ESA s Earth Observation Lidar Missions and Critical Technology Developments

Size: px
Start display at page:

Download "ESA s Earth Observation Lidar Missions and Critical Technology Developments"

Transcription

1 ESA s Earth Observation Lidar Missions and Critical Technology Developments J.-L. Bézy European Space Agency Jean-Loup.Bezy@ esa.int ICSO Rhodes, Island, October October Slide 1

2 Acknowledgments Directorate of Earth Observation Programme: Yannig Durand and Roland Meynart Jérôme Caron, Arnaud Hélière, Martin Endemann, Alain Culoma, Olivier le Rille, Armin Loescher, Paolo Bensi Directorate of Technical & Quality Management: Michael Jost, Nick Nelms, Mustapha Zahir, Errico Armandillo Slide 2

3 Lidar Principles Doppler lidar Wind vectors Velocity = /2* f ADM-Aeolus Backscatter lidar Cloud vertical profile Aerosol vertical profile I T I R Frequency Extinction = I R /I T ATLID/EarthCA RE Differential absorption lidar Trace gases concentration Time Concentration = Log(I on /I off ) A-SCOPE WALES ACCURATE Wavelength Altimetry lidar Ranging Vegetation canopy distribution Range = c t/2 BepiColombo Time Slide 3

4 Current ESA lidar missions under development BepiColombo ADM-Aeolus EarthCARE Slide 4

5 Atmospheric Dynamics Mission-Aeolus Scientific objective: quantify global measurements of vertical wind profiles in the troposphere and lower stratosphere to improve the quality of weather forecasts, and to advance our understanding of atmospheric dynamics and climate processes. MISSION PARAMETERS Orbit: Sun-synchronous Altitude ~ 405 km Local time ~18:00 ascending node Mass: 1500 kg Power: 2.3 kw Mission life: 3 years PAYLOAD Doppler Wind Lidar (ALADIN) Slide 5

6 Atmospheric Dynamics Mission-Aeolus Measurement geometry Main Observation requirements PBL Troposphere Stratosphere Vertical Domain [km] Vertical Resolution Horizontal Domain [km] Global Profile Separation [km] 200 Accuracy HLOS [ms -1 ] Dynamic Range [ms -1 ] ± 150 Horizontal integration [km] 50 Slide 6

7 Atmospheric Dynamics Mission-Aeolus Mie, Fringe imaging receiver Measurement principle Rayleigh, Double edge receiver Slide 7

8 Atmospheric Dynamics Mission-Aeolus Instrument features The Flight Model of the Mie Spectrometer with the Fizeau etalon and the associated optics Transmitter (Nd:YAG) Wavelength Pulse energy Repetition rate Line width Duty cycle Transmit-receive Telescope Telescope diameter Telescope transm. (incl. obscuration) Transmitter beam divervence (full angle) Receiver Field-of-View (full angle) 355 nm 120 mj 100 Hz 30 MHz 42 % 1.5 m > 80 % 12 µrad 19 µrad Laser diode stack used to pump the master oscillator and the power amplifiers of the transmitter. Receiver Fizeau interferometer (Mie) Free Spectral Range Useful Spectral Range Fringe width (FWHM) Double Fabry-Perot (Rayleigh) Free Spectral Range Spacin Detector quantum efficiency 2.2 GHz 1.5 GHz 145 MHz 10.9 GHz 5.5 GHz > 80% Detection Front-end Unit with the Accumulation CCD The completed Aeolus 1.5 m transmit/receive SiC telescope Slide 8

9 Atmospheric Dynamics Mission-Aeolus Status Platform Integration completed and in storage Laser: testing in progress, some design issues still need to be resolved (alignment stability) Low pressure Oxygen environment to the majority of the high intensity laser optics. Operation in continuous mode Power Laser Head Slide 9

10 ADM-Aeolus: Airborne Campaigns Campaigns activities First results from 3rd airborne campaign Ground return compares good to DEM First Rayleigh winds compare qualitatively good to 2 µm wind lidar Reference 2 m LOS wind A2D Rayleigh LOS wind Slide 10

11 EarthCARE: Earth Clouds Aerosols and Radiation Explorer Mission Scientific objective: quantify aerosol-cloud-radiation interactions so to include them correctly in climate and numerical weather forecasting models. Instantaneous radiative flux with an TOA error of 10 Wm -2 MISSION PARAMETERS Orbit: Sun-synchronous Altitude : 393 km Local time : 13:45..14:00 descending node Mass: 2000 kg Power: 1.5 kw Mission life: 3 years PAYLOAD Backscatter Lidar (ATLID) Cloud Profiling Radar (CPR) Multi-Spectral Imager (MSI) Broad-Band Radiometer (BBR) Slide 11

12 EarthCARE: ATmospheric backscatter LIDar Main Observation requirements Cirrus Cirrus optical depth Mie copolar channel Rayleigh channel 0.05 Mie X- polar channel Backscatter sr -1 m -1 8 x x 10-5 Vertical resolution 100 m 300 m 100 m Required 10 km integration 50 % 15 % 45 % 40 km Measurement geometry Laser pulse Instrument sized to detect the weak signal from the thinnest radiatively significant cirrus cloud in daytime above dense cloud deck Sampling = 500 m Sampling = 100 m 20 km Atmosphere Horizontal sampling distance =100 m 0 km Averaging length = 10 km Time Signal Slide 12

13 EarthCARE: ATmospheric backscatter LIDar Measurement principle arbitrary unit Mie scattering contribution Rayleigh scattering contribution HSR filter transmission Relative frequency (GHz) arbitrary unit Relative frequency (GHz) arbitrary unit Relative frequency (GHz) UV (355 nm) Backscatter Lidar with High Spectral Resolution Receiver to separate Rayleigh (molecular) and Mie (cloud,aerosol) cross and copolarisation return Slide 13

14 EarthCARE: ATmospheric backscatter LIDar Instrument requirements Parameters Transmitter Wavelength Pulse energy Repetition rate Line width Receive Telescope Telescope diameter Receiver HSR Etalon Working Aperture Acceptance angle Overall finesse Peak transmission Bandwidth Free spectral range Background filter rejection Working Aperture Peak transmission Overall finesse Bandwidth Free spectral range Value 355 nm 30 mj 74 Hz 50 MHz 0.6 m 20 mm 0.78 mrad 8 > 87 % < 0.3 pm 2.4 pm 38 mm > 80 % pm 0.45 nm Capacitance stabilised HSR etalon have been developed and successfully assessed against environment loads. Slide 14

