CHAPTER 14. Introduction to Frequency Selective Circuits

Size: px
Start display at page:

Download "CHAPTER 14. Introduction to Frequency Selective Circuits"

Transcription

1 CHAPTER 14 Introduction to Frequency Selective Circuits

2 Frequency-selective circuits Varying source frequency on circuit voltages and currents. The result of this analysis is the frequency response of a circuit. Frequency-selective circuits are also called filters, such as telephones, radios, televisions, and satellites, employ frequency-selective circuits. Figure 14.1 The action of a filter on an input signal results in an output signal.

3 14.1 Some Preliminaries The signals passed from the input to the output fall within a band of frequencies called the passband. Input voltages outside this band have their magnitudes attenuated by the circuit and are thus effectively prevented from reaching the output terminals of the circuit. Frequencies not in a circuit s passband are in its stopband. Frequency-selective circuits are categorized by the location of the passband. Figure 14.2 A circuit with voltage input and output.

4 One way of identifying the type of frequencyselective circuit is to examine a frequency response plot. A frequency response plot shows how a circuit s transfer function (both amplitude and phase) changes as the source frequency changes. A frequency response plot has two parts. One is a graph of H(jω) versus frequency ω. This part of the plot is called the magnitude plot. The other part is a graph of θ(jω) versus frequency ω. This part is called the phase angle plot.

5 One passband and one stopband, which are defined by the cutoff frequency. Low-pass filter, which passes signals at frequencies lower than the cutoff frequency from the input to the output. High-pass filter, which passes signals at frequencies higher than the cutoff frequency. Bandpass filter, which passes a source voltage to the output only when the source frequency is within the band defined by the two cutoff frequencies. Bandreject filter, which passes a source voltage to the output only when the source frequency is outside the band defined by the two cutoff frequencies.

6 Figure 14.3 Ideal frequency response plots of the four types of filter circuits. (a) An ideal low-pass filter. (b) An ideal high-pass filter. (c) An ideal bandpass filter. (d) An ideal bandreject filter.

7 Passive filters Passive filters, their filtering capabilities depend only on the elements: resistors, capacitors, and inductors.

8 14.2 Low-Pass Filters The Series RL Circuit Qualitative Analysis Figure 14.4 (a) A series RL lowpass filter. (b) The equivalent circuit at ω = 0 and (c) The equivalent circuit at ω =.

9 Figure 14.5 The frequency response plot for the series RL circuit in Fig. 14.4(a).

10 Defining the Cutoff Frequency The definition for cutoff frequency widely used by electrical engineers is the frequency for which the transfer function magnitude is decreased by the factor 1 2 from its maximum value: where H max is the maximum magnitude of the transfer function.

11 The Power Delivered

12 At the cutoff frequency the average power delivered by the circuit is one half the maximum average power. Thus ω c is also called the half-power frequency.

13 The Series RL Circuit Quantitative Analysis Figure 14.6 The s-domain equivalent for the circuit in Fig. 14.4(a).

14 Cutoff frequency for RL filters

15 Example 14.1 Electrocardiology is the study of the electric signals produced by the heart. These signals maintain the heart s rhythmic beat, and they are measured by an instrument called an electrocardiograph. This instrument must be capable of detecting periodic signals whose frequency is about 1 Hz (the normal heart rate is 72 beats per minute). The instrument must operate in the presence of sinusoidal noise consisting of signals from the surrounding electrical environment, whose fundamental frequency is 60 Hz the frequency at which electric power is supplied.

16 Example 14.1 Choose values for R and L in the circuit of Fig. 14.4(a) such that the resulting circuit could be used in an electrocardiograph to filter out any noise above 10 Hz and pass the electric signals from the heart V o at or near 1 Hz. Then compute the magnitude of at 1 Hz, 10 Hz, and 60 Hz to see how well the filter performs.

17 Example 14.1

18 Example 14.1

19 Example 14.1

20 A Series RC Circuit as a low-pass filter 1. Zero frequency (ω = 0): The impedance of the capacitor is infinite, and the capacitor acts as an open circuit. The input and output voltages are thus the same. 2. Frequencies increasing from zero: The impedance of the capacitor decreases relative to the impedance of the resistor, and the source voltage divides between the resistive impedance and the capacitive impedance. The output voltage is thus smaller than the source voltage. 3. Infinite frequency (ω = ): The impedance of the capacitor is zero, and the capacitor acts as a short circuit. The output voltage is thus zero. Figure 14.7 A series RC low-pass filter.

21 Example 14.2 For the series RC circuit in Fig. 14.7: a) Find the transfer function between the source voltage and the output voltage. b) Determine an equation for the cutoff frequency in the series RC circuit. c) Choose values for R and C that will yield a lowpass filter with a cutoff frequency of 3 khz. Figure 14.7 A series RC low-pass filter.

22 Example 14.2 Figure 14.8 The s- domain equivalent for the circuit in Fig

23 Example 14.2

24 Example 14.2

25 Transfer function for a low-pass filter Figure 14.9 Two lowpass filters, the series RL and the series RC, together with their transfer functions and cutoff frequencies.

26 Relating the Frequency Domain to the Time Domain This result is a direct consequence of the relationship between the time response of a circuit and its frequency response.

27 14.3 High-Pass Filters The Series RC Circuit Qualitative Analysis Figure (a) A series RC high-pass filter; (b) the equivalent circuit at ω = 0 and (c) the equivalent circuit at ω =.

