced Digital Communications

ECE5713 : Advanced Digital Communications ECE5713 : Advanced Digital Communications Bandpass Modulation MPSK MASK, OOK MFSK 04-May-15 Advanced Digital Communications, Spring-2015, Week-8 1 In-phase and Quadrature (I&Q) Representation Any bandpass

More information

Solution to Chapter 4 Problems

Solution to Chapter 4 Problems Solution to Chapter 4 Problems Problem 4.1 1) Since F[sinc(400t)]= 1 modulation index 400 ( f 400 β f = k f max[ m(t) ] W Hence, the modulated signal is ), the bandwidth of the message signal is W = 00

More information

Problem Sheet 1 Probability, random processes, and noise

Problem Sheet 1 Probability, random processes, and noise Problem Sheet 1 Probability, random processes, and noise 1. If F X (x) is the distribution function of a random variable X and x 1 x 2, show that F X (x 1 ) F X (x 2 ). 2. Use the definition of the cumulative

More information

Lecture 12 - Analog Communication (II)

Lecture 12 - Analog Communication (II) Lecture 12 - Analog Communication (II) James Barnes (James.Barnes@colostate.edu) Spring 2014 Colorado State University Dept of Electrical and Computer Engineering ECE423 1 / 12 Outline QAM: quadrature

More information

UNIT I AMPLITUDE MODULATION

UNIT I AMPLITUDE MODULATION UNIT I AMPLITUDE MODULATION Prepared by: S.NANDHINI, Assistant Professor, Dept. of ECE, Sri Venkateswara College of Engineering, Sriperumbudur, Tamilnadu. CONTENTS Introduction to communication systems

More information

UNIT-2 Angle Modulation System

UNIT-2 Angle Modulation System UNIT-2 Angle Modulation System Introduction There are three parameters of a carrier that may carry information: Amplitude Frequency Phase Frequency Modulation Power in an FM signal does not vary with modulation

More information

Amplitude Modulated Systems

Amplitude Modulated Systems Amplitude Modulated Systems Communication is process of establishing connection between two points for information exchange. Channel refers to medium through which message travels e.g. wires, links, or

More information

ELE636 Communication Systems

ELE636 Communication Systems ELE636 Communication Systems Chapter 5 : Angle (Exponential) Modulation 1 Phase-locked Loop (PLL) The PLL can be used to track the phase and the frequency of the carrier component of an incoming signal.

More information

! Amplitude of carrier wave varies a mean value in step with the baseband signal m(t)

! Amplitude of carrier wave varies a mean value in step with the baseband signal m(t) page 7.1 CHAPTER 7 AMPLITUDE MODULATION Transmit information-bearing (message) or baseband signal (voice-music) through a Communications Channel Baseband = band of frequencies representing the original

More information

CHAPTER 3 Noise in Amplitude Modulation Systems

CHAPTER 3 Noise in Amplitude Modulation Systems CHAPTER 3 Noise in Amplitude Modulation Systems NOISE Review: Types of Noise External (Atmospheric(sky),Solar(Cosmic),Hotspot) Internal(Shot, Thermal) Parameters of Noise o Signal to Noise ratio o Noise

More information

Communications IB Paper 6 Handout 2: Analogue Modulation

Communications IB Paper 6 Handout 2: Analogue Modulation Communications IB Paper 6 Handout 2: Analogue Modulation Jossy Sayir Signal Processing and Communications Lab Department of Engineering University of Cambridge jossy.sayir@eng.cam.ac.uk Lent Term c Jossy

More information

M(f) = 0. Linear modulation: linear relationship between the modulated signal and the message signal (ex: AM, DSB-SC, SSB, VSB).

M(f) = 0. Linear modulation: linear relationship between the modulated signal and the message signal (ex: AM, DSB-SC, SSB, VSB). 4 Analog modulation 4.1 Modulation formats The message waveform is represented by a low-pass real signal mt) such that Mf) = 0 f W where W is the message bandwidth. mt) is called the modulating signal.