15 EarthCARE: ATmospheric backscatter LIDar Status: Preliminary Design Review completed Bi-static configuration Pressurised laser Slide 15

16 EarthCARE: ATLID pre-development ATLID Laser Source: Medium energy frequency tripled and stabilised Nd:YAG laser MO/PA architecture Parameters Output energy Optical optical efficiency PRF Performance 34 mj 8% [808 nm-355 nm] 100 Hz Spatial quality M 2 < 1.7 Boresight stability < ±41 µrad ptp over 10 min Pulse duration Longitudinal mode Pulse linewidth Spectral purity Frequency stability < 35ns Single < 50MHz 99% in 100MHz < 10MHz rms over 1.4 sec Oscillator: End pump; 8 mj, 15 % o-o Amplifier based on patented Innoslab concept: Slab crystal partially end-pumped from 2 sides Signal folded in single pass configuration with constant fluence: scalable output 85 mj with 21 % o-o Harmonic section: LBO crystals: efficiency < 50 % Slide 16

17 EarthCARE: ATLID pre-development ATLID Stacks: laser diodes manufacturers involved in the development of a stack optimised for a space application: long lifetime, high efficiency Parameters Requirements Wavelength ( ) nm Spectral width 2-3 nm Peak output power > 700 W Pulse width µs Repetition rate Hz Total efficiency > 50% Emitting area < 10 x 14 mm Divergence < 10 x 60 deg Polarisation Linear >95% Lifetime 10 billion shots Highly-Reliable Laser Diodes and Modules for Spaceborne Applications, E. Deichsel, Jenoptik, Session 4a Slide 17

18 A-SCOPE: Advanced-Space Carbon and Climate Observation of Planet Earth Mission Scientific objective: The observation of the spatial and temporal gradients of atmospheric XCO 2 with a precision and accuracy sufficient to constrain CO 2 fluxes within 0.02 Pg C yr -1 on a scale of 1000 x 1000 km 2. MISSION PARAMETERS Orbit: Sun-synchronous Altitude ~ 400 km Local time 06:00 descending node PAYLOAD Integrated Path Differential Absorption lidar (IPDA) Mass: ~ 1000 kg Power: ~ 1.7 kw Mission life: 3 years Slide 18

19 A-SCOPE: Advanced-Space Carbon and Climate Observation of Planet Earth Mission Main Observation requirements Value NIR (1.57 or 2.05 m) DIAL lidar for total column dry air CO 2 mixing ratio Geophysical product XCO 2 Random error [ppm] 0.5 Systematic error [ppm] 0.05 Coverage Horizontal Resolution observation Horizontal Resolution measurement Vertical resolution Global [km] 50 [m] 100 Total column Weighting function [-] = 2.05 m = 1.57 m Altitude [km] Slide 19

20 A-SCOPE: Advanced-Space Carbon and Climate Observation of Planet Earth Mission Instrument parameters Parameters 1.57 m 2.05 m Transmitter Pulse energy Repetition rate Frequency accuracy Linewidth Spectral purity Receive Telescope Telescope diameter FOV Detector QE NEP 50 mj 50 Hz 70 khz 50 MHz > m 0.47 mrad 55 mj 50 Hz 100 khz < 50 MHz > % 1.2 m mrad fw/hz fw/hz 0.5 Instrument design drivers: Low random error: 0.5 ppm wrt 380 ppm (0.13 % of DAOD) for ~ 350 measurements high laser power telescope aperture low detector noise maximize the on and off-lines pulses overlap on ground Very low systematic error: 10 % of random error for 1000 x 1000 km 2 laser spectral stability and knowledge laser spectral purity stability of power monitoring of emitted laser pulses stability and knowledge of the S/C pointing Slide 20

21 A-SCOPE: pre-development A-SCOPE laser sources: OPO-OPA at 1.57 m Parameters OPO-OPA Requirements Fiber laser Spectral band (um) PRF (Hz) Power (W) Energy per pulse (mj) Bandwidth (MHz) Spectral Stability (MHz) over 10 s Spectral purity in 1 GHz 99.94% 99.98% 99.9% Fibre laser at 2.05 m OPO-OPA at 2.05 m Slide 21

22 A-SCOPE: pre-development A-SCOPE APD detectors at 2.05 m HgCdTe: APD based on loophole junctions Amplifier based on CMOS TIA MCT hybridised directly onto the silicon chip InAlAs: Type-II superlattice heterojunction SAM structure MBE growth Current (A) Dark current Photocurrent T=200KMultiplication =2.1 m IV characteristics of Type-II APD Reverse Voltage(V) Multiplication Excess Noise factor Excess Noise Factor Parameters QE 70% Active area diameter Multiplication 150 m Excess noise 1.5 NEP 100 fw/hz 0.5 ] Bandwidth Gain stability Linearity 20 MHz 0.1 % rms (short term) 5 % rms InAs: InAs MBE and 2.0 MOVPE growth SAM structure Slide 22

23 Earth Explorer 8 Opportunity Mission Release of the Call Proposals M industrial cost for the space segment and mission specific ground segment a minimum TRL of 4-5 required by the end of Phase A 31 proposals received 7 proposals based on lidar technique Results of evaluation expected in NOV 2010 Slide 23

24 The ESA Living Planet Programme EXPLORER 1 CryoSat CryoSat-2 EXPLORER 2 GOCE EXPLORER 3 SMOS EXPLORER 4 ADM-Aeolus EXPLORER 5 SWARM EXPLORER 6 EXPLORER 7 EXPLORER 8 Call release Proposals Phase 0 Selection for phase A: PREMIER, CoReH2O, BIOMASS Call release Selection for phase A Proposals EarthCARE Slide 24

25 Thank you for your attention Merci de votre attention Bedankt voor jullie andacht Danke für Ihre Aufmerksamkei Gracias por su atención Grazie per la vostra attenzione σας ευχαριστώ! Slide 25