28 Figure The frequency response plot for the series RC circuit in Fig (a).

29 The Series RC Circuit Quantitative Analysis Figure The s-domain equivalent of the circuit in Fig (a).

30

31 Example 14.3 Show that the series RL circuit in Fig also acts like a high-pass filter: a) Derive an expression for the circuit s transfer function. b) Use the result from (a) to determine an equation for the cutoff frequency in the series RL circuit. c) Choose values for R and L that will yield a highpass filter with a cutoff frequency of 15 khz.

32 Example 14.3 Figure The circuit for Example 14.3.

33 Example 14.3

34 Example 14.3

35 Example 14.3 Figure The s- domain equivalent of the circuit in Fig

36 Example 14.4 Examine the effect of placing a load resistor in parallel with the inductor in the RL high-pass filter shown in Fig : a) Determine the transfer function for the circuit in Fig b) Sketch the magnitude plot for the loaded RL highpass filter, using the values for R and L from the circuit in Example 14.3(c) and letting. On the same graph, sketch the magnitude plot for the unloaded RL high-pass filter of Example 14.3(c).

37 Example 14.4 Figure The circuit for Example Figure The s- domain equivalent of the circuit in Fig

38 Example 14.4

39 Example 14.4

40 Example 14.4 Figure The magnitude plots for the unloaded RL high-pass filter of Fig and the loaded RL highpass filter of Fig

41 Transfer function for a high-pass filter Figure Two high-pass filters, the series RC and the series RL, together with their transfer functions and cutoff frequencies.

42 14.4 Bandpass Filters Ideal bandpass filters have two cutoff frequencies which identify the passband. For realistic bandpass filters, cutoff frequencies are defined as the frequencies for which the magnitude of the transfer function equals (1/ 2)H max.

43 Center Frequency, Bandwidth, and Quality Factor Center frequency ω o, defined as the frequency for which a circuit s transfer function is purely real. Resonant frequency, is the same name given to the frequency that characterizes the natural response of the second-order circuits. When a circuit is driven at the resonant frequency, we say that the circuit is in resonance. O c1 c2 Bandwidth, b, is the width of the passband. Quality factor, is the ratio of the center frequency to the bandwidth.

44 The Series RLC Circuit Qualitative Analysis Figure (a) A series RLC bandpass filter; (b) the equivalent circuit for ω = 0; and (c) the equivalent circuit for ω =.

45 The frequency response plot for the series RLC bandpass filter circuit Figure The frequency response plot for the series RLC bandpass filter circuit in Fig

46 The Series RLC Circuit Quantitative Analysis Figure The s-domain equivalent for the circuit in Fig (a).

47 Center frequency

48

49 Cutoff frequencies, series RLC filters

50 Relationship between center frequency and cutoff frequencies

51 Relationship between bandwidth and cutoff frequencies

52 Quality factor The ratio of center frequency to bandwidth.

53 Cutoff frequencies

54 Example 14.5 A graphic equalizer is an audio amplifier that allows you to select different levels of amplification within different frequency regions. Using the series RLC circuit in Fig (a), choose values for R, L, and C that yield a bandpass circuit able to select inputs within the 1 10 khz frequency band. Such a circuit might be used in a graphic equalizer to select this frequency band from the larger audio band (generally 0 20 khz) prior to amplification.

55 Example 14.5

56 Example 14.5

57 Example 14.5

58 Example 14.5

59 Example 14.6 a) Show that the RLC circuit in Fig is also a bandpass filter by deriving an expression for the transfer function b) Compute the center frequency, c) Calculate the cutoff frequencies, and the bandwidth, and the quality factor, Q. d) Compute values for R and L to yield a bandpass filter with a center frequency of 5 khz and a bandwidth of 200 Hz, using a capacitor.

60 Example 14.6 Figure The circuit for Example 14.6.

61 Example 14.6 Figure The s-domain equivalent of the circuit in Fig

62 Example 14.6

63 Example 14.6

64 Example 14.6

65 Example 14.6

66 Example 14.6

67 Example 14.7 For each of the bandpass filters we have constructed, we have always assumed an ideal voltage source, that is, a voltage source with no series resistance. Even though this assumption is often valid, sometimes it is not, as in the case where the filter design can be achieved only with values of R, L, and C whose equivalent impedance has a magnitude close to the actual impedance of the voltage source. Examine the effect of assuming a nonzero source resistance, R i, on the characteristics of a series RLC bandpass filter.

68 Example 14.7 a) Determine the transfer function for the circuit in Fig b) Sketch the magnitude plot for the circuit in Fig , using the values for R, L, and C from Example 14.5 and setting R i = R. On the same graph, sketch the magnitude plot for the circuit in Example 14.5, where R i = 0. Figure The circuit for Example 14.7.

69 Example 14.7 Figure The s- domain equivalent of the circuit in Fig

70 Example 14.7

71 Example 14.7

72 Example 14.7

73 Example 14.7

74 Example 14.7 Figure The magnitude plots for a series RLC bandpass filter with a zero source resistance and a nonzero source resistance.

75 Figure Two RLC bandpass filters, together with equations for the transfer function, center frequency, and bandwidth of each.

76 Transfer function for RLC bandpass filter

77 Relating the Frequency Domain to the Time Domain

78 14.5 Bandreject Filters Bandreject filters are characterized by the same parameters as bandpass filters: the two cutoff frequencies, the center frequency, the bandwidth, and the quality factor.

79 The Series RLC Circuit Qualitative Analysis Figure (a) A series RLC bandreject filter. (b) The equivalent circuit for ω = 0 (c) The equivalent circuit for ω =.

80 Figure The frequency response plot for the series RLC bandreject filter circuit in Fig (a).

81 The Series RLC Circuit Quantitative Analysis

82 Figure The s- domain equivalent of the circuit in Fig (a).

83

84 Example 14.8 Using the series RLC circuit in Fig (a), compute the component values that yield a bandreject filter with a bandwidth of 250 Hz and a center frequency of 750 Hz. Use a 100 nf capacitor. Compute values for R, L, c1, c2 and Q. Figure (a) A series RLC bandreject filter.

