4/14/15 8:58 PM C:\Users\Harrn...\tlh2polebutter10rad see.rn 1 of 1

Size: px
Start display at page:

Download "4/14/15 8:58 PM C:\Users\Harrn...\tlh2polebutter10rad see.rn 1 of 1"

Transcription

1 4/14/15 8:58 PM C:\Users\Harrn...\tlh2polebutter10rad see.rn 1 of 1 % Example 2pole butter tlh % Analog Butterworth filter design % design an 2-pole filter with a bandwidth of 10 rad/sec % Prototype H(s) 1 % wb = 1 rad/sec % s"'2 + 2"'(l/2)s +1 % [z,p,k) buttap(2); [b,a) = zp2tf(z,p,k); wb = 10; [b,a) = lp2lp(b,a,wb); % % 2 pole filter % convert the zeros and poles to polynomials % new bandwidth in rad/sec % transforms to the new bandwidth By hand replace s by s/wb % define the freq. in Hz for plotting f 0:15/200:100; w 2*pi*f; H = tf(b,a) % Continuous-time transfer function. % H 100 % wb 10 r/s % s"' s figure(l) bode(h,w) ; grid, title('bode Plot \omega_c 10 rad/sec') - S c+- ID~ S +- 1c>0 t e 0 - -I DO +- J too Ii. +loi> L t t}u') = _1T~ ~. --

2 -!D Bode Plotw = 10 rad/see c System: H Frequency (rad/s): Magnitude (db): ::s- -30 Q) -g -40 :t:: c: g> -50 ::2: > Q) -45 (/) ro.c 0.. "0-Q) Frequency (rad/s)

3 Introduction 399 Of the four classical filter types based on magnitude specifications, the Butterworth filter is monotonic ill the passband and stopband, the Chebyshev I filter displays ripples in the passband but is monotonic in the stopband, the Chebyshev II filter is monotonic in the passband but has ripples in the stopband, and the elliptic filter has ripples in both bands. I REVIEW Magnitude Characteristics PANEL of Four Classical Filters Butterworth: Monotonic in both bands Chebyshev I: Monotonic passband, rippled stopband Elliptic: Rippled in both bands Chebyshev II: Rippled passband, monotonic stopband The design of analog filters typically relies on frequency specifications (passband and stopband edge(s)) and magnitude specifications (maximum passband attenuation and minimum stopband attenuation) to generate a minimum-phase filter transfer function with the smallest order that meets or exceeds specifications. Most design strategies are based on converting the given frequency specifications to those applicable to a lowpass prototype (LPP) with a cutoff frequency of 1 rad/s (typically the passband edge), designing the lowpassprototype, and converting to the required filter type using frequency transformations Prototype Transformations a; >JIll The lowpass-to-lowpass (LP2LP) transformation converts a lowpass prototype Hp(s) with a cutoff frequency of 1 rad/s to a lowpass filter H(s) with a cutoff frequency of Wx rad/s using the transformation s =? s/wx, as shown in Figure This is just linear frequency scaling. L\ \ J rr,(p.") - S+l S~ ~o "? I-- ~t> H-tol~)-: LP2LP transformation > S+LD s -- s/cox Figure 13.2 The lowpass-to-lowpasstransformation The lowpass-to-highpass (LP2HP) transformation converts a lowpass prototype Hp(s) with a cutoff frequency of 1 rad/s to a highpass filter H(s) with a cutoff frequency of Wx rad/s, using the nonlinear transformation s =? wx/ s. This is illustrated in Figure Highpass filter LP2HP transformation >.S--Olx/S Figure 13.3 The lowpass-to-highpass transformation The lowpass-to-bandpass (LP2BP) transformation is illustrated in Figure It converts a lowpass prototype Hp(s) with a cutoff frequency of 1 rad/s to a bandpass filter H(s) with a center frequency of

4 400 Chapter 13 Analog Filters Wo rad/s and a passband of B rad/s, using the nonlinear, quadratic transformation (13.1) Here, Wo is the geometric mean of the band edges WLand WH, with WLW H = w5, and the bandwidth is given by B = WH - WL. Any pair of geometrically symmetric bandpass frequencies Wa and Wb, with WaWb = w5, corresponds to the lowpass prototype frequency (Wb - wa) / B. The lowpass prototype frequency at infinity is mapped to the bandpass origin. This quadratic transformation yields a transfer function with twice the order of the lowpass filter. LP2BP transformation s2+0)~ s~ Bs > L-_-' ==-+O) Figure 13.4 The lowpass-to-bandpass transformation The lowpass-to-bandstop (LP2BS) transformation is illustrated in Figure It converts a lowpass prototype Hp(s) with a cutoff frequency of 1 rad/s to a bandstop filter H(s) with a center frequency of Wo rad/s and a stopband of B rad/s, using the nonlinear, quadratic transformation 8B :--~ 8 2 +W5 (13.2) Here B = WH - WL and w5 = WHWL. The lowpass origin maps to the bandstop frequency Woo Since the roles of the passband and the stopband are now reversed, a pair of geometrically symmetric bandstop frequencies Wa and Wb, with WaWb = w;, maps to the lowpass prototype frequency WLP = B/(Wb - wa). This quadratic transformation also yields a transfer function with twice the order of the lowpass filter. Bandstop filter Figure 13.5 The lowpass-to-bandstop transformation Lowpass Prototype Specifications Given the frequency specifications of a lowpass filter with band edges wp and w s, the specifications for a. lowpass prototype with a passband edge of 1 rad/s are "» = 1 rad/s and I/s = ws/w p rad/s. The LP2LP transformation is s ---t s/w p. For a lowpass prototype with a stopband edge of 1 rad/s, we would USe "» = ws/w p rad/s and I/s = 1 rad/s instead.