Status of Aeolus ESA s Wind Lidar Mission

Status of Aeolus ESA s Wind Lidar Mission Status of Aeolus ESA s Wind Lidar Mission Roland Meynart, Anders Elfving, Denny Wernham and Anne Grete Straume European Space Agency/ESTEC Coherent Laser Radar Conference, Boulder 26 June-01 July 2016

More information

Lidar technology pre-developments in support of A-SCOPE, the ESA mission to measure CO 2 from space

Lidar technology pre-developments in support of A-SCOPE, the ESA mission to measure CO 2 from space Lidar technology pre-developments in support of A-SCOPE, the ESA mission to measure CO 2 from space Yannig Durand, Jérôme Caron, Jean-Loup Bézy, Roland Meynart European Space Agency yannig.durand @ esa.int

More information

MERLIN Mission Status

MERLIN Mission Status MERLIN Mission Status CNES/illustration David DUCROS, 2016 G. Ehret 1, P. Bousquet 2, B. Millet 3, M. Alpers 1, C. Deniel 3, A. Friker 1, C. Pierangelo 3 1 Deutsches Zentrum für Luft- und Raumfahrt (DLR)

More information

Results from the ADM-Aeolus Pre-Launch Ground and Airborne Campaigns in 2007

Results from the ADM-Aeolus Pre-Launch Ground and Airborne Campaigns in 2007 Results from the ADM-Aeolus Pre-Launch Ground and Airborne Campaigns in 2007 O. Reitebuch 1, M. Endemann 2, C. Lemmerz 1, U. Paffrath 1, B. Witschas 1, V. Freudenthaler 3, V. Lehmann 4, D. Engelbart 4

More information

CO 2 Remote Detection Using a 2-µm DIAL Instrument

CO 2 Remote Detection Using a 2-µm DIAL Instrument CO 2 Remote Detection Using a 2-µm DIAL Instrument Erwan Cadiou 1,2, Dominique Mammez 1,2, Jean-Baptiste Dherbecourt 1,, Guillaume Gorju 1, Myriam Raybaut 1, Jean-Michel Melkonian 1, Antoine Godard 1,

More information

Roland Meynart. Earth Oservation Programmes Directorate ESA

Roland Meynart. Earth Oservation Programmes Directorate ESA Technologies for post-eps and possibly needed developments Roland Meynart Earth Oservation Programmes Directorate ESA With the contributions of my AEG colleagues M.Betto, U.Del Bello, C.C.Lin, Y. Durand,

More information

DIFFERENTIAL ABSORPTION LIDAR FOR GREENHOUSE GAS MEASUREMENTS

DIFFERENTIAL ABSORPTION LIDAR FOR GREENHOUSE GAS MEASUREMENTS DIFFERENTIAL ABSORPTION LIDAR FOR GREENHOUSE GAS MEASUREMENTS Stephen E. Maxwell, Sensor Science Division, PML Kevin O. Douglass, David F. Plusquellic, Radiation and Biomolecular Physics Division, PML

More information

Aeolus Level 1 data processing and instrument calibration

Aeolus Level 1 data processing and instrument calibration Aeolus Level 1 data processing and instrument calibration Oliver Reitebuch (DLR) and Alain Dabas (Météo France) Uwe Marksteiner, Marc Rompel, Markus Meringer, Karsten Schmidt, Dorit Huber, Ines Nikolaus,

More information

Status of MOLI development MOLI (Multi-footprint Observation Lidar and Imager)

Status of MOLI development MOLI (Multi-footprint Observation Lidar and Imager) Status of MOLI development MOLI (Multi-footprint Observation Lidar and Imager) Tadashi IMAI, Daisuke SAKAIZAWA, Jumpei MUROOKA and Toshiyoshi KIMURA JAXA 1 Outline of This Presentation 1. Overview of MOLI

More information

ATLID, ESA ATMOSPHERIC LIDAR: MANUFACTURE AND TEST RESULTS OF INSTRUMENT UNITS

ATLID, ESA ATMOSPHERIC LIDAR: MANUFACTURE AND TEST RESULTS OF INSTRUMENT UNITS ATLID, ESA ATMOSPHERIC LIDAR: MANUFACTURE AND TEST RESULTS OF INSTRUMENT UNITS J. Pereira do Carmo 1, A. Hélière 1, F.Chassat 2, Y.Toulemont 2, A.Lefevre 1 1 European Space Agency - ESTEC, The Netherlands,

More information

Lecture 27. Wind Lidar (6) Edge Filter-Based Direct Detection Doppler Lidar

Lecture 27. Wind Lidar (6) Edge Filter-Based Direct Detection Doppler Lidar Lecture 27. Wind Lidar (6) Edge Filter-Based Direct Detection Doppler Lidar q FPI and Fizeau edge-filter DDL q Iodine-absorption-line edge-filter DDL q Edge-filter lidar data retrieval and error analysis

More information

Receiver Signal to Noise Ratios for IPDA Lidars Using Sine-wave and Pulsed Laser Modulation and Direct Detections

Receiver Signal to Noise Ratios for IPDA Lidars Using Sine-wave and Pulsed Laser Modulation and Direct Detections Receiver Signal to Noise Ratios for IPDA Lidars Using Sine-wave and Pulsed Laser Modulation and Direct Detections Xiaoli Sun and James B. Abshire NASA Goddard Space Flight Center Solar System Division,

More information

Gigashot TM FT High Energy DPSS Laser

Gigashot TM FT High Energy DPSS Laser Gigashot TM FT High Energy DPSS Laser Northrop Grumman Cutting Edge Optronics (636) 916-4900 / Email: st-ceolaser-info@ngc.com 2015 Northrop Grumman Systems Corporation Gigashot TM FT Key Specifications

More information

Lecture 21. Wind Lidar (3) Direct Detection Doppler Lidar

Lecture 21. Wind Lidar (3) Direct Detection Doppler Lidar Lecture 21. Wind Lidar (3) Direct Detection Doppler Lidar Overview of Direct Detection Doppler Lidar (DDL) Resonance fluorescence DDL Fringe imaging DDL Scanning FPI DDL FPI edge-filter DDL Absorption