85 Example 14.8

86 Example 14.8

87 Transfer function for RLC bandreject filter Figure Two RLC bandreject filters, together with equations for the transfer function, center frequency, and bandwidth of each.

INTRODUCTION TO FILTER CIRCUITS

INTRODUCTION TO FILTER CIRCUITS INTRODUCTION TO FILTER CIRCUITS 1 2 Background: Filters may be classified as either digital or analog. Digital filters are implemented using a digital computer or special purpose digital hardware. Analog

More information

FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY

FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY In this experiment we will analytically determine and measure the frequency response of networks containing resistors, AC source/sources, and energy storage

More information

EE233 Autumn 2016 Electrical Engineering University of Washington. EE233 HW7 Solution. Nov. 16 th. Due Date: Nov. 23 rd

EE233 Autumn 2016 Electrical Engineering University of Washington. EE233 HW7 Solution. Nov. 16 th. Due Date: Nov. 23 rd EE233 HW7 Solution Nov. 16 th Due Date: Nov. 23 rd 1. Use a 500nF capacitor to design a low pass passive filter with a cutoff frequency of 50 krad/s. (a) Specify the cutoff frequency in hertz. fc c 50000

More information

Electric Circuit Theory

Electric Circuit Theory Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Chapter 15 Active Filter Circuits Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Contents and Objectives 3 Chapter Contents 15.1 First-Order

More information

Lecture 17 Date: Parallel Resonance Active and Passive Filters

Lecture 17 Date: Parallel Resonance Active and Passive Filters Lecture 17 Date: 09.10.2017 Parallel Resonance Active and Passive Filters Parallel Resonance At resonance: The voltage V as a function of frequency. At resonance, the parallel LC combination acts like

More information

Filter Design, Active Filters & Review. EGR 220, Chapter 14.7, December 14, 2017

Filter Design, Active Filters & Review. EGR 220, Chapter 14.7, December 14, 2017 Filter Design, Active Filters & Review EGR 220, Chapter 14.7, 14.11 December 14, 2017 Overview ² Passive filters (no op amps) ² Design examples ² Active filters (use op amps) ² Course review 2 Example:

More information

Assist Lecturer: Marwa Maki. Active Filters

Assist Lecturer: Marwa Maki. Active Filters Active Filters In past lecture we noticed that the main disadvantage of Passive Filters is that the amplitude of the output signals is less than that of the input signals, i.e., the gain is never greater

More information

EE-2302 Passive Filters and Frequency Response

EE-2302 Passive Filters and Frequency Response EE2302 Passive Filters and Frequency esponse Objective he student should become acquainted with simple passive filters for performing highpass, lowpass, and bandpass operations. he experimental tasks also

More information

AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE

AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE July 22, 2008 AC Currents, Voltages, Filters, Resonance 1 Name Date Partners AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE V(volts) t(s) OBJECTIVES To understand the meanings of amplitude, frequency, phase,

More information

Department of Electrical & Computer Engineering Technology. EET 3086C Circuit Analysis Laboratory Experiments. Masood Ejaz

Department of Electrical & Computer Engineering Technology. EET 3086C Circuit Analysis Laboratory Experiments. Masood Ejaz Department of Electrical & Computer Engineering Technology EET 3086C Circuit Analysis Laboratory Experiments Masood Ejaz Experiment # 1 DC Measurements of a Resistive Circuit and Proof of Thevenin Theorem

More information

Analog Filters D R. T A R E K T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N

Analog Filters D R. T A R E K T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N Analog Filters D. T A E K T U T U N J I P H I L A D E L P H I A U N I V E S I T Y, J O D A N 2 0 4 Introduction Electrical filters are deigned to eliminate unwanted frequencies Filters can be classified

More information

PHYS225 Lecture 15. Electronic Circuits

PHYS225 Lecture 15. Electronic Circuits PHYS225 Lecture 15 Electronic Circuits Last lecture Difference amplifier Differential input; single output Good CMRR, accurate gain, moderate input impedance Instrumentation amplifier Differential input;

More information

PHYS 3322 Modern Laboratory Methods I AC R, RC, and RL Circuits

PHYS 3322 Modern Laboratory Methods I AC R, RC, and RL Circuits Purpose PHYS 3322 Modern Laboratory Methods I AC, C, and L Circuits For a given frequency, doubling of the applied voltage to resistors, capacitors, and inductors doubles the current. Hence, each of these

More information

Laboratory Project 4: Frequency Response and Filters

Laboratory Project 4: Frequency Response and Filters 2240 Laboratory Project 4: Frequency Response and Filters K. Durney and N. E. Cotter Electrical and Computer Engineering Department University of Utah Salt Lake City, UT 84112 Abstract-You will build a

More information

Chapter 19. Basic Filters

Chapter 19. Basic Filters Chapter 19 Basic Filters Objectives Analyze the operation of RC and RL lowpass filters Analyze the operation of RC and RL highpass filters Analyze the operation of band-pass filters Analyze the operation

More information

A.C. FILTER NETWORKS. Learning Objectives

A.C. FILTER NETWORKS. Learning Objectives C H A P T E 17 Learning Objectives Introduction Applications Different Types of Filters Octaves and Decades of Frequency Decibel System alue of 1 db Low-Pass C Filter Other Types of Low-Pass Filters Low-Pass

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab University of Jordan School of Engineering Electrical Engineering Department EE 219 Electrical Circuits Lab EXPERIMENT 7 RESONANCE Prepared by: Dr. Mohammed Hawa EXPERIMENT 7 RESONANCE OBJECTIVE This experiment

More information

BAKISS HIYANA BT ABU BAKAR JKE,POLISAS

BAKISS HIYANA BT ABU BAKAR JKE,POLISAS BAKISS HIYANA BT ABU BAKAR JKE,POLISAS 1 1. Explain AC circuit concept and their analysis using AC circuit law. 2. Apply the knowledge of AC circuit in solving problem related to AC electrical circuit.