5 tion -w Butterworth Filters For the two-pole system with the transfer function ~11~N~ Section 8.6 Causal Filters 465 ~ B""C~ 3tti' ~ r 2- ~W~ cj.!i 1-wYt'yly 4 t a.. ).~ =vw...~f) it follows from the results in Section 8.5 that the system is a lowpass filter when C ;::: 1/V2. If C = 1/,V2, the resulting lowpass filter is said to be maximally flat, since the variation in the magnitude IH (w ) I is as small as possible across the passband of the filter. This filter is called the two-pole Butterworth filter. The transfer function of the two-pole Butterworth filter is lters are Factoring the denominator of H(s) reveals that the poles are located at,...,...: value of or which Wn s= --±]-- V2 Wn V2 (8.54) E NIl assband Note that the magnitude of each of the poles is equal to Wn- Setting s = jw in H(s) yields the magnitude function of the two-pole Butterworth filter: is down e offrerusal fil-. extent. yallowcharac- that.the irder of owever, er chart of the t causal ver, the ctly linm. The )f filter ~LJ\r~~ 2.:'D (8.55) From (8.55) it is seen that the 3-dB bandwidth of the Butterworth filter is equal to W n ; that is, IH(wn)ldB = -3 db. For a lowpass filter, the point where IH(w)ldB is down by 3 db is often referred to as the cutoff frequency. Hence.eo, is the cutoff frequency of the lowpass filter with magnitude function given by (8.55). For the case Wn = 2 rad/sec, the frequency response curves of the Butterworth filter are plotted in Figure Also displayed are the frequency response curves for the one-pole lowpass filter with transfer function H(s) = 2/(s + 2), and the two-pole

6 466 Chapter 8 Analysis of Continuous-Time Systems by Use of the Transfer Function Representation IH(w)1 ~? o.~ ~O~ ~~ LH(w) 111(;) : I One-pole filter H(s) = s ~ 2 If (.1) :. },1.J. Two-pole filter with s = 1 ji Two-pole filter with?: = 11'1/2 + ~ +--=~~==~===F==~~w o Passband (a) /.., IN EfI I P 5::)W =-J z, ( Hlz.) I;;. C::f~~il.- o ~--~--~--+_--+---~--~--~~r_~--_;--w {)" 2 One-pole filter H(s) = --- s+2 Two-pole filter with?: = I (b) Two-pole filter with s. = 11'1/2 FIGURE 8.33 Frequency curves of one- and two-pole lowpass filters: (a) magnitude curves; (b) phase curves. lowpass filter with l = 1 and with cutoff frequency equal to 2 rad/sec. Note that the Butterworth filter has the sharpest transition of all three filters. N-pole Butterworth filter. For any positive integer N, the N-pole Butterworth filter is the lowpass filter of order N with a maximally flat frequency response across the passband. The distinguishing characteristic of the Butterworth filter is that the poles lie on a semicircle in the open left-half plane. The radius of the semicircle is equal to We> where We is the cutoff frequency of the filter. In the third-order case, the poles are as displayed in Figure The transfer function of the three-pole Butterworth filter is.,....

3 Analog filters. 3.1 Analog filter characteristics

3 Analog filters. 3.1 Analog filter characteristics Chapter 3, page 1 of 11 3 Analog filters This chapter deals with analog filters and the filter approximations of an ideal filter. The filter approximations that are considered are the classical analog

More information

Analog Lowpass Filter Specifications

Analog Lowpass Filter Specifications Analog Lowpass Filter Specifications Typical magnitude response analog lowpass filter may be given as indicated below H a ( j of an Copyright 005, S. K. Mitra Analog Lowpass Filter Specifications In the

More information

Filter Approximation Concepts

Filter Approximation Concepts 6 (ESS) Filter Approximation Concepts How do you translate filter specifications into a mathematical expression which can be synthesized? Approximation Techniques Why an ideal Brick Wall Filter can not

More information

Continuous-Time Analog Filters

Continuous-Time Analog Filters ENGR 4333/5333: Digital Signal Processing Continuous-Time Analog Filters Chapter 2 Dr. Mohamed Bingabr University of Central Oklahoma Outline Frequency Response of an LTIC System Signal Transmission through

More information

IIR Filter Design Chapter Intended Learning Outcomes: (i) Ability to design analog Butterworth filters

IIR Filter Design Chapter Intended Learning Outcomes: (i) Ability to design analog Butterworth filters IIR Filter Design Chapter Intended Learning Outcomes: (i) Ability to design analog Butterworth filters (ii) Ability to design lowpass IIR filters according to predefined specifications based on analog

More information

LECTURER NOTE SMJE3163 DSP

LECTURER NOTE SMJE3163 DSP LECTURER NOTE SMJE363 DSP (04/05-) ------------------------------------------------------------------------- Week3 IIR Filter Design -------------------------------------------------------------------------

More information

ECE 203 LAB 2 PRACTICAL FILTER DESIGN & IMPLEMENTATION

ECE 203 LAB 2 PRACTICAL FILTER DESIGN & IMPLEMENTATION Version 1. 1 of 7 ECE 03 LAB PRACTICAL FILTER DESIGN & IMPLEMENTATION BEFORE YOU BEGIN PREREQUISITE LABS ECE 01 Labs ECE 0 Advanced MATLAB ECE 03 MATLAB Signals & Systems EXPECTED KNOWLEDGE Understanding