More information

Passive Microwave Sensors LIDAR Remote Sensing Laser Altimetry. 28 April 2003

Passive Microwave Sensors LIDAR Remote Sensing Laser Altimetry. 28 April 2003 Passive Microwave Sensors LIDAR Remote Sensing Laser Altimetry 28 April 2003 Outline Passive Microwave Radiometry Rayleigh-Jeans approximation Brightness temperature Emissivity and dielectric constant

More information

Ground-based, Scanning Water Vapor DIAL Reference Systems

Ground-based, Scanning Water Vapor DIAL Reference Systems Ground-based, Scanning Water Vapor DIAL Reference Systems Volker Wulfmeyer, Gerd Wagner, Max Shiler, Anna Petrova, Andreas Behrendt, Thorsten Schaberl, IPM Ulla Wandinger, Dietrich Althausen, Andrea Riede,

More information

Power. Warranty. 30 <1.5 <3% Near TEM ~4.0 one year. 50 <1.5 <5% Near TEM ~4.0 one year

Power. Warranty. 30 <1.5 <3% Near TEM ~4.0 one year. 50 <1.5 <5% Near TEM ~4.0 one year DL CW Blue Violet Laser, 405nm 405 nm Operating longitudinal mode Several Applications: DNA Sequencing Spectrum analysis Optical Instrument Flow Cytometry Interference Measurements Laser lighting show

More information

1170 LIDAR / Atmospheric Sounding Introduction

1170 LIDAR / Atmospheric Sounding Introduction 1170 LIDAR / Atmospheric Sounding Introduction a distant large telescope for the receiver. In this configuration, now known as bistatic, the range of the scattering can be determined by geometry. In the

More information

Optical Remote Sensing with Coherent Doppler Lidar

Optical Remote Sensing with Coherent Doppler Lidar Optical Remote Sensing with Coherent Doppler Lidar Part 1: Background and Doppler Lidar Hardware Mike Hardesty 1, Sara Tucker 2, Alan Brewer 1 1 CIRES-NOAA Atmospheric Remote Sensing Group Earth System

More information

Fast Widely-Tunable CW Single Frequency 2-micron Laser

Fast Widely-Tunable CW Single Frequency 2-micron Laser Fast Widely-Tunable CW Single Frequency 2-micron Laser Charley P. Hale and Sammy W. Henderson Beyond Photonics LLC 1650 Coal Creek Avenue, Ste. B Lafayette, CO 80026 Presented at: 18 th Coherent Laser

More information

Operating longitudinal mode Several Polarization ratio > 100:1. Power. Warranty. 30 <1.5 <5% Near TEM ~4.0 one year

Operating longitudinal mode Several Polarization ratio > 100:1. Power. Warranty. 30 <1.5 <5% Near TEM ~4.0 one year DL CW Blue Violet Laser, 405nm 405 nm Operating longitudinal mode Several Applications: DNA Sequencing Spectrum analysis Optical Instrument Flow Cytometry Interference Measurements Laser lighting show

More information

AIM payload OPTEL-D. Multi-purpose laser communication system. Presentation to: AIM Industry Days ESTEC, 22nd February 2016

AIM payload OPTEL-D. Multi-purpose laser communication system. Presentation to: AIM Industry Days ESTEC, 22nd February 2016 AIM payload OPTEL-D Multi-purpose laser communication system Presentation to: AIM Industry Days ESTEC, 22nd February 2016 Outline 1. Objectives OPTEL-D 2. Technology Development Activities 3. OPTEL-D payload

More information

Lecture 03. Lidar Remote Sensing Overview (1)

Lecture 03. Lidar Remote Sensing Overview (1) Lecture 03. Lidar Remote Sensing Overview (1) Introduction History from searchlight to modern lidar Various modern lidars Altitude/Range determination Basic lidar architecture Summary Introduction: Lidar

More information

High energy optical parametric sources for multi-wavelength DIAL: a generic approach

High energy optical parametric sources for multi-wavelength DIAL: a generic approach High energy optical parametric sources for multi-wavelength DIAL: a generic approach Jessica Barrientos Barria, Jean-Baptiste Dherbecourt, Myriam Raybaut, Antoine Godard, Jean-Michel Melkonian, Michel

More information

Compact, Automated Differential Absorption Lidar for Tropospheric Profiling of Water Vapor

Compact, Automated Differential Absorption Lidar for Tropospheric Profiling of Water Vapor Physical Sciences Inc. VG14-173 Compact, Automated Differential Absorption Lidar for Tropospheric Profiling of Water Vapor D. Sonnenfroh, S. Coleman, R. Minelli, & R. Wainner 20 New England Business Center

More information

Lecture 25. Wind Lidar (3) Direct Detection Doppler Lidar

Lecture 25. Wind Lidar (3) Direct Detection Doppler Lidar Lecture 25. Wind Lidar (3) Direct Detection Doppler Lidar Overview of Direct Detection Doppler Lidar (DDL) Fringe imaging DDL Scanning FPI DDL FPI edge-filter DDL Iodine absorption-line edge-filter DDL

More information

PGx11 series. Transform Limited Broadly Tunable Picosecond OPA APPLICATIONS. Available models

PGx11 series. Transform Limited Broadly Tunable Picosecond OPA APPLICATIONS. Available models PGx1 PGx3 PGx11 PT2 Transform Limited Broadly Tunable Picosecond OPA optical parametric devices employ advanced design concepts in order to produce broadly tunable picosecond pulses with nearly Fourier-transform

More information

Features. Applications. Optional Features

Features. Applications. Optional Features Features Compact, Rugged Design TEM Beam with M 2 < 1.2 Pulse Rates from Single Shot to 15 khz IR, Green, UV, and Deep UV Wavelengths Available RS232 Computer Control Patented Harmonic Generation Technology

More information

Lecture 02. Introduction of Remote Sensing

Lecture 02. Introduction of Remote Sensing Lecture 02. Introduction of Remote Sensing Concept of Remote Sensing Picture of Remote Sensing Content of Remote Sensing Classification of Remote Sensing Passive Remote Sensing Active Remote Sensing Comparison

More information

Status of the CNES / MicroCarb small

Status of the CNES / MicroCarb small Status of the CNES / MicroCarb small satellite for CO 2 measurements D. Jouglet on behalf of the MicroCarb team (F. Buisson, D. Pradines, V. Pascal, C. Pierangelo, C. Buil, S. Gaugain, C. Deniel, F.M.