More information

Active Filter Design Techniques

Active Filter Design Techniques Active Filter Design Techniques 16.1 Introduction What is a filter? A filter is a device that passes electric signals at certain frequencies or frequency ranges while preventing the passage of others.

More information

The above figure represents a two stage circuit. Recall, the transfer function relates. Vout

The above figure represents a two stage circuit. Recall, the transfer function relates. Vout LABORATORY 12: Bode plots/second Order Filters Material covered: Multistage circuits Bode plots Design problem Overview Notes: Two stage circuits: Vin1 H1(s) Vout1 Vin2 H2(s) Vout2 The above figure represents

More information

Comparison of Signal Attenuation of Multiple Frequencies Between Passive and Active High-Pass Filters

Comparison of Signal Attenuation of Multiple Frequencies Between Passive and Active High-Pass Filters Comparison of Signal Attenuation of Multiple Frequencies Between Passive and Active High-Pass Filters Aaron Batker Pritzker Harvey Mudd College 23 November 203 Abstract Differences in behavior at different

More information

TUNED AMPLIFIERS 5.1 Introduction: Coil Losses:

TUNED AMPLIFIERS 5.1 Introduction: Coil Losses: TUNED AMPLIFIERS 5.1 Introduction: To amplify the selective range of frequencies, the resistive load R C is replaced by a tuned circuit. The tuned circuit is capable of amplifying a signal over a narrow

More information

Study of Inductive and Capacitive Reactance and RLC Resonance

Study of Inductive and Capacitive Reactance and RLC Resonance Objective Study of Inductive and Capacitive Reactance and RLC Resonance To understand how the reactance of inductors and capacitors change with frequency, and how the two can cancel each other to leave

More information

INTRODUCTION TO AC FILTERS AND RESONANCE

INTRODUCTION TO AC FILTERS AND RESONANCE AC Filters & Resonance 167 Name Date Partners INTRODUCTION TO AC FILTERS AND RESONANCE OBJECTIVES To understand the design of capacitive and inductive filters To understand resonance in circuits driven

More information

Electronics and Instrumentation ENGR-4300 Spring 2004 Section Experiment 5 Introduction to AC Steady State

Electronics and Instrumentation ENGR-4300 Spring 2004 Section Experiment 5 Introduction to AC Steady State Experiment 5 Introduction to C Steady State Purpose: This experiment addresses combinations of resistors, capacitors and inductors driven by sinusoidal voltage sources. In addition to the usual simulation

More information

STUDY OF RC AND RL CIRCUITS Venue: Microelectronics Laboratory in E2 L2

STUDY OF RC AND RL CIRCUITS Venue: Microelectronics Laboratory in E2 L2 EXPERIMENT #1 STUDY OF RC AND RL CIRCUITS Venue: Microelectronics Laboratory in E2 L2 I. INTRODUCTION This laboratory is about verifying the transient behavior of RC and RL circuits. You need to revise

More information

EK307 Passive Filters and Steady State Frequency Response

EK307 Passive Filters and Steady State Frequency Response EK307 Passive Filters and Steady State Frequency Response Laboratory Goal: To explore the properties of passive signal-processing filters Learning Objectives: Passive filters, Frequency domain, Bode plots

More information

Lab 1: Basic RL and RC DC Circuits

Lab 1: Basic RL and RC DC Circuits Name- Surname: ID: Department: Lab 1: Basic RL and RC DC Circuits Objective In this exercise, the DC steady state response of simple RL and RC circuits is examined. The transient behavior of RC circuits

More information

FREQUENCY RESPONSE OF R, L AND C ELEMENTS

FREQUENCY RESPONSE OF R, L AND C ELEMENTS FREQUENCY RESPONSE OF R, L AND C ELEMENTS Marking scheme : Methods & diagrams : 3 Graph plotting : - Tables & analysis : 2 Questions & discussion : 3 Performance : 2 Aim: This experiment will investigate

More information

EECS40 RLC Lab guide

EECS40 RLC Lab guide EECS40 RLC Lab guide Introduction Second-Order Circuits Second order circuits have both inductor and capacitor components, which produce one or more resonant frequencies, ω0. In general, a differential

More information

Pre-Lab. Introduction

Pre-Lab. Introduction Pre-Lab Read through this entire lab. Perform all of your calculations (calculated values) prior to making the required circuit measurements. You may need to measure circuit component values to obtain

More information

Lab E5: Filters and Complex Impedance

Lab E5: Filters and Complex Impedance E5.1 Lab E5: Filters and Complex Impedance Note: It is strongly recommended that you complete lab E4: Capacitors and the RC Circuit before performing this experiment. Introduction Ohm s law, a well known

More information

CHAPTER 6: ALTERNATING CURRENT

CHAPTER 6: ALTERNATING CURRENT CHAPTER 6: ALTERNATING CURRENT PSPM II 2005/2006 NO. 12(C) 12. (c) An ac generator with rms voltage 240 V is connected to a RC circuit. The rms current in the circuit is 1.5 A and leads the voltage by

More information

ECE 203 LAB 2 PRACTICAL FILTER DESIGN & IMPLEMENTATION

ECE 203 LAB 2 PRACTICAL FILTER DESIGN & IMPLEMENTATION Version 1. 1 of 7 ECE 03 LAB PRACTICAL FILTER DESIGN & IMPLEMENTATION BEFORE YOU BEGIN PREREQUISITE LABS ECE 01 Labs ECE 0 Advanced MATLAB ECE 03 MATLAB Signals & Systems EXPECTED KNOWLEDGE Understanding

More information

Experiment Guide: RC/RLC Filters and LabVIEW

Experiment Guide: RC/RLC Filters and LabVIEW Description and ackground Experiment Guide: RC/RLC Filters and LabIEW In this lab you will (a) manipulate instruments manually to determine the input-output characteristics of an RC filter, and then (b)

More information

Resonance. Resonance curve.