More information

Dorf, R.C., Wan, Z. Transfer Functions of Filters The Electrical Engineering Handbook Ed. Richard C. Dorf Boca Raton: CRC Press LLC, 2000

Dorf, R.C., Wan, Z. Transfer Functions of Filters The Electrical Engineering Handbook Ed. Richard C. Dorf Boca Raton: CRC Press LLC, 2000 Dorf, R.C., Wan, Z. Transfer Functions of Filters The Electrical Engineering Handbook Ed. Richard C. Dorf oca Raton: CRC Press LLC, Transfer Functions of Filters Richard C. Dorf University of California,

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 4 Digital Signal Processing Prof. Mark Fowler Note Set #34 IIR Design Characteristics of Common Analog Filters Reading: Sect..3.4 &.3.5 of Proakis & Manolakis /6 Motivation We ve seenthat the Bilinear

More information

Digital Processing of

Digital Processing of Chapter 4 Digital Processing of Continuous-Time Signals 清大電機系林嘉文 cwlin@ee.nthu.edu.tw 03-5731152 Original PowerPoint slides prepared by S. K. Mitra 4-1-1 Digital Processing of Continuous-Time Signals Digital

More information

Butterworth, Elliptic, Chebychev Filters

Butterworth, Elliptic, Chebychev Filters Objective: Butterworth, Elliptic, Chebychev Filters Know what each filter tries to optimize Know how these filters compare An ideal low pass filter has a gain of one in the passband, zero outside that

More information

Digital Processing of Continuous-Time Signals

Digital Processing of Continuous-Time Signals Chapter 4 Digital Processing of Continuous-Time Signals 清大電機系林嘉文 cwlin@ee.nthu.edu.tw 03-5731152 Original PowerPoint slides prepared by S. K. Mitra 4-1-1 Digital Processing of Continuous-Time Signals Digital

More information

APPENDIX A to VOLUME A1 TIMS FILTER RESPONSES

APPENDIX A to VOLUME A1 TIMS FILTER RESPONSES APPENDIX A to VOLUME A1 TIMS FILTER RESPONSES A2 TABLE OF CONTENTS... 5 Filter Specifications... 7 3 khz LPF (within the HEADPHONE AMPLIFIER)... 8 TUNEABLE LPF... 9 BASEBAND CHANNEL FILTERS - #2 Butterworth

More information

8: IIR Filter Transformations

8: IIR Filter Transformations DSP and Digital (5-677) IIR : 8 / Classical continuous-time filters optimize tradeoff: passband ripple v stopband ripple v transition width There are explicit formulae for pole/zero positions. Butterworth:

More information

EEM478-DSPHARDWARE. WEEK12:FIR & IIR Filter Design

EEM478-DSPHARDWARE. WEEK12:FIR & IIR Filter Design EEM478-DSPHARDWARE WEEK12:FIR & IIR Filter Design PART-I : Filter Design/Realization Step-1 : define filter specs (pass-band, stop-band, optimization criterion, ) Step-2 : derive optimal transfer function

More information

A filter is appropriately described by the transfer function. It is a ratio between two polynomials

A filter is appropriately described by the transfer function. It is a ratio between two polynomials Imaginary Part Matlab examples Filter description A filter is appropriately described by the transfer function. It is a ratio between two polynomials H(s) = N(s) D(s) = b ns n + b n s n + + b s a m s m

More information

Infinite Impulse Response (IIR) Filter. Ikhwannul Kholis, ST., MT. Universitas 17 Agustus 1945 Jakarta

Infinite Impulse Response (IIR) Filter. Ikhwannul Kholis, ST., MT. Universitas 17 Agustus 1945 Jakarta Infinite Impulse Response (IIR) Filter Ihwannul Kholis, ST., MT. Universitas 17 Agustus 1945 Jaarta The Outline 8.1 State-of-the-art 8.2 Coefficient Calculation Method for IIR Filter 8.2.1 Pole-Zero Placement

More information

2.161 Signal Processing: Continuous and Discrete

2.161 Signal Processing: Continuous and Discrete MIT OpenCourseWare http://ocw.mit.edu 2.6 Signal Processing: Continuous and Discrete Fall 28 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS

More information

NH 67, Karur Trichy Highways, Puliyur C.F, Karur District DEPARTMENT OF INFORMATION TECHNOLOGY DIGITAL SIGNAL PROCESSING UNIT 3

NH 67, Karur Trichy Highways, Puliyur C.F, Karur District DEPARTMENT OF INFORMATION TECHNOLOGY DIGITAL SIGNAL PROCESSING UNIT 3 NH 67, Karur Trichy Highways, Puliyur C.F, 639 114 Karur District DEPARTMENT OF INFORMATION TECHNOLOGY DIGITAL SIGNAL PROCESSING UNIT 3 IIR FILTER DESIGN Structure of IIR System design of Discrete time

More information

PHYS225 Lecture 15. Electronic Circuits

PHYS225 Lecture 15. Electronic Circuits PHYS225 Lecture 15 Electronic Circuits Last lecture Difference amplifier Differential input; single output Good CMRR, accurate gain, moderate input impedance Instrumentation amplifier Differential input;