More information

Aurora II Integra OPO Integrated Nd:YAG Pumped Type II BBO OPO

Aurora II Integra OPO Integrated Nd:YAG Pumped Type II BBO OPO L i t r o n T o t a l L a s e r C a p a b i l i t y Aurora II Integra OPO Integrated Nd:YAG Pumped Type II BBO OPO The Litron Aurora II Integra is an innovative, fully motorised, type II BBO OPO and Nd:YAG

More information

High Power and Energy Femtosecond Lasers

High Power and Energy Femtosecond Lasers High Power and Energy Femtosecond Lasers PHAROS is a single-unit integrated femtosecond laser system combining millijoule pulse energies and high average powers. PHAROS features a mechanical and optical

More information

Lecture 9: Raman lidar

Lecture 9: Raman lidar Lecture 9: Raman lidar Water vapor mixing ratio measured by the SRL during the dryline event. Temporal resolution is 3 minutes, vertical smoothing varied between 90 meters at 0.5 km to 330 meters

More information

MicroCarb Mission: A new space instrumental concept based on dispersive components for the measurement of CO2 concentration in the atmosphere

MicroCarb Mission: A new space instrumental concept based on dispersive components for the measurement of CO2 concentration in the atmosphere International Conference on Space Optics 2012 MicroCarb Mission: A new space instrumental concept based on dispersive components for the measurement of CO2 concentration in the atmosphere Véronique PASCAL

More information

HIGH STABILITY LASER FOR INTERFEROMETRIC EARTH GRAVITY MEASUREMENTS

HIGH STABILITY LASER FOR INTERFEROMETRIC EARTH GRAVITY MEASUREMENTS Launch your visions HIGH STABILITY LASER FOR INTERFEROMETRIC EARTH GRAVITY MEASUREMENTS K. Dahl, K. Nicklaus, M. Herding, X. Wang, N. Beller, O. Fitzau, M. Giesberts, M. Herper, R. A. Williams, G. P. Barwood,

More information

METHANE MONITORING FROM SPACE

METHANE MONITORING FROM SPACE METHANE MONITORING FROM SPACE AN OVERVIEW ON THE MERLIN INSTRUMENT C. Stephan, M. Alpers Deutsches Zentrum für Luft- und Raumfahrt 53227 Bonn, Germany B. Millet Centre National d Études Spatiales Toulouse

More information

CONFOCAL FABRY-PEROT INTERFEROMETER BASED HIGH SPECTRAL RESOLUTION LIDAR. David Swick Hoffman

CONFOCAL FABRY-PEROT INTERFEROMETER BASED HIGH SPECTRAL RESOLUTION LIDAR. David Swick Hoffman CONFOCAL FABRY-PEROT INTERFEROMETER BASED HIGH SPECTRAL RESOLUTION LIDAR by David Swick Hoffman A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

More information

improved stability (compared with

improved stability (compared with Picosecond Tunable Systems Nanosecond Lasers NT230 SERIES NT230 series lasers deliver high up to 10 mj energy pulses at 100 Hz pulse repetition rate, tunable over a broad spectral range. Integrated into

More information

Conductively cooled 1-kHz single-frequency Nd:YAG laser for remote sensing

Conductively cooled 1-kHz single-frequency Nd:YAG laser for remote sensing Conductively cooled 1-kHz single-frequency Nd:YAG laser for remote sensing Juntao Wang ( ), Ren Zhu (ý ), Jun Zhou ( ), Huaguo Zang ( ÙÁ), Xiaolei Zhu (ý ), and Weibiao Chen (í Á) Shanghai Key Laboratory

More information

taccor Optional features Overview Turn-key GHz femtosecond laser

taccor Optional features Overview Turn-key GHz femtosecond laser taccor Turn-key GHz femtosecond laser Self-locking and maintaining Stable and robust True hands off turn-key system Wavelength tunable Integrated pump laser Overview The taccor is a unique turn-key femtosecond

More information

2-Micron high-repetition rate laser transmitter for coherent DIAL measurements of atmospheric CO2

2-Micron high-repetition rate laser transmitter for coherent DIAL measurements of atmospheric CO2 2-Micron high-repetition rate laser transmitter for coherent DIAL measurements of atmospheric CO2 Fabien Gibert, Dimitri Edouart, Claire Cénac, Florian Le Mounier, Pierre H. Flamant Laboratoire de Météorologie

More information

Lasers à fibres ns et ps de forte puissance. Francois SALIN EOLITE systems

Lasers à fibres ns et ps de forte puissance. Francois SALIN EOLITE systems Lasers à fibres ns et ps de forte puissance Francois SALIN EOLITE systems Solid-State Laser Concepts rod temperature [K] 347 -- 352 342 -- 347 337 -- 342 333 -- 337 328 -- 333 324 -- 328 319 -- 324 315

More information

This series of lasers are available with a choice of Nd:YAG, Nd:YLF, and Nd:YVO 4. System Reliability

This series of lasers are available with a choice of Nd:YAG, Nd:YLF, and Nd:YVO 4. System Reliability Photonics Industries DS Series of UV (351/355 nm) diode pumped solid-state Q-switched lasers offer a compact, hands-free system with the long-term reliability that the manufacturing industry demands. Utilizing

More information

QUANTITATIVE GLOBAL MAPPING OF TERRESTRIAL VEGETATION PHOTOSYNTHESIS: THE FLUORESCENCE EXPLORER (FLEX) MISSION

QUANTITATIVE GLOBAL MAPPING OF TERRESTRIAL VEGETATION PHOTOSYNTHESIS: THE FLUORESCENCE EXPLORER (FLEX) MISSION 2017 IEEE International Geoscience and Remote Sensing Symposium July 23 28, 2017 Fort Worth, Texas, USA Session MO3.L12 - International Spaceborne Imaging Spectroscopy Missions: Updates and News I QUANTITATIVE

More information

Sub-system and System Level Testing and Calibration of Space Altimeters and LIDARS.