Resonance. Resonance curve. Resonance This chapter will introduce the very important resonant (or tuned) circuit, which is fundamental to the operation of a wide variety of electrical and electronic systems in use today. The resonant

More information

Series and Parallel Resonant Circuits

Series and Parallel Resonant Circuits Series and Parallel Resonant Circuits Aim: To obtain the characteristics of series and parallel resonant circuits. Apparatus required: Decade resistance box, Decade inductance box, Decade capacitance box

More information

Frequency Selective Circuits

Frequency Selective Circuits Lab 15 Frequency Selective Circuits Names Objectives in this lab you will Measure the frequency response of a circuit Determine the Q of a resonant circuit Build a filter and apply it to an audio signal

More information

University of Southern C alifornia School Of Engineering Department Of Electrical Engineering

University of Southern C alifornia School Of Engineering Department Of Electrical Engineering University of Southern alifornia School Of Engineering Department Of Electrical Engineering EE 348: Homework Assignment #02 Spring, 2001 (Due 02/01/2001) homa Problem #05: The amplifier module in Fig.

More information

Butterworth Active Bandpass Filter using Sallen-Key Topology

Butterworth Active Bandpass Filter using Sallen-Key Topology Butterworth Active Bandpass Filter using Sallen-Key Topology Technical Report 5 Milwaukee School of Engineering ET-3100 Electronic Circuit Design Submitted By: Alex Kremnitzer Date: 05-11-2011 Date Performed:

More information

Introduction to Signals, Passive RC Filters and Opamps

Introduction to Signals, Passive RC Filters and Opamps Introduction to Signals, ive RC Filters and Opamps LB Introduction In this laboratory exercise you design, build and test some simple filter circuits. his is mainly for you to get comfortable with circuit

More information

Lecture 16 Date: Frequency Response (Contd.)

Lecture 16 Date: Frequency Response (Contd.) Lecture 16 Date: 03.10.2017 Frequency Response (Contd.) Bode Plot (contd.) Bode Plot (contd.) Bode Plot (contd.) not every transfer function has all seven factors. To sketch the Bode plots for a generic

More information

Non-ideal Behavior of Electronic Components at High Frequencies and Associated Measurement Problems

Non-ideal Behavior of Electronic Components at High Frequencies and Associated Measurement Problems Nonideal Behavior of Electronic Components at High Frequencies and Associated Measurement Problems Matthew Beckler beck0778@umn.edu EE30 Lab Section 008 October 27, 2006 Abstract In the world of electronics,

More information

BME/ISE 3512 Bioelectronics Laboratory Two - Passive Filters

BME/ISE 3512 Bioelectronics Laboratory Two - Passive Filters BME/ISE 35 Bioelectronics Laboratory Two - Passive Filters Learning Objectives: Understand the basic principles of passive filters. Supplies and Components: Breadboard 4.7 K Resistor 0.047 F Capacitor

More information

Chapter 2. The Fundamentals of Electronics: A Review

Chapter 2. The Fundamentals of Electronics: A Review Chapter 2 The Fundamentals of Electronics: A Review Topics Covered 2-1: Gain, Attenuation, and Decibels 2-2: Tuned Circuits 2-3: Filters 2-4: Fourier Theory 2-1: Gain, Attenuation, and Decibels Most circuits

More information

Simple AC Circuits. Introduction

Simple AC Circuits. Introduction Simple AC Circuits Introduction Each problem in this problem set involves the steady state response of a linear, time-invariant circuit to a single sinusoidal input. Such a response is known to be sinusoidal

More information

EXPERIMENT NUMBER 8 Introduction to Active Filters

EXPERIMENT NUMBER 8 Introduction to Active Filters EXPERIMENT NUMBER 8 Introduction to Active Filters i-1 Preface: Preliminary exercises are to be done and submitted individually. Laboratory hardware exercises are to be done in groups. This laboratory

More information

Sirindhorn International Institute of Technology Thammasat University

Sirindhorn International Institute of Technology Thammasat University Sirindhorn International Institute of Technology Thammasat University School of Information, Computer and Communication Technology COURSE : ECS 34 Basic Electrical Engineering Lab INSTRUCTOR : Dr. Prapun

More information

UNIVERSITY OF BABYLON BASIC OF ELECTRICAL ENGINEERING LECTURE NOTES. Resonance

UNIVERSITY OF BABYLON BASIC OF ELECTRICAL ENGINEERING LECTURE NOTES. Resonance Resonance The resonant(or tuned) circuit, in one of its many forms, allows us to select a desired radio or television signal from the vast number of signals that are around us at any time. Resonant electronic

More information

PHASES IN A SERIES LRC CIRCUIT

PHASES IN A SERIES LRC CIRCUIT PHASES IN A SERIES LRC CIRCUIT Introduction: In this lab, we will use a computer interface to analyze a series circuit consisting of an inductor (L), a resistor (R), a capacitor (C), and an AC power supply.