More information

NOVEMBER 13, 1996 EE 4773/6773: LECTURE NO. 37 PAGE 1 of 5

NOVEMBER 13, 1996 EE 4773/6773: LECTURE NO. 37 PAGE 1 of 5 NOVEMBER 3, 996 EE 4773/6773: LECTURE NO. 37 PAGE of 5 Characteristics of Commonly Used Analog Filters - Butterworth Butterworth filters are maimally flat in the passband and stopband, giving monotonicity

More information

Filters and Tuned Amplifiers

Filters and Tuned Amplifiers CHAPTER 6 Filters and Tuned Amplifiers Introduction 55 6. Filter Transmission, Types, and Specification 56 6. The Filter Transfer Function 60 6.7 Second-Order Active Filters Based on the Two-Integrator-Loop

More information

Digital Filter Design

Digital Filter Design Chapter9 Digital Filter Design Contents 9.1 Overview of Approximation Techniques........ 9-3 9.1.1 Approximation Approaches........... 9-3 9.1.2 FIR Approximation Approaches......... 9-3 9.2 Continuous-Time

More information

Digital Filters IIR (& Their Corresponding Analog Filters) 4 April 2017 ELEC 3004: Systems 1. Week Date Lecture Title

Digital Filters IIR (& Their Corresponding Analog Filters) 4 April 2017 ELEC 3004: Systems 1. Week Date Lecture Title http://elec3004.com Digital Filters IIR (& Their Corresponding Analog Filters) 4 April 017 ELEC 3004: Systems 1 017 School of Information Technology and Electrical Engineering at The University of Queensland

More information

Brief Introduction to Signals & Systems. Phani Chavali

Brief Introduction to Signals & Systems. Phani Chavali Brief Introduction to Signals & Systems Phani Chavali Outline Signals & Systems Continuous and discrete time signals Properties of Systems Input- Output relation : Convolution Frequency domain representation

More information

DIGITAL FILTERS. !! Finite Impulse Response (FIR) !! Infinite Impulse Response (IIR) !! Background. !! Matlab functions AGC DSP AGC DSP

DIGITAL FILTERS. !! Finite Impulse Response (FIR) !! Infinite Impulse Response (IIR) !! Background. !! Matlab functions AGC DSP AGC DSP DIGITAL FILTERS!! Finite Impulse Response (FIR)!! Infinite Impulse Response (IIR)!! Background!! Matlab functions 1!! Only the magnitude approximation problem!! Four basic types of ideal filters with magnitude

More information

Chapter 15: Active Filters

Chapter 15: Active Filters Chapter 15: Active Filters 15.1: Basic filter Responses A filter is a circuit that passes certain frequencies and rejects or attenuates all others. The passband is the range of frequencies allowed to pass

More information

Octave Functions for Filters. Young Won Lim 2/19/18

Octave Functions for Filters. Young Won Lim 2/19/18 Copyright (c) 2016 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published

More information

Filters. Phani Chavali

Filters. Phani Chavali Filters Phani Chavali Filters Filtering is the most common signal processing procedure. Used as echo cancellers, equalizers, front end processing in RF receivers Used for modifying input signals by passing

More information

EELE 4310: Digital Signal Processing (DSP)

EELE 4310: Digital Signal Processing (DSP) EELE 4310: Digital Signal Processing (DSP) Chapter # 10 : Digital Filter Design (Part One) Spring, 2012/2013 EELE 4310: Digital Signal Processing (DSP) - Ch.10 Dr. Musbah Shaat 1 / 19 Outline 1 Introduction

More information

Kerwin, W.J. Passive Signal Processing The Electrical Engineering Handbook Ed. Richard C. Dorf Boca Raton: CRC Press LLC, 2000

Kerwin, W.J. Passive Signal Processing The Electrical Engineering Handbook Ed. Richard C. Dorf Boca Raton: CRC Press LLC, 2000 Kerwin, W.J. Passive Signal Processing The Electrical Engineering Handbook Ed. Richard C. Dorf Boca Raton: CRC Press LLC, 000 4 Passive Signal Processing William J. Kerwin University of Arizona 4. Introduction

More information

Analog Filters D R. T A R E K T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N

Analog Filters D R. T A R E K T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N Analog Filters D. T A E K T U T U N J I P H I L A D E L P H I A U N I V E S I T Y, J O D A N 2 0 4 Introduction Electrical filters are deigned to eliminate unwanted frequencies Filters can be classified

More information

Review of Filter Types

Review of Filter Types ECE 440 FILTERS Review of Filters Filters are systems with amplitude and phase response that depends on frequency. Filters named by amplitude attenuation with relation to a transition or cutoff frequency.

More information

Filters occur so frequently in the instrumentation and

Filters occur so frequently in the instrumentation and FILTER Design CHAPTER 3 Filters occur so frequently in the instrumentation and communications industries that no book covering the field of RF circuit design could be complete without at least one chapter

More information

Application Note 7. Digital Audio FIR Crossover. Highlights Importing Transducer Response Data FIR Window Functions FIR Approximation Methods

Application Note 7. Digital Audio FIR Crossover. Highlights Importing Transducer Response Data FIR Window Functions FIR Approximation Methods Application Note 7 App Note Application Note 7 Highlights Importing Transducer Response Data FIR Window Functions FIR Approximation Methods n Design Objective 3-Way Active Crossover 200Hz/2kHz Crossover

More information

Part B. Simple Digital Filters. 1. Simple FIR Digital Filters

Part B. Simple Digital Filters. 1. Simple FIR Digital Filters Simple Digital Filters Chapter 7B Part B Simple FIR Digital Filters LTI Discrete-Time Systems in the Transform-Domain Simple Digital Filters Simple IIR Digital Filters Comb Filters 3. Simple FIR Digital