More information

Solution of ECE 342 Test 3 S12

Solution of ECE 342 Test 3 S12 Solution of ECE 34 Test 3 S1 1 A random power signal has a mean of three and a standard deviation of five Find its numerical total average signal power Signal Power P = 3 + 5 = 34 A random energy signal

More information

TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY 2 Basic Definitions Time and Frequency db conversion Power and dbm Filter Basics 3 Filter Filter is a component with frequency

More information

DIGITAL COMMUNICATIONS SYSTEMS. MSc in Electronic Technologies and Communications

DIGITAL COMMUNICATIONS SYSTEMS. MSc in Electronic Technologies and Communications DIGITAL COMMUNICATIONS SYSTEMS MSc in Electronic Technologies and Communications Bandpass binary signalling The common techniques of bandpass binary signalling are: - On-off keying (OOK), also known as

More information

Traditional Analog Modulation Techniques

Traditional Analog Modulation Techniques Chapter 5 Traditional Analog Modulation Techniques Mikael Olosson 2002 2007 Modulation techniques are mainly used to transmit inormation in a given requency band. The reason or that may be that the channel

More information

page 7.51 Chapter 7, sections , pp Angle Modulation No Modulation (t) =2f c t + c Instantaneous Frequency 2 dt dt No Modulation

page 7.51 Chapter 7, sections , pp Angle Modulation No Modulation (t) =2f c t + c Instantaneous Frequency 2 dt dt No Modulation page 7.51 Chapter 7, sections 7.1-7.14, pp. 322-368 Angle Modulation s(t) =A c cos[(t)] No Modulation (t) =2f c t + c s(t) =A c cos[2f c t + c ] Instantaneous Frequency f i (t) = 1 d(t) 2 dt or w i (t)

More information

Amplitude Modulation Early Radio EE 442 Spring Semester Lecture 6

Amplitude Modulation Early Radio EE 442 Spring Semester Lecture 6 Amplitude Modulation Early Radio EE 442 Spring Semester Lecture 6 f f f LO audio baseband m http://www.technologyuk.net/telecommunications/telecom_principles/amplitude_modulation.shtml AM Modulation --

More information

Wireless Communication Fading Modulation

Wireless Communication Fading Modulation EC744 Wireless Communication Fall 2008 Mohamed Essam Khedr Department of Electronics and Communications Wireless Communication Fading Modulation Syllabus Tentatively Week 1 Week 2 Week 3 Week 4 Week 5

More information

TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY An Overview of Modulation Techniques: chapter 3.1 3.3.1 2 Introduction (3.1) Analog Modulation Amplitude Modulation Phase and

More information

Fundamentals of Communication Systems SECOND EDITION

Fundamentals of Communication Systems SECOND EDITION GLOBAL EDITIO Fundamentals of Communication Systems SECOD EDITIO John G. Proakis Masoud Salehi 78 Effect of oise on Analog Communication Systems Chapter 6 The noise power is P n = ow we can find the output

More information

ANALOG COMMUNICATION

ANALOG COMMUNICATION ANALOG COMMUNICATION TRAINING LAB Analog Communication Training Lab consists of six kits, one each for Modulation (ACL-01), Demodulation (ACL-02), Modulation (ACL-03), Demodulation (ACL-04), Noise power

More information

CSE4214 Digital Communications. Bandpass Modulation and Demodulation/Detection. Bandpass Modulation. Page 1

CSE4214 Digital Communications. Bandpass Modulation and Demodulation/Detection. Bandpass Modulation. Page 1 CSE414 Digital Communications Chapter 4 Bandpass Modulation and Demodulation/Detection Bandpass Modulation Page 1 1 Bandpass Modulation n Baseband transmission is conducted at low frequencies n Passband

More information

Angle Modulation, II. Lecture topics. FM bandwidth and Carson s rule. Spectral analysis of FM. Narrowband FM Modulation. Wideband FM Modulation

Angle Modulation, II. Lecture topics. FM bandwidth and Carson s rule. Spectral analysis of FM. Narrowband FM Modulation. Wideband FM Modulation Angle Modulation, II Lecture topics FM bandwidth and Carson s rule Spectral analysis of FM Narrowband FM Modulation Wideband FM Modulation Bandwidth of Angle-Modulated Waves Angle modulation is nonlinear