More information

Physics 481 Experiment 1

Physics 481 Experiment 1 Physics 481 Experiment 1 LAST Name (print) FIRST Name (print) LINEAR CIRCUITS 1 Experiment 1 - Linear Circuits This experiment is designed for getting a hands-on experience with simple linear circuits.

More information

Radio Frequency Electronics

Radio Frequency Electronics Radio Frequency Electronics Frederick Emmons Terman Transformers Masters degree from Stanford and Ph.D. from MIT Later a professor at Stanford His students include William Hewlett and David Packard Wrote

More information

E40M. RC Filters. M. Horowitz, J. Plummer, R. Howe 1

E40M. RC Filters. M. Horowitz, J. Plummer, R. Howe 1 E40M RC Filters M. Horowitz, J. Plummer, R. Howe Reading Reader: The rest of Chapter 7 7.-7.2 is about log-log plots 7.4 is about filters A & L 3.4-3.5 M. Horowitz, J. Plummer, R. Howe 2 EKG (Lab 4) Concepts

More information

EK307 Active Filters and Steady State Frequency Response

EK307 Active Filters and Steady State Frequency Response EK307 Active Filters and Steady State Frequency Response Laboratory Goal: To explore the properties of active signal-processing filters Learning Objectives: Active Filters, Op-Amp Filters, Bode plots Suggested

More information

Analog Design-filters

Analog Design-filters Analog Design-filters Introduction and Motivation Filters are networks that process signals in a frequency-dependent manner. The basic concept of a filter can be explained by examining the frequency dependent

More information

Resonance. A resonant circuit (series or parallel) must have an inductive and a capacitive element.

Resonance. A resonant circuit (series or parallel) must have an inductive and a capacitive element. 1. Series Resonant: Resonance A resonant circuit (series or parallel) must have an inductive and a capacitive element. The total impedance of this network is: The circuit will reach its maximum Voltage

More information

Bandpass Filters Using Capacitively Coupled Series Resonators

Bandpass Filters Using Capacitively Coupled Series Resonators 8.8 Filters Using Coupled Resonators 441 B 1 B B 3 B N + 1 1 3 N (a) jb 1 1 jb jb 3 jb N jb N + 1 N (b) 1 jb 1 1 jb N + 1 jb N + 1 N + 1 (c) J 1 J J Z N + 1 0 Z +90 0 Z +90 0 Z +90 0 (d) FIGURE 8.50 Development

More information

STATION NUMBER: LAB SECTION: Filters. LAB 6: Filters ELECTRICAL ENGINEERING 43/100 INTRODUCTION TO MICROELECTRONIC CIRCUITS

STATION NUMBER: LAB SECTION: Filters. LAB 6: Filters ELECTRICAL ENGINEERING 43/100 INTRODUCTION TO MICROELECTRONIC CIRCUITS Lab 6: Filters YOUR EE43/100 NAME: Spring 2013 YOUR PARTNER S NAME: YOUR SID: YOUR PARTNER S SID: STATION NUMBER: LAB SECTION: Filters LAB 6: Filters Pre- Lab GSI Sign- Off: Pre- Lab: /40 Lab: /60 Total:

More information

Homework Assignment 12

Homework Assignment 12 Homework Assignment 12 Question 1 Shown the is Bode plot of the magnitude of the gain transfer function of a constant GBP amplifier. By how much will the amplifier delay a sine wave with the following

More information

STEP RESPONSE OF 1 ST AND 2 ND ORDER CIRCUITS

STEP RESPONSE OF 1 ST AND 2 ND ORDER CIRCUITS STEP RESPONSE OF 1 ST AND 2 ND ORDER CIRCUITS YOUR NAME GTA S SIGNATURE LAB MEETING TIME Objectives: To observe responses of first and second order circuits - RC, RL and RLC circuits, source-free or with

More information

Electronics EECE2412 Spring 2016 Exam #1

Electronics EECE2412 Spring 2016 Exam #1 Electronics EECE2412 Spring 2016 Exam #1 Prof. Charles A. DiMarzio Department of Electrical and Computer Engineering Northeastern University 18 February 2016 File:12140/exams/exam1 Name: : Row # : Seat

More information

The Series RLC Circuit and Resonance

The Series RLC Circuit and Resonance Purpose Theory The Series RLC Circuit and Resonance a. To study the behavior of a series RLC circuit in an AC current. b. To measure the values of the L and C using the impedance method. c. To study the

More information

EXPERIMENT 4: RC, RL and RD CIRCUITs

EXPERIMENT 4: RC, RL and RD CIRCUITs EXPERIMENT 4: RC, RL and RD CIRCUITs Equipment List Resistor, one each of o 330 o 1k o 1.5k o 10k o 100k o 1000k 0.F Ceramic Capacitor 4700H Inductor LED and 1N4004 Diode. Introduction We have studied

More information

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Homework 4

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Homework 4 EECS 16B Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Homework 4 This homework is solely for your own practice. However, everything on it is in scope for midterm 1,

More information

Figure 1: Closed Loop System

Figure 1: Closed Loop System SIGNAL GENERATORS 3. Introduction Signal sources have a variety of applications including checking stage gain, frequency response, and alignment in receivers and in a wide range of other electronics equipment.