More information

Figure z1, Direct Programming Method ... Numerator Denominator... Vo/Vi = N(1+D1) Vo(1+D ) = ViN Vo = ViN-VoD

Figure z1, Direct Programming Method ... Numerator Denominator... Vo/Vi = N(1+D1) Vo(1+D ) = ViN Vo = ViN-VoD Z Transform Basics Design and analysis of control systems are usually performed in the frequency domain; where the time domain process of convolution is replaced by a simple process of multiplication of

More information

Design of infinite impulse response (IIR) bandpass filter structure using particle swarm optimization

Design of infinite impulse response (IIR) bandpass filter structure using particle swarm optimization Standard Scientific Research and Essays Vol1 (1): 1-8, February 13 http://www.standresjournals.org/journals/ssre Research Article Design of infinite impulse response (IIR) bandpass filter structure using

More information

CHAPTER 8 ANALOG FILTERS

CHAPTER 8 ANALOG FILTERS ANALOG FILTERS CHAPTER 8 ANALOG FILTERS SECTION 8.: INTRODUCTION 8. SECTION 8.2: THE TRANSFER FUNCTION 8.5 THE SPLANE 8.5 F O and Q 8.7 HIGHPASS FILTER 8.8 BANDPASS FILTER 8.9 BANDREJECT (NOTCH) FILTER

More information

Discretization of Continuous Controllers

Discretization of Continuous Controllers Discretization of Continuous Controllers Thao Dang VERIMAG, CNRS (France) Discretization of Continuous Controllers One way to design a computer-controlled control system is to make a continuous-time design

More information

(i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters

(i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters FIR Filter Design Chapter Intended Learning Outcomes: (i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters (ii) Ability to design linear-phase FIR filters according

More information

4. Design of Discrete-Time Filters

4. Design of Discrete-Time Filters 4. Design of Discrete-Time Filters 4.1. Introduction (7.0) 4.2. Frame of Design of IIR Filters (7.1) 4.3. Design of IIR Filters by Impulse Invariance (7.1) 4.4. Design of IIR Filters by Bilinear Transformation

More information

Electric Circuit Theory

Electric Circuit Theory Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Chapter 15 Active Filter Circuits Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Contents and Objectives 3 Chapter Contents 15.1 First-Order

More information

EEL 3923C. JD/ Module 3 Elementary Analog Filter Design. Prof. T. Nishida Fall 2010

EEL 3923C. JD/ Module 3 Elementary Analog Filter Design. Prof. T. Nishida Fall 2010 EEL 3923C JD/ Module 3 Elementary Analog Filter Design Prof. T. Nishida Fall 2010 Purpose Frequency selection Low pass, high pass, band pass, band stop, notch, etc. Applications II. Filter Fundamentals

More information

(i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters

(i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters FIR Filter Design Chapter Intended Learning Outcomes: (i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters (ii) Ability to design linear-phase FIR filters according

More information

Microwave Circuits Design. Microwave Filters. high pass

Microwave Circuits Design. Microwave Filters. high pass Used to control the frequency response at a certain point in a microwave system by providing transmission at frequencies within the passband of the filter and attenuation in the stopband of the filter.

More information

Design IIR Band-Reject Filters

Design IIR Band-Reject Filters db Design IIR Band-Reject Filters In this post, I show how to design IIR Butterworth band-reject filters, and provide two Matlab functions for band-reject filter synthesis. Earlier posts covered IIR Butterworth

More information

Team proposals are due tomorrow at 6PM Homework 4 is due next thur. Proposal presentations are next mon in 1311EECS.

Team proposals are due tomorrow at 6PM Homework 4 is due next thur. Proposal presentations are next mon in 1311EECS. Lecture 8 Today: Announcements: References: FIR filter design IIR filter design Filter roundoff and overflow sensitivity Team proposals are due tomorrow at 6PM Homework 4 is due next thur. Proposal presentations

More information

APPLIED SIGNAL PROCESSING

APPLIED SIGNAL PROCESSING APPLIED SIGNAL PROCESSING 2004 Chapter 1 Digital filtering In this section digital filters are discussed, with a focus on IIR (Infinite Impulse Response) filters and their applications. The most important

More information

Transfer function: a mathematical description of network response characteristics.

Transfer function: a mathematical description of network response characteristics. Microwave Filter Design Chp3. Basic Concept and Theories of Filters Prof. Tzong-Lin Wu Department of Electrical Engineering National Taiwan University Transfer Functions General Definitions Transfer function:

More information

UNIT-II MYcsvtu Notes agk

UNIT-II   MYcsvtu Notes agk UNIT-II agk UNIT II Infinite Impulse Response Filter design (IIR): Analog & Digital Frequency transformation. Designing by impulse invariance & Bilinear method. Butterworth and Chebyshev Design Method.