More information

Amplitude Modulation. Ahmad Bilal

Amplitude Modulation. Ahmad Bilal Amplitude Modulation Ahmad Bilal 5-2 ANALOG AND DIGITAL Analog-to-analog conversion is the representation of analog information by an analog signal. Topics discussed in this section: Amplitude Modulation

More information

ANALOG (DE)MODULATION

ANALOG (DE)MODULATION ANALOG (DE)MODULATION Amplitude Modulation with Large Carrier Amplitude Modulation with Suppressed Carrier Quadrature Modulation Injection to Intermediate Frequency idealized system Software Receiver Design

More information

ENSC327 Communications Systems 4. Double Sideband Modulation. Jie Liang School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 4. Double Sideband Modulation. Jie Liang School of Engineering Science Simon Fraser University ENSC327 Communiations Systems 4. Double Sideband Modulation Jie Liang Shool of Engineering Siene Simon Fraser University 1 Outline DSB: Modulator Spetrum Coherent Demodulator: Three methods Quadrature-arrier

More information

ANALOGUE TRANSMISSION OVER FADING CHANNELS

ANALOGUE TRANSMISSION OVER FADING CHANNELS J.P. Linnartz EECS 290i handouts Spring 1993 ANALOGUE TRANSMISSION OVER FADING CHANNELS Amplitude modulation Various methods exist to transmit a baseband message m(t) using an RF carrier signal c(t) =

More information

Chapter 5. Amplitude Modulation

Chapter 5. Amplitude Modulation Chapter 5 Amplitude Modulation So far we have developed basic signal and system representation techniques which we will now apply to the analysis of various analog communication systems. In particular,

More information

Part A: Question & Answers UNIT I AMPLITUDE MODULATION

Part A: Question & Answers UNIT I AMPLITUDE MODULATION PANDIAN SARASWATHI YADAV ENGINEERING COLLEGE DEPARTMENT OF ELECTRONICS & COMMUNICATON ENGG. Branch: ECE EC6402 COMMUNICATION THEORY Semester: IV Part A: Question & Answers UNIT I AMPLITUDE MODULATION 1.

More information

Elements of Communication System Channel Fig: 1: Block Diagram of Communication System Terminology in Communication System

Elements of Communication System Channel Fig: 1: Block Diagram of Communication System Terminology in Communication System Content:- Fundamentals of Communication Engineering : Elements of a Communication System, Need of modulation, electromagnetic spectrum and typical applications, Unit V (Communication terminologies in communication

More information

EEM 306 Introduction to Communications

EEM 306 Introduction to Communications EEM 306 Introduction to Communications Lecture 5 Department o Electrical and Electronics Engineering Anadolu University April 8, 2014 Lecture 5 1/20 Last Time Bandpass Systems Phase and Group Delay Introduction

More information

Problem Sheet for Amplitude Modulation

Problem Sheet for Amplitude Modulation Problem heet for Amplitude Modulation Q1: For the sinusoidaly modulated DB/LC waveform shown in Fig. below. a Find the modulation index. b ketch a line spectrum. c Calculated the ratio of average power

More information

RF/IF Terminology and Specs

RF/IF Terminology and Specs RF/IF Terminology and Specs Contributors: Brad Brannon John Greichen Leo McHugh Eamon Nash Eberhard Brunner 1 Terminology LNA - Low-Noise Amplifier. A specialized amplifier to boost the very small received

More information

The Communications Channel (Ch.11):

The Communications Channel (Ch.11): ECE-5 Phil Schniter February 5, 8 The Communications Channel (Ch.): The eects o signal propagation are usually modeled as: ECE-5 Phil Schniter February 5, 8 Filtering due to Multipath Propagation: The

More information

Charan Langton, Editor

Charan Langton, Editor Charan Langton, Editor SIGNAL PROCESSING & SIMULATION NEWSLETTER Baseband, Passband Signals and Amplitude Modulation The most salient feature of information signals is that they are generally low frequency.