Sub-system and System Level Testing and Calibration of Space Altimeters and LIDARS. Sub-system and System Level Testing and Calibration of Space Altimeters and LIDARS. Haris Riris, Pete Liiva, Xiaoli Sun, James Abshire Laser Remote Sensing Branch Goddard Space Flight Center, Greenbelt,

More information

Pierre TABARY Programme Manager for Atmosphere, Meteorology and Climate CNES, Directorate for Innovation, Applications, Science

Pierre TABARY Programme Manager for Atmosphere, Meteorology and Climate CNES, Directorate for Innovation, Applications, Science CNES Earth Observation Activities Pierre TABARY Programme Manager for Atmosphere, Meteorology and Climate CNES, Directorate for Innovation, Applications, Science 28th of March, 2017 ADM-Aeolus CAL/VAL

More information

LTE. Tester of laser range finders. Integrator Target slider. Transmitter channel. Receiver channel. Target slider Attenuator 2

LTE. Tester of laser range finders. Integrator Target slider. Transmitter channel. Receiver channel. Target slider Attenuator 2 a) b) External Attenuators Transmitter LRF Receiver Transmitter channel Receiver channel Integrator Target slider Target slider Attenuator 2 Attenuator 1 Detector Light source Pulse gene rator Fiber attenuator

More information

ADM-Aeolus Algorithm Theoretical Basis Document ATBD Level1B Products

ADM-Aeolus Algorithm Theoretical Basis Document ATBD Level1B Products 1/115 Doc.-Nr.: Doc.-Title: ADM-Aeolus Algorithm Theoretical Basis Document ATBD Level1B Products Number of pages: 115 pages Prepared by: Oliver Reitebuch (DLR, Oberpfaffenhofen, Germany, responsible)

More information

visibility values: 1) V1=0.5 2) V2=0.9 3) V3=0.99 b) In the three cases considered, what are the values of FSR (Free Spectral Range) and

visibility values: 1) V1=0.5 2) V2=0.9 3) V3=0.99 b) In the three cases considered, what are the values of FSR (Free Spectral Range) and EXERCISES OF OPTICAL MEASUREMENTS BY ENRICO RANDONE AND CESARE SVELTO EXERCISE 1 A CW laser radiation (λ=2.1 µm) is delivered to a Fabry-Pérot interferometer made of 2 identical plane and parallel mirrors

More information

Development of advanced seed laser modules for lidar and spectroscopy applications

Development of advanced seed laser modules for lidar and spectroscopy applications https://ntrs.nasa.gov/search.jsp?r=2145467 219-2-21T17:51:2+:Z Development of advanced seed laser modules for lidar and spectroscopy applications Narasimha S. Prasad 1, Alex Rosiewicz 2, Steven M. Coleman

More information

A 243mJ, Eye-Safe, Injection-Seeded, KTA Ring- Cavity Optical Parametric Oscillator

A 243mJ, Eye-Safe, Injection-Seeded, KTA Ring- Cavity Optical Parametric Oscillator Utah State University DigitalCommons@USU Space Dynamics Lab Publications Space Dynamics Lab 1-1-2011 A 243mJ, Eye-Safe, Injection-Seeded, KTA Ring- Cavity Optical Parametric Oscillator Robert J. Foltynowicz

More information

Eye safe solid state lasers for remote sensing and coherent laser radar

Eye safe solid state lasers for remote sensing and coherent laser radar Eye safe solid state lasers for remote sensing and coherent laser radar Jesper Munch, Matthew Heintze, Murray Hamilton, Sean Manning, Y. Mao, Damien Mudge and Peter Veitch Department of Physics The University

More information

ModBox-FE-125ps-10mJ. Performance Highlights FEATURES APPLICATIONS. Electrical & Optical Pulse Diagrams

ModBox-FE-125ps-10mJ. Performance Highlights FEATURES APPLICATIONS. Electrical & Optical Pulse Diagrams The System-FE-1064nm is set to generate short shaped pulses with high extinction ratio at 1064.1 nm. It allows dynamic extinction ratio up to 55 db with user adjustable pulse duration, repetition rate

More information

High-Power Femtosecond Lasers

High-Power Femtosecond Lasers High-Power Femtosecond Lasers PHAROS is a single-unit integrated femtosecond laser system combining millijoule pulse energies and high average power. PHAROS features a mechanical and optical design optimized

More information

Atlantic. Industrial High Power Picosecond Lasers. features

Atlantic. Industrial High Power Picosecond Lasers. features Atlantic Industrial High Power Picosecond Lasers lasers have been designed as a versatile tool for a variety of industrial material processing applications. They are compact, OEM rugged, with up to 8 W

More information

Space Frequency Coordination Group

Space Frequency Coordination Group Space Frequency Coordination Group Report SFCG 38-1 POTENTIAL RFI TO EESS (ACTIVE) CLOUD PROFILE RADARS IN 94.0-94.1 GHZ FREQUENCY BAND FROM OTHER SERVICES Abstract This new SFCG report analyzes potential

More information

Place image here (10 x 3.5 )

Place image here (10 x 3.5 ) Place image here (10 x 3.5 ) GreenLITE A Novel Approach to Ground-Based Quantification and Mapping of Greenhouse Gases with Potential for Validation of Low Bias Lidar Measurements Needed for Space James

More information

Receiver Signal to Noise Ratios for IPDA Lidars Using Sinewave and Pulsed Laser Modulation and Direct Detections

Receiver Signal to Noise Ratios for IPDA Lidars Using Sinewave and Pulsed Laser Modulation and Direct Detections Receiver Signal to Noise Ratios for IPDA Lidars Using Sinewave and Pulsed Laser Modulation and Direct Detections Xiaoli Sun and James B. Abshire NASA Goddard Space Flight Center Solar System Division,

More information

MEthane Remote sensing LIdar mission COPUOS, Vienna June 2013

MEthane Remote sensing LIdar mission COPUOS, Vienna June 2013 CNES CNES/Photon/ill.Michel Regy, 2013 MEthane Remote sensing LIdar mission COPUOS, Vienna 12.-21. June 2013 1 MERLIN COPUOS, Vienna 12.-21. June 2013 CNES Climate Change Temperature Increase over the

More information

OPAL Optical Profiling of the Atmospheric Limb

OPAL Optical Profiling of the Atmospheric Limb OPAL Optical Profiling of the Atmospheric Limb Alan Marchant Chad Fish Erik Stromberg Charles Swenson Jim Peterson OPAL STEADE Mission Storm Time Energy & Dynamics Explorers NASA Mission of Opportunity

More information

Chapter 5 Nadir looking UV measurement.