More information

ELEC3104: Digital Signal Processing Session 1, 2013

ELEC3104: Digital Signal Processing Session 1, 2013 ELEC3104: Digital Signal Processing Session 1, 2013 The University of New South Wales School of Electrical Engineering and Telecommunications LABORATORY 4: DIGITAL FILTERS INTRODUCTION In this laboratory,

More information

Design of IIR Digital Filters with Flat Passband and Equiripple Stopband Responses

Design of IIR Digital Filters with Flat Passband and Equiripple Stopband Responses Electronics and Communications in Japan, Part 3, Vol. 84, No. 11, 2001 Translated from Denshi Joho Tsushin Gakkai Ronbunshi, Vol. J82-A, No. 3, March 1999, pp. 317 324 Design of IIR Digital Filters with

More information

Chapter 19. Basic Filters

Chapter 19. Basic Filters Chapter 19 Basic Filters Objectives Analyze the operation of RC and RL lowpass filters Analyze the operation of RC and RL highpass filters Analyze the operation of band-pass filters Analyze the operation

More information

Lowpass Filters. Microwave Filter Design. Chp5. Lowpass Filters. Prof. Tzong-Lin Wu. Department of Electrical Engineering National Taiwan University

Lowpass Filters. Microwave Filter Design. Chp5. Lowpass Filters. Prof. Tzong-Lin Wu. Department of Electrical Engineering National Taiwan University Microwave Filter Design Chp5. Lowpass Filters Prof. Tzong-Lin Wu Department of Electrical Engineering National Taiwan University Lowpass Filters Design steps Select an appropriate lowpass filter prototype

More information

ASC-50. OPERATION MANUAL September 2001

ASC-50. OPERATION MANUAL September 2001 ASC-5 ASC-5 OPERATION MANUAL September 21 25 Locust St, Haverhill, Massachusetts 183 Tel: 8/252-774, 978/374-761 FAX: 978/521-1839 TABLE OF CONTENTS ASC-5 1. ASC-5 Overview.......................................................

More information

The above figure represents a two stage circuit. Recall, the transfer function relates. Vout

The above figure represents a two stage circuit. Recall, the transfer function relates. Vout LABORATORY 12: Bode plots/second Order Filters Material covered: Multistage circuits Bode plots Design problem Overview Notes: Two stage circuits: Vin1 H1(s) Vout1 Vin2 H2(s) Vout2 The above figure represents

More information

4. K. W. Henderson, "Nomograph for Designing Elliptic-Function Filters," Proc. IRE, vol. 46, pp , 1958.

4. K. W. Henderson, Nomograph for Designing Elliptic-Function Filters, Proc. IRE, vol. 46, pp , 1958. BIBLIOGRAPHY Books. W. Cauer, Synthesis of Linear Communication Networks (English translation from German edition), McGraw-Hill Book Co., New York, 958. 2. W. K. Chen, Theory and Design of Broadband Matching

More information

Number of Sections. Contact factory for specific requirements not listed above.

Number of Sections. Contact factory for specific requirements not listed above. Tubular Filters MHz to 20 GHz Chebyshev Response Standard 4 Convenient Sizes Reliable Sturdy Construction Lorch Microwave tubular filters are available in bandpass and lowpass configurations. A low ripple

More information

Performance Evaluation of Mean Square Error of Butterworth and Chebyshev1 Filter with Matlab

Performance Evaluation of Mean Square Error of Butterworth and Chebyshev1 Filter with Matlab Performance Evaluation of Mean Square Error of Butterworth and Chebyshev1 Filter with Matlab Mamta Katiar Associate professor Mahararishi Markandeshwer University, Mullana Haryana,India. Anju Lecturer,

More information

ECE 202 (Talavage) Exam #3

ECE 202 (Talavage) Exam #3 ECE 202 (Talavage) Exam #3 23 November 2015 Name: INSTRUCTIONS This is a closed book, closed notes exam. The exam consists of 8 thematic problems (19 parts) worth a total of 100 points. No computers, cell

More information

ECE 2713 Design Project Solution

ECE 2713 Design Project Solution ECE 2713 Design Project Solution Spring 218 Dr. Havlicek 1. (a) Matlab code: ---------------------------------------------------------- P1a Make a 2 second digital audio signal that contains a pure cosine

More information

AUDIO SIEVING USING SIGNAL FILTERS

AUDIO SIEVING USING SIGNAL FILTERS AUDIO SIEVING USING SIGNAL FILTERS A project under V.6.2 Signals and System Engineering Yatharth Aggarwal Sagar Mayank Chauhan Rajan Table of Contents Introduction... 2 Filters... 4 Butterworth Filter...

More information

Electronic PRINCIPLES

Electronic PRINCIPLES MALVINO & BATES Electronic PRINCIPLES SEVENTH EDITION Chapter 21 Active Filters Topics Covered in Chapter 21 Ideal responses Approximate responses Passive ilters First-order stages VCVS unity-gain second-order

More information

Classic Filters. Figure 1 Butterworth Filter. Chebyshev

Classic Filters. Figure 1 Butterworth Filter. Chebyshev Classic Filters There are 4 classic analogue filter types: Butterworth, Chebyshev, Elliptic and Bessel. There is no ideal filter; each filter is good in some areas but poor in others. Butterworth: Flattest

More information

Rahman Jamal, et. al.. "Filters." Copyright 2000 CRC Press LLC. <

Rahman Jamal, et. al.. Filters. Copyright 2000 CRC Press LLC. < Rahman Jamal, et. al.. "Filters." Copyright 000 CRC Press LLC. . Filters Rahman Jamal National Instruments Germany Robert Steer Frequency Devices 8. Introduction 8. Filter Classification

More information

EKT 356 MICROWAVE COMMUNICATIONS CHAPTER 4: MICROWAVE FILTERS

EKT 356 MICROWAVE COMMUNICATIONS CHAPTER 4: MICROWAVE FILTERS EKT 356 MICROWAVE COMMUNICATIONS CHAPTER 4: MICROWAVE FILTERS 1 INTRODUCTION What is a Microwave filter? linear 2-port network controls the frequency response at a certain point in a microwave system provides