More information

Fund. of Digital Communications Ch. 3: Digital Modulation

Fund. of Digital Communications Ch. 3: Digital Modulation Fund. of Digital Communications Ch. 3: Digital Modulation Klaus Witrisal witrisal@tugraz.at Signal Processing and Speech Communication Laboratory www.spsc.tugraz.at Graz University of Technology November

More information

Chapter 3. Amplitude Modulation Fundamentals

Chapter 3. Amplitude Modulation Fundamentals Chapter 3 Amplitude Modulation Fundamentals Topics Covered 3-1: AM Concepts 3-2: Modulation Index and Percentage of Modulation 3-3: Sidebands and the Frequency Domain 3-4: AM Power 3-5: Single-Sideband

More information

4.1 REPRESENTATION OF FM AND PM SIGNALS An angle-modulated signal generally can be written as

4.1 REPRESENTATION OF FM AND PM SIGNALS An angle-modulated signal generally can be written as 1 In frequency-modulation (FM) systems, the frequency of the carrier f c is changed by the message signal; in phase modulation (PM) systems, the phase of the carrier is changed according to the variations

More information

EC2252: COMMUNICATION THEORY SEM / YEAR: II year DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

EC2252: COMMUNICATION THEORY SEM / YEAR: II year DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC2252: COMMUNICATION THEORY SEM / YEAR: II year DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUBJECT CODE : EC2252 SEM / YEAR : II year SUBJECT NAME : COMMUNICATION THEORY UNIT

More information

EE 460L University of Nevada, Las Vegas ECE Department

EE 460L University of Nevada, Las Vegas ECE Department EE 460L PREPARATION 1- ASK Amplitude shift keying - ASK - in the context of digital communications is a modulation process which imparts to a sinusoid two or more discrete amplitude levels. These are related

More information

Fourier Transform Analysis of Signals and Systems

Fourier Transform Analysis of Signals and Systems Fourier Transform Analysis of Signals and Systems Ideal Filters Filters separate what is desired from what is not desired In the signals and systems context a filter separates signals in one frequency

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino Electronic Eng. Master Degree Analog and Telecommunication Electronics C5 - Synchronous demodulation» AM and FM demodulation» Coherent demodulation» Tone decoders AY 2015-16 19/03/2016-1

More information

3.1 Introduction 3.2 Amplitude Modulation 3.3 Double Sideband-Suppressed Carrier Modulation 3.4 Quadrature-Carrier Multiplexing 3.

3.1 Introduction 3.2 Amplitude Modulation 3.3 Double Sideband-Suppressed Carrier Modulation 3.4 Quadrature-Carrier Multiplexing 3. Chapter 3 Amplitude Modulation Wireless Information Transmission System Lab. Institute of Communications Engineering g National Sun Yat-sen University Outline 3.1 Introduction 3. Amplitude Modulation 3.3

More information

EE 400L Communications. Laboratory Exercise #7 Digital Modulation

EE 400L Communications. Laboratory Exercise #7 Digital Modulation EE 400L Communications Laboratory Exercise #7 Digital Modulation Department of Electrical and Computer Engineering University of Nevada, at Las Vegas PREPARATION 1- ASK Amplitude shift keying - ASK - in

More information

Spectral pre-emphasis/de-emphasis to improve SNR

Spectral pre-emphasis/de-emphasis to improve SNR Angle Modulation, III Lecture topics FM Modulation (review) FM Demodulation Spectral pre-emphasis/de-emphasis to improve SNR NBFM Modulation For narrowband signals, k f a(t) 1 and k p m(t) 1, ˆϕ NBFM A(cosω

More information

Local Oscillator Phase Noise and its effect on Receiver Performance C. John Grebenkemper

Local Oscillator Phase Noise and its effect on Receiver Performance C. John Grebenkemper Watkins-Johnson Company Tech-notes Copyright 1981 Watkins-Johnson Company Vol. 8 No. 6 November/December 1981 Local Oscillator Phase Noise and its effect on Receiver Performance C. John Grebenkemper All

More information

ENSC327 Communications Systems 4. Double Sideband Modulation. School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 4. Double Sideband Modulation. School of Engineering Science Simon Fraser University ENSC327 Communiations Systems 4. Double Sideband Modulation Shool of Engineering Siene Simon Fraser University 1 Outline Required Bakground DSB: Modulator Spetrum Coherent Demodulator: Three methods Quadrature-arrier