More information

AC Circuits INTRODUCTION DISCUSSION OF PRINCIPLES. Resistance in an AC Circuit

AC Circuits INTRODUCTION DISCUSSION OF PRINCIPLES. Resistance in an AC Circuit AC Circuits INTRODUCTION The study of alternating current 1 (AC) in physics is very important as it has practical applications in our daily lives. As the name implies, the current and voltage change directions

More information

University of Southern California

University of Southern California University of Southern alifornia Ming Hsieh Department of Electrical Engineering EE 0L - Linear ircuits Homework Set #6 Due in class Thursday 9 April Problems 3.33 3.34 3.35 a and b only) The problems

More information

Introduction (cont )

Introduction (cont ) Active Filter 1 Introduction Filters are circuits that are capable of passing signals within a band of frequencies while rejecting or blocking signals of frequencies outside this band. This property of

More information

EXPERIMENT 4: RC, RL and RD CIRCUITs

EXPERIMENT 4: RC, RL and RD CIRCUITs EXPERIMENT 4: RC, RL and RD CIRCUITs Equipment List An assortment of resistor, one each of (330, 1k,1.5k, 10k,100k,1000k) Function Generator Oscilloscope 0.F Ceramic Capacitor 100H Inductor LED and 1N4001

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Continuing the discussion of Op Amps, the next step is filters. There are many different types of filters, including low pass, high pass and band pass. We will discuss each of the

More information

Homework Assignment 03

Homework Assignment 03 Homework Assignment 03 Question 1 (Short Takes), 2 points each unless otherwise noted. 1. Two 0.68 μf capacitors are connected in series across a 10 khz sine wave signal source. The total capacitive reactance

More information

VCC. Digital 16 Frequency Divider Digital-to-Analog Converter Butterworth Active Filter Sample-and-Hold Amplifier (part 2) Last Update: 03/19/14

VCC. Digital 16 Frequency Divider Digital-to-Analog Converter Butterworth Active Filter Sample-and-Hold Amplifier (part 2) Last Update: 03/19/14 Digital 16 Frequency Divider Digital-to-Analog Converter Butterworth Active Filter Sample-and-Hold Amplifier (part 2) ECE3204 Lab 5 Objective The purpose of this lab is to design and test an active Butterworth

More information

Experiment #10: Passive Filter Design

Experiment #10: Passive Filter Design SCHOOL OF ENGINEEING AND APPLIED SCIENCE DEPATMENT OF ELECTICAL AND COMPUTE ENGINEEING ECE 2110: CICUIT THEOY LABOATOY Experiment #10: Passive Filter Design EQUIPMENT Lab Equipment Equipment Description

More information

ECEN Network Analysis Section 3. Laboratory Manual

ECEN Network Analysis Section 3. Laboratory Manual ECEN 3714----Network Analysis Section 3 Laboratory Manual LAB 07: Active Low Pass Filter Oklahoma State University School of Electrical and Computer Engineering. Section 3 Laboratory manual - 1 - Spring

More information

DOING PHYSICS WITH MATLAB RESONANCE CIRCUITS SERIES RLC CIRCUITS

DOING PHYSICS WITH MATLAB RESONANCE CIRCUITS SERIES RLC CIRCUITS DOING PHYSICS WITH MATLAB RESONANCE CIRCUITS SERIES RLC CIRCUITS Matlab download directory Matlab scripts CRLCs1.m CRLCs2.m Graphical analysis of a series RLC resonance circuit Fitting a theoretical curve

More information

An active filters means using amplifiers to improve the filter. An acive second-order RC low-pass filter still has two RC components in series.

An active filters means using amplifiers to improve the filter. An acive second-order RC low-pass filter still has two RC components in series. Active Filters An active filters means using amplifiers to improve the filter. An acive second-order low-pass filter still has two components in series. Hjω ( ) -------------------------- 2 = = ----------------------------------------------------------

More information

Filters And Waveform Shaping

Filters And Waveform Shaping Physics 3330 Experiment #3 Fall 2001 Purpose Filters And Waveform Shaping The aim of this experiment is to study the frequency filtering properties of passive (R, C, and L) circuits for sine waves, and

More information

Chapter 15: Active Filters

Chapter 15: Active Filters Chapter 15: Active Filters 15.1: Basic filter Responses A filter is a circuit that passes certain frequencies and rejects or attenuates all others. The passband is the range of frequencies allowed to pass

More information

EECS 216 Winter 2008 Lab 3: AM Radio Part II: In-Lab & Post-lab Assignment

EECS 216 Winter 2008 Lab 3: AM Radio Part II: In-Lab & Post-lab Assignment EECS 216 Winter 2008 Lab 3: Part II: In-Lab & Post-lab Assignment c Kim Winick 2008 1 Introduction In this laboratory you will assemble and test a working superheterodyne AM radio consisting of a front-end

More information

Pre-Lab. Introduction

Pre-Lab. Introduction EE-3 Pre-Lab ead through this entire lab. Perform all of your calculations (calculated values) prior to making the required circuit measurements. You may need to measure circuit component values to obtain

More information

Friday, 1/27/17 Constraints on A(jω)

Friday, 1/27/17 Constraints on A(jω) Friday, 1/27/17 Constraints on A(jω) The simplest electronic oscillators are op amp based, and A(jω) is typically a simple op amp fixed gain amplifier, such as the negative gain and positive gain amplifiers

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Circuits & Electronics Spring 2006

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Circuits & Electronics Spring 2006 Massachusetts Institute of Technology Department of Electrical Engineering and omputer Science 6.002 ircuits & Electronics Spring 2006 Problem Set #9 Issued 4/12/06 Due 4/19/06 Exercise 9.1: Determine

More information

( ). (9.3) 9. EXPERIMENT E9: THE RLC CIRCUIT OBJECTIVES

( ). (9.3) 9. EXPERIMENT E9: THE RLC CIRCUIT OBJECTIVES 9. EXPERIMENT E9: THE RLC CIRCUIT OBJECTIVES In this experiment, you will measure the electric current, voltage, reactance, impedance, and understand the resonance phenomenon in an alternating-current