More information

(Refer Slide Time: 02:00-04:20) (Refer Slide Time: 04:27 09:06)

(Refer Slide Time: 02:00-04:20) (Refer Slide Time: 04:27 09:06) Digital Signal Processing Prof. S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 25 Analog Filter Design (Contd.); Transformations This is the 25 th

More information

ECE503: Digital Filter Design Lecture 9

ECE503: Digital Filter Design Lecture 9 ECE503: Digital Filter Design Lecture 9 D. Richard Brown III WPI 26-March-2012 WPI D. Richard Brown III 26-March-2012 1 / 33 Lecture 9 Topics Within the broad topic of digital filter design, we are going

More information

Introduction (cont )

Introduction (cont ) Active Filter 1 Introduction Filters are circuits that are capable of passing signals within a band of frequencies while rejecting or blocking signals of frequencies outside this band. This property of

More information

ECSE-4760 Computer Applications Laboratory DIGITAL FILTER DESIGN

ECSE-4760 Computer Applications Laboratory DIGITAL FILTER DESIGN Rensselaer Polytechnic Institute ECSE-4760 Computer Applications Laboratory DIGITAL FILTER DESIGN Number of Sessions 4 INTRODUCTION This lab demonstrates the use of digital filters on a DSP. It consists

More information

Analog Design-filters

Analog Design-filters Analog Design-filters Introduction and Motivation Filters are networks that process signals in a frequency-dependent manner. The basic concept of a filter can be explained by examining the frequency dependent

More information

Designing Filters Using the NI LabVIEW Digital Filter Design Toolkit

Designing Filters Using the NI LabVIEW Digital Filter Design Toolkit Application Note 097 Designing Filters Using the NI LabVIEW Digital Filter Design Toolkit Introduction The importance of digital filters is well established. Digital filters, and more generally digital

More information

Digital Signal Processing

Digital Signal Processing COMP ENG 4TL4: Digital Signal Processing Notes for Lecture #25 Wednesday, November 5, 23 Aliasing in the impulse invariance method: The impulse invariance method is only suitable for filters with a bandlimited

More information

ELEC-C5230 Digitaalisen signaalinkäsittelyn perusteet

ELEC-C5230 Digitaalisen signaalinkäsittelyn perusteet ELEC-C5230 Digitaalisen signaalinkäsittelyn perusteet Lecture 10: Summary Taneli Riihonen 16.05.2016 Lecture 10 in Course Book Sanjit K. Mitra, Digital Signal Processing: A Computer-Based Approach, 4th

More information

ECE 4213/5213 Homework 10

ECE 4213/5213 Homework 10 Fall 2017 ECE 4213/5213 Homework 10 Dr. Havlicek Work the Projects and Questions in Chapter 7 of the course laboratory manual. For your report, use the file LABEX7.doc from the course web site. Work these

More information

EC6502 PRINCIPLES OF DIGITAL SIGNAL PROCESSING

EC6502 PRINCIPLES OF DIGITAL SIGNAL PROCESSING 1. State the properties of DFT? UNIT-I DISCRETE FOURIER TRANSFORM 1) Periodicity 2) Linearity and symmetry 3) Multiplication of two DFTs 4) Circular convolution 5) Time reversal 6) Circular time shift

More information

UNIT IV FIR FILTER DESIGN 1. How phase distortion and delay distortion are introduced? The phase distortion is introduced when the phase characteristics of a filter is nonlinear within the desired frequency

More information

1 PeZ: Introduction. 1.1 Controls for PeZ using pezdemo. Lab 15b: FIR Filter Design and PeZ: The z, n, and O! Domains

1 PeZ: Introduction. 1.1 Controls for PeZ using pezdemo. Lab 15b: FIR Filter Design and PeZ: The z, n, and O! Domains DSP First, 2e Signal Processing First Lab 5b: FIR Filter Design and PeZ: The z, n, and O! Domains The lab report/verification will be done by filling in the last page of this handout which addresses a

More information

Downloaded from

Downloaded from VI SEMESTER FINAL EXAMINATION 2003 Attempt ALL questions. Q. [1] [a] What is filter? Why it is required? Define half power points, rolloff and centre frequency. [3] [b] Plot the magnitude and phase response

More information

Final Exam Solutions June 14, 2006

Final Exam Solutions June 14, 2006 Name or 6-Digit Code: PSU Student ID Number: Final Exam Solutions June 14, 2006 ECE 223: Signals & Systems II Dr. McNames Keep your exam flat during the entire exam. If you have to leave the exam temporarily,

More information

Spectral Transformation On the unit circle we have

Spectral Transformation On the unit circle we have 1 s of Objetive - Transform a given lowpass digital transfer funtion G L ( to another digital transfer funtion G D ( that ould be a lowpass, highpass, bandpass or bandstop filter z has been used to denote

More information

TABEL OF CONTENTS CHAPTER TITLE PAGE ABSTRAKT TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS

TABEL OF CONTENTS CHAPTER TITLE PAGE ABSTRAKT TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS v TABEL OF CONTENTS CHAPTER TITLE PAGE TITLE ABSTRACT ABSTRAKT TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS ii iii iv v ix x xiv 1 INTRODUCTION 1.1 Introduction 1 1.2 Objective 4 1.3

More information

Signal Processing of DC/DC converter inductor current measurement

Signal Processing of DC/DC converter inductor current measurement Signal Processing of DC/DC converter inductor current measurement By Yinjia Li Zakir Hussain Ranizai This thesis is presented as part of Degree of Bachelor of Science in Electrical Engineering Blekinge