More information

1. Clearly circle one answer for each part.

1. Clearly circle one answer for each part. TB 1-9 / Exam Style Questions 1 EXAM STYLE QUESTIONS Covering Chapters 1-9 of Telecommunication Breakdown 1. Clearly circle one answer for each part. (a) TRUE or FALSE: Absolute bandwidth is never less

More information

Downloaded from 1

Downloaded from  1 VII SEMESTER FINAL EXAMINATION-2004 Attempt ALL questions. Q. [1] How does Digital communication System differ from Analog systems? Draw functional block diagram of DCS and explain the significance of

More information

Real and Complex Modulation

Real and Complex Modulation Real and Complex Modulation TIPL 4708 Presented by Matt Guibord Prepared by Matt Guibord 1 What is modulation? Modulation is the act of changing a carrier signal s properties (amplitude, phase, frequency)

More information

Twelve voice signals, each band-limited to 3 khz, are frequency -multiplexed using 1 khz guard bands between channels and between the main carrier

Twelve voice signals, each band-limited to 3 khz, are frequency -multiplexed using 1 khz guard bands between channels and between the main carrier Twelve voice signals, each band-limited to 3 khz, are frequency -multiplexed using 1 khz guard bands between channels and between the main carrier and the first channel. The modulation of the main carrier

More information

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS. College of Engineering Department of Electrical and Computer Engineering

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS. College of Engineering Department of Electrical and Computer Engineering THE STATE UNIVERSITY OF NEW JERSEY RUTGERS College of Engineering Department of Electrical and Computer Engineering 332:322 Principles of Communications Systems Spring Problem Set 3 1. Discovered Angle

More information

Internal Examination I Answer Key DEPARTMENT OF CSE & IT. Semester: III Max.Marks: 100

Internal Examination I Answer Key DEPARTMENT OF CSE & IT. Semester: III Max.Marks: 100 NH 67, Karur Trichy Highways, Puliyur C.F, 639 114 Karur District Internal Examination I Answer Key DEPARTMENT OF CSE & IT Branch & Section: II CSE & IT Date & Time: 06.08.15 & 3 Hours Semester: III Max.Marks:

More information

Amplitude Frequency Phase

Amplitude Frequency Phase Chapter 4 (part 2) Digital Modulation Techniques Chapter 4 (part 2) Overview Digital Modulation techniques (part 2) Bandpass data transmission Amplitude Shift Keying (ASK) Phase Shift Keying (PSK) Frequency

More information

Solutions to some sampled questions of previous finals

Solutions to some sampled questions of previous finals Solutions to some sampled questions of previous finals First exam: Problem : he modulating signal m(a m coπf m is used to generate the VSB signal β cos[ π ( f c + f m ) t] + (1 β ) cos[ π ( f c f m ) t]

More information

S.E. (Electronics/Electronics and Telecommunication Engg.) (Second Semester) EXAMINATION, 2014 COMMUNICATION THEORY (2008 PATTERN)

S.E. (Electronics/Electronics and Telecommunication Engg.) (Second Semester) EXAMINATION, 2014 COMMUNICATION THEORY (2008 PATTERN) Total No. of Questions 12] [Total No. of Printed Pages 7 Seat No. [4657]-49 S.E. (Electronics/Electronics and Telecommunication Engg.) (Second Semester) EXAMINATION, 2014 COMMUNICATION THEORY (2008 PATTERN)

More information

Introduction. Amplitude Modulation System Angle Modulation System

Introduction. Amplitude Modulation System Angle Modulation System Introduction Amplitude Modulation System Angle Modulation System Frequency Modulation Phase Modulation Digital Communication Elements of Information Theory Advanced Communication Techniques 1 Tools for

More information

Weaver SSB Modulation/Demodulation - A Tutorial

Weaver SSB Modulation/Demodulation - A Tutorial Weaver SSB odulation/demodulation - A Tutorial Derek Rowell February 18, 2017 1 Introduction In 1956 D. K. Weaver 1 proposed a new modulation scheme for single-sideband-suppressedcarrier (SSB) generation.

More information

Laboratory Assignment 5 Amplitude Modulation

Laboratory Assignment 5 Amplitude Modulation Laboratory Assignment 5 Amplitude Modulation PURPOSE In this assignment, you will explore the use of digital computers for the analysis, design, synthesis, and simulation of an amplitude modulation (AM)

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING QUESTION BANK SUBJECT : EC6402 COMMUNICATION THEORY SEM / YEAR: IV / II year B.E.