Chapter 5 Nadir looking UV measurement. Chapter 5 Nadir looking UV measurement. Part-II: UV polychromator instrumentation and measurements -A high SNR and robust polychromator using a 1D array detector- UV spectrometers onboard satellites have

More information

CO 2 mixing ratio retrievals from JPL airborne Laser Absorption Spectrometer flight campaigns in

CO 2 mixing ratio retrievals from JPL airborne Laser Absorption Spectrometer flight campaigns in CO 2 mixing ratio retrievals from JPL airborne Laser Absorption Spectrometer flight campaigns in 2009-2010 Robert Menzies, Gary Spiers, Joseph Jacob Jet Propulsion Laboratory California Institute of Technology

More information

Single frequency MOPA system with near diffraction limited beam

Single frequency MOPA system with near diffraction limited beam Single frequency MOPA system with near diffraction limited beam quality D. Chuchumishev, A. Gaydardzhiev, A. Trifonov, I. Buchvarov Abstract Near diffraction limited pulses of a single-frequency and passively

More information

Atlantic. series. Industrial High Power Picosecond DPSS Lasers

Atlantic. series. Industrial High Power Picosecond DPSS Lasers Atlantic series Industrial High Power Picosecond DPSS Lasers Laser description Laser micromachining is rapidly becoming the material processing technology of choice for numerous small scale, real world

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Student Name Date MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.161 Modern Optics Project Laboratory Laboratory Exercise No. 6 Fall 2010 Solid-State

More information

In-flight demonstration of a LiDAR based Air Data System DANIELA project 5B1

In-flight demonstration of a LiDAR based Air Data System DANIELA project 5B1 In-flight demonstration of a LiDAR based Air Data System DANIELA project 5B1 Thales Avionics Xavier LACONDEMINE Teem Photonics Denis BARBIER Grant Agreement n 212132 1 Context A current typical Air Data

More information

SodiumStar 20/2 High Power cw Tunable Guide Star Laser

SodiumStar 20/2 High Power cw Tunable Guide Star Laser SodiumStar 20/2 High Power cw Tunable Guide Star Laser Laser Guide Star Adaptive Optics Facilities LIDAR Atmospheric Monitoring Laser Cooling SodiumStar 20/2 High Power cw Tunable Guide Star Laser Existing

More information

Lecture 36. Lidar Architecture and Lidar Design

Lecture 36. Lidar Architecture and Lidar Design Lecture 36. Lidar Architecture and Lidar Design q Introduction q Lidar Architecture: Configurations & Arrangements q Lidar Design: Basic Ideas and Basic Principles q Considerations on Various Aspects of

More information

mmw Products Millimeter Wave Systems

mmw Products Millimeter Wave Systems mmw Products 2015.01.12 Millimeter Wave Systems 1 Extended Interaction Klystrons EIK Technology Based on Klystrons Rugged Reliable Enhanced Power Bandwidth Efficiency GHz and THz frequencies Moderate voltages

More information

1. INTRODUCTION 2. LASER ABSTRACT

1. INTRODUCTION 2. LASER ABSTRACT Compact solid-state laser to generate 5 mj at 532 nm Bhabana Pati*, James Burgess, Michael Rayno and Kenneth Stebbins Q-Peak, Inc., 135 South Road, Bedford, Massachusetts 01730 ABSTRACT A compact and simple

More information

COMPARISON OF FM-CW AND PULSED CLOUD RADARS AND LIDAR PERFORMANCE

COMPARISON OF FM-CW AND PULSED CLOUD RADARS AND LIDAR PERFORMANCE COMPARISON OF FM-CW AND PULSED CLOUD RADARS AND LIDAR PERFORMANCE Anthony Illingworth and Ewan O Connor University of Reading COST ES-0702 and NetFAM Joint Workshop Oslo, Norway, 18-20 March 2009 1 1.

More information

Setup of the four-wavelength Doppler lidar system with feedback controlled pulse shaping

Setup of the four-wavelength Doppler lidar system with feedback controlled pulse shaping Setup of the four-wavelength Doppler lidar system with feedback controlled pulse shaping Albert Töws and Alfred Kurtz Cologne University of Applied Sciences Steinmüllerallee 1, 51643 Gummersbach, Germany

More information

NL300 series. Compact Flash-Lamp Pumped Q-switched Nd:YAG Lasers FEATURES APPLICATIONS NANOSECOND LASERS

NL300 series. Compact Flash-Lamp Pumped Q-switched Nd:YAG Lasers FEATURES APPLICATIONS NANOSECOND LASERS NL200 NL210 NL230 NL300 NL740 electro-optically Q-switched nanosecond Nd:YAG lasers produce high energy pulses with 3 6 ns duration. Pulse repetition rate can be selected in range of 5 20 Hz. NL30 HT models

More information

The ALOMAR Andøya Space Center, how and why?

The ALOMAR Andøya Space Center, how and why? Gats Inc. Sodium lidar Before NSF policy change The ALOMAR Observatory @ Andøya Space Center, how and why? Gats Inc. Sodium lidar Before NSF policy change Kolbjørn Blix Dir. of Space Systems dept. Kolbjørn

More information

Preliminary Specification

Preliminary Specification Preliminary Specification CONTENTS 1.1 SCOPE 2 1.2 OPTICAL SPECIFICATION 2 1.3 BEAM DELIVERY FIBER SPECIFICATION 3 1.4 ALIGNMENT LASER 3 1.5 POWER DISTRIBUTION 3 1.6 WATER COOLING REQUIREMENTS 4 1.7 CONTROL

More information

Continuous-Wave (CW) Single-Frequency IR Laser. NPRO 125/126 Series

Continuous-Wave (CW) Single-Frequency IR Laser. NPRO 125/126 Series Continuous-Wave (CW) Single-Frequency IR Laser NPRO 125/126 Series www.lumentum.com Data Sheet The Lumentum NPRO 125/126 diode-pumped lasers produce continuous-wave (CW), singlefrequency output at either