More information

Frequency Response Analysis

Frequency Response Analysis Frequency Response Analysis Continuous Time * M. J. Roberts - All Rights Reserved 2 Frequency Response * M. J. Roberts - All Rights Reserved 3 Lowpass Filter H( s) = ω c s + ω c H( jω ) = ω c jω + ω c

More information

Low Pass Filter Introduction

Low Pass Filter Introduction Low Pass Filter Introduction Basically, an electrical filter is a circuit that can be designed to modify, reshape or reject all unwanted frequencies of an electrical signal and accept or pass only those

More information

Kent Bertilsson Muhammad Amir Yousaf

Kent Bertilsson Muhammad Amir Yousaf Today s topics Analog System (Rev) Frequency Domain Signals in Frequency domain Frequency analysis of signals and systems Transfer Function Basic elements: R, C, L Filters RC Filters jw method (Complex

More information

EXPERIMENT FREQUENCY RESPONSE OF AC CIRCUITS. Structure. 8.1 Introduction Objectives

EXPERIMENT FREQUENCY RESPONSE OF AC CIRCUITS. Structure. 8.1 Introduction Objectives EXPERIMENT 8 FREQUENCY RESPONSE OF AC CIRCUITS Frequency Response of AC Circuits Structure 81 Introduction Objectives 8 Characteristics of a Series-LCR Circuit 83 Frequency Responses of a Resistor, an

More information

Lecture 13: Impedance Inverter. Cohn Crystal Filter.

Lecture 13: Impedance Inverter. Cohn Crystal Filter. Whites, EE 322 Lecture 13 Page 1 of 10 Lecture 13: Impedance. Cohn Crystal Filter. A block diagram of a superhet receiver is shown below. Recall in the superhet receiver that the RF signal is mixed with

More information

Advanced Measurements

Advanced Measurements Albaha University Faculty of Engineering Mechanical Engineering Department Lecture 9: Wheatstone Bridge and Filters Ossama Abouelatta o_abouelatta@yahoo.com Mechanical Engineering Department Faculty of

More information

I. Introduction to Simple Circuits of Resistors

I. Introduction to Simple Circuits of Resistors 2 Problem Set for Dr. Todd Huffman Michaelmas Term I. Introduction to Simple ircuits of esistors 1. For the following circuit calculate the currents through and voltage drops across all resistors. The

More information

Electrical Circuits II (ECE233b)

Electrical Circuits II (ECE233b) Electrical ircuits II (EE33b) ariablefrequency Network Performance (Part 3) Anestis Dounavis The University of Western Ontario Faculty of Engineering Science Scaling Often the values of circuit parameters

More information

Chapter.8: Oscillators

Chapter.8: Oscillators Chapter.8: Oscillators Objectives: To understand The basic operation of an Oscillator the working of low frequency oscillators RC phase shift oscillator Wien bridge Oscillator the working of tuned oscillator

More information

Lab 9 AC FILTERS AND RESONANCE

Lab 9 AC FILTERS AND RESONANCE 151 Name Date Partners ab 9 A FITES AND ESONANE OBJETIES OEIEW To understand the design of capacitive and inductive filters To understand resonance in circuits driven by A signals In a previous lab, you

More information

Lab 9 - INTRODUCTION TO AC CURRENTS AND VOLTAGES

Lab 9 - INTRODUCTION TO AC CURRENTS AND VOLTAGES 145 Name Date Partners Lab 9 INTRODUCTION TO AC CURRENTS AND VOLTAGES V(volts) t(s) OBJECTIVES To learn the meanings of peak voltage and frequency for AC signals. To observe the behavior of resistors in

More information

In-Class Exercises for Lab 2: Input and Output Impedance

In-Class Exercises for Lab 2: Input and Output Impedance In-Class Exercises for Lab 2: Input and Output Impedance. What is the output resistance of the output device below? Suppose that you want to select an input device with which to measure the voltage produced

More information

Wireless Communication

Wireless Communication Equipment and Instruments Wireless Communication An oscilloscope, a signal generator, an LCR-meter, electronic components (see the table below), a container for components, and a Scotch tape. Component

More information

LABORATORY #3 QUARTZ CRYSTAL OSCILLATOR DESIGN

LABORATORY #3 QUARTZ CRYSTAL OSCILLATOR DESIGN LABORATORY #3 QUARTZ CRYSTAL OSCILLATOR DESIGN OBJECTIVES 1. To design and DC bias the JFET transistor oscillator for a 9.545 MHz sinusoidal signal. 2. To simulate JFET transistor oscillator using MicroCap

More information

DOING PHYSICS WITH MATLAB RESONANCE CIRCUITS RLC PARALLEL VOLTAGE DIVIDER

DOING PHYSICS WITH MATLAB RESONANCE CIRCUITS RLC PARALLEL VOLTAGE DIVIDER DOING PHYSICS WITH MATLAB RESONANCE CIRCUITS RLC PARALLEL VOLTAGE DIVIDER Matlab download directory Matlab scripts CRLCp1.m CRLCp2.m When you change channels on your television set, an RLC circuit is used

More information

Chapter 4: AC Circuits and Passive Filters

Chapter 4: AC Circuits and Passive Filters Chapter 4: AC Circuits and Passive Filters Learning Objectives: At the end of this topic you will be able to: use V-t, I-t and P-t graphs for resistive loads describe the relationship between rms and peak

More information

Electronics and Instrumentation Name ENGR-4220 Fall 1998 Section Quiz 2

Electronics and Instrumentation Name ENGR-4220 Fall 1998 Section Quiz 2 Quiz 2 1. RLC Circuits You should recognize the circuits shown below from Experiment 5 and Gingrich s notes. Given below are several possible expressions for transfer functions for such circuits. Indicate

More information