More information

Spread spectrum. Outline : 1. Baseband 2. DS/BPSK Modulation 3. CDM(A) system 4. Multi-path 5. Exercices. Exercise session 7 : Spread spectrum 1

Spread spectrum. Outline : 1. Baseband 2. DS/BPSK Modulation 3. CDM(A) system 4. Multi-path 5. Exercices. Exercise session 7 : Spread spectrum 1 Spread spectrum Outline : 1. Baseband 2. DS/BPSK Modulation 3. CDM(A) system 4. Multi-path 5. Exercices Exercise session 7 : Spread spectrum 1 1. Baseband +1 b(t) b(t) -1 T b t Spreading +1-1 T c t m(t)

More information

On-off keying, which consists of keying a sinusoidal carrier on and off with a unipolar binary signal

On-off keying, which consists of keying a sinusoidal carrier on and off with a unipolar binary signal Bandpass signalling Thus far only baseband signalling has been considered: an information source is usually a baseband signal. Some communication channels have a bandpass characteristic, and will not propagate

More information

Lab 1: Analog Modulations

Lab 1: Analog Modulations Lab 1: Analog Modulations Due: October 11, 2018 This lab contains two parts: for the first part you will perform simulation entirely in MATLAB, for the second part you will use a hardware device to interface

More information

Part-I. Experiment 6:-Angle Modulation

Part-I. Experiment 6:-Angle Modulation Part-I Experiment 6:-Angle Modulation 1. Introduction 1.1 Objective This experiment deals with the basic performance of Angle Modulation - Phase Modulation (PM) and Frequency Modulation (FM). The student

More information

Dimensional analysis of the audio signal/noise power in a FM system

Dimensional analysis of the audio signal/noise power in a FM system Dimensional analysis of the audio signal/noise power in a FM system Virginia Tech, Wireless@VT April 11, 2012 1 Problem statement Jakes in [1] has presented an analytical result for the audio signal and

More information

EE-4022 Experiment 3 Frequency Modulation (FM)

EE-4022 Experiment 3 Frequency Modulation (FM) EE-4022 MILWAUKEE SCHOOL OF ENGINEERING 2015 Page 3-1 Student Objectives: EE-4022 Experiment 3 Frequency Modulation (FM) In this experiment the student will use laboratory modules including a Voltage-Controlled

More information

ELEC3242 Communications Engineering Laboratory Amplitude Modulation (AM)

ELEC3242 Communications Engineering Laboratory Amplitude Modulation (AM) ELEC3242 Communications Engineering Laboratory 1 ---- Amplitude Modulation (AM) 1. Objectives 1.1 Through this the laboratory experiment, you will investigate demodulation of an amplitude modulated (AM)

More information

Chapter 4. Part 2(a) Digital Modulation Techniques

Chapter 4. Part 2(a) Digital Modulation Techniques Chapter 4 Part 2(a) Digital Modulation Techniques Overview Digital Modulation techniques Bandpass data transmission Amplitude Shift Keying (ASK) Phase Shift Keying (PSK) Frequency Shift Keying (FSK) Quadrature

More information

Keysight X-Series Signal Analyzer

Keysight X-Series Signal Analyzer Keysight X-Series Signal Analyzer This manual provides documentation for the following Analyzers: N9040B UXA N9030B PXA N9020B MXA N9010B EXA N9000B CXA N9063C Analog Demod Measurement Application Measurement

More information

Theory of Telecommunications Networks

Theory of Telecommunications Networks Theory of Telecommunications Networks Anton Čižmár Ján Papaj Department of electronics and multimedia telecommunications CONTENTS Preface... 5 1 Introduction... 6 1.1 Mathematical models for communication

More information

EXPERIMENT WISE VIVA QUESTIONS

EXPERIMENT WISE VIVA QUESTIONS EXPERIMENT WISE VIVA QUESTIONS Pulse Code Modulation: 1. Draw the block diagram of basic digital communication system. How it is different from analog communication system. 2. What are the advantages of

More information