More information

picoemerald Tunable Two-Color ps Light Source Microscopy & Spectroscopy CARS SRS

picoemerald Tunable Two-Color ps Light Source Microscopy & Spectroscopy CARS SRS picoemerald Tunable Two-Color ps Light Source Microscopy & Spectroscopy CARS SRS 1 picoemerald Two Colors in One Box Microscopy and Spectroscopy with a Tunable Two-Color Source CARS and SRS microscopy

More information

High Power Pulsed Laser Diodes 850-Series

High Power Pulsed Laser Diodes 850-Series High Power Pulsed Laser Diodes 850-Series FEATURES Single and stacked devices up to 100 Watts Proven AlGaAs high reliability structure 0.9 W/A efficiency Excellent temperature stability Hermetic and custom

More information

5kW DIODE-PUMPED TEST AMPLIFIER

5kW DIODE-PUMPED TEST AMPLIFIER 5kW DIODE-PUMPED TEST AMPLIFIER SUMMARY?Gain - OK, suggest high pump efficiency?efficient extraction - OK, but more accurate data required?self-stabilisation - Yes, to a few % but not well matched to analysis

More information

FPPO 1000 Fiber Laser Pumped Optical Parametric Oscillator: FPPO 1000 Product Manual

FPPO 1000 Fiber Laser Pumped Optical Parametric Oscillator: FPPO 1000 Product Manual Fiber Laser Pumped Optical Parametric Oscillator: FPPO 1000 Product Manual 2012 858 West Park Street, Eugene, OR 97401 www.mtinstruments.com Table of Contents Specifications and Overview... 1 General Layout...

More information

Single Frequency Laser/Single Longitudinal Mode Laser

Single Frequency Laser/Single Longitudinal Mode Laser Single Frequency Laser/Single Longitudinal Mode Laser MSL series lasers with the characteristics of ultra compact, long lifetime, low cost and easy operating, which are used in DNA sequencing, flow cytometry,

More information

The Biomass Mission, status of the satellite system

The Biomass Mission, status of the satellite system The Biomass Mission, status of the satellite system M. Arcioni, P. Bensi, M. Fehringer, F. Fois, F. Heliere, K. Scipal PolInSAR/Biomass Meeting 2015, ESRIN 29/01/2015 1. Key facts (lifetime, duty cycle

More information

ESA's activities in space-borne Imaging Spectroscopy for Earth Observation CHII, June 2016, Graz, Austria

ESA's activities in space-borne Imaging Spectroscopy for Earth Observation CHII, June 2016, Graz, Austria ESA's activities in space-borne Imaging Spectroscopy for Earth Observation CHII, 15-16 June 2016, Graz, Austria Michael Rast, ESA Observation Principle of Imaging Spectrometer The telescope images the

More information

FIBER EVO. Miniaturized laser module complete with controller and USB power supply all within an incredibly small package

FIBER EVO. Miniaturized laser module complete with controller and USB power supply all within an incredibly small package Miniaturized laser module complete with controller and USB power supply all within an incredibly small package KEY FEATURES: Incredibly small yet fully featured Output powers up to 75 mw Powered by USB:

More information

ModBox - Spectral Broadening Unit

ModBox - Spectral Broadening Unit ModBox - Spectral Broadening Unit The ModBox Family The ModBox systems are a family of turnkey optical transmitters and external modulation benchtop units for digital and analog transmission, pulsed and

More information

SODAR- sonic detecting and ranging

SODAR- sonic detecting and ranging Active Remote Sensing of the PBL Immersed vs. remote sensors Active vs. passive sensors RADAR- radio detection and ranging WSR-88D TDWR wind profiler SODAR- sonic detecting and ranging minisodar RASS RADAR

More information

Vertical External Cavity Surface Emitting Laser

Vertical External Cavity Surface Emitting Laser Chapter 4 Optical-pumped Vertical External Cavity Surface Emitting Laser The booming laser techniques named VECSEL combine the flexibility of semiconductor band structure and advantages of solid-state

More information

Drive Beam Photo-injector Option for the CTF3 Nominal Phase

Drive Beam Photo-injector Option for the CTF3 Nominal Phase CTF3 Review Drive Beam Photo-injector Option for the CTF3 Nominal Phase Motivation CTF3 Drive Beam Requirements CTF3 RF gun design The Laser (I. Ross / RAL) The Photocathode Cost estimate Possible schedule

More information

Experimental Physics. Experiment C & D: Pulsed Laser & Dye Laser. Course: FY12. Project: The Pulsed Laser. Done by: Wael Al-Assadi & Irvin Mangwiza

Experimental Physics. Experiment C & D: Pulsed Laser & Dye Laser. Course: FY12. Project: The Pulsed Laser. Done by: Wael Al-Assadi & Irvin Mangwiza Experiment C & D: Course: FY1 The Pulsed Laser Done by: Wael Al-Assadi Mangwiza 8/1/ Wael Al Assadi Mangwiza Experiment C & D : Introduction: Course: FY1 Rev. 35. Page: of 16 1// In this experiment we

More information

High power VCSEL array pumped Q-switched Nd:YAG lasers

High power VCSEL array pumped Q-switched Nd:YAG lasers High power array pumped Q-switched Nd:YAG lasers Yihan Xiong, Robert Van Leeuwen, Laurence S. Watkins, Jean-Francois Seurin, Guoyang Xu, Alexander Miglo, Qing Wang, and Chuni Ghosh Princeton Optronics,

More information

Fiber Lasers for EUV Lithography

Fiber Lasers for EUV Lithography Fiber Lasers for EUV Lithography A. Galvanauskas, Kai Chung Hou*, Cheng Zhu CUOS, EECS Department, University of Michigan P. Amaya Arbor Photonics, Inc. * Currently with Cymer, Inc 2009 International Workshop

More information

Q-SWITCHED LASERS. Engineered Reliability. Rugged Design. No Water. Applications. Features

Q-SWITCHED LASERS. Engineered Reliability. Rugged Design. No Water. Applications. Features Q-SWITCHED LASERS nanio nanio air* air* Industrial DPSS Industrial DPSS Lasers Lasers Engineered Reliability