More information

Part Numbering System

Part Numbering System Reactel Filters can satisfy a variety of filter requirements. These versatile units cover the broad frequency range of 2 khz to 5 GHz, and are available in either tubular or rectangular packages, connectorized

More information

EE247 Lecture 2. Butterworth Chebyshev I Chebyshev II Elliptic Bessel Group delay comparison example. EECS 247 Lecture 2: Filters

EE247 Lecture 2. Butterworth Chebyshev I Chebyshev II Elliptic Bessel Group delay comparison example. EECS 247 Lecture 2: Filters EE247 Lecture 2 Material covered today: Nomenclature Filter specifications Quality factor Frequency characteristics Group delay Filter types Butterworth Chebyshev I Chebyshev II Elliptic Bessel Group delay

More information

DSP Laboratory (EELE 4110) Lab#10 Finite Impulse Response (FIR) Filters

DSP Laboratory (EELE 4110) Lab#10 Finite Impulse Response (FIR) Filters Islamic University of Gaza OBJECTIVES: Faculty of Engineering Electrical Engineering Department Spring-2011 DSP Laboratory (EELE 4110) Lab#10 Finite Impulse Response (FIR) Filters To demonstrate the concept

More information

Digital Signal Processing

Digital Signal Processing Digital Signal Processing System Analysis and Design Paulo S. R. Diniz Eduardo A. B. da Silva and Sergio L. Netto Federal University of Rio de Janeiro CAMBRIDGE UNIVERSITY PRESS Preface page xv Introduction

More information

Part One. Efficient Digital Filters COPYRIGHTED MATERIAL

Part One. Efficient Digital Filters COPYRIGHTED MATERIAL Part One Efficient Digital Filters COPYRIGHTED MATERIAL Chapter 1 Lost Knowledge Refound: Sharpened FIR Filters Matthew Donadio Night Kitchen Interactive What would you do in the following situation?

More information

Bode Plots. Hamid Roozbahani

Bode Plots. Hamid Roozbahani Bode Plots Hamid Roozbahani A Bode plot is a graph of the transfer function of a linear, time-invariant system versus frequency, plotted with a logfrequency axis, to show the system's frequency response.

More information

EE247 - Lecture 2 Filters. EECS 247 Lecture 2: Filters 2005 H.K. Page 1. Administrative. Office hours for H.K. changed to:

EE247 - Lecture 2 Filters. EECS 247 Lecture 2: Filters 2005 H.K. Page 1. Administrative. Office hours for H.K. changed to: EE247 - Lecture 2 Filters Material covered today: Nomenclature Filter specifications Quality factor Frequency characteristics Group delay Filter types Butterworth Chebyshev I Chebyshev II Elliptic Bessel

More information

CHAPTER 14. Introduction to Frequency Selective Circuits

CHAPTER 14. Introduction to Frequency Selective Circuits CHAPTER 14 Introduction to Frequency Selective Circuits Frequency-selective circuits Varying source frequency on circuit voltages and currents. The result of this analysis is the frequency response of

More information

Application Note 5. Analog Audio Active Crossover

Application Note 5. Analog Audio Active Crossover App Note Highlights Importing Transducer Response Data Generic Transfer Function Modeling Circuit Optimization Cascade Circuit Synthesis n Design Objective 3-Way Active Crossover 4th Order Crossover 200Hz/2kHz

More information

Experiment 4- Finite Impulse Response Filters

Experiment 4- Finite Impulse Response Filters Experiment 4- Finite Impulse Response Filters 18 February 2009 Abstract In this experiment we design different Finite Impulse Response filters and study their characteristics. 1 Introduction The transfer

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signals & Systems Prof. Mark Fowler D-T Systems: FIR Filters Note Set #29 1/16 FIR Filters (Non-Recursive Filters) FIR (Non-Recursive) filters are certainly the most widely used DT filters. There

More information

Frequency Response Analysis

Frequency Response Analysis Frequency Response Analysis Continuous Time * M. J. Roberts - All Rights Reserved 2 Frequency Response * M. J. Roberts - All Rights Reserved 3 Lowpass Filter H( s) = ω c s + ω c H( jω ) = ω c jω + ω c

More information

EELE503. Modern filter design. Filter Design - Introduction

EELE503. Modern filter design. Filter Design - Introduction EELE503 Modern filter design Filter Design - Introduction A filter will modify the magnitude or phase of a signal to produce a desired frequency response or time response. One way to classify ideal filters

More information

Plot frequency response around the unit circle above the Z-plane.

Plot frequency response around the unit circle above the Z-plane. There s No End to It -- Matlab Code Plots Frequency Response above the Unit Circle Reference [] has some 3D plots of frequency response magnitude above the unit circle in the Z-plane. I liked them enough

More information

Window Method. designates the window function. Commonly used window functions in FIR filters. are: 1. Rectangular Window:

Window Method. designates the window function. Commonly used window functions in FIR filters. are: 1. Rectangular Window: Window Method We have seen that in the design of FIR filters, Gibbs oscillations are produced in the passband and stopband, which are not desirable features of the FIR filter. To solve this problem, window

More information

Biosignal filtering and artifact rejection. Biosignal processing I, S Autumn 2017

Biosignal filtering and artifact rejection. Biosignal processing I, S Autumn 2017 Biosignal filtering and artifact rejection Biosignal processing I, 52273S Autumn 207 Motivation ) Artifact removal power line non-stationarity due to baseline variation muscle or eye movement artifacts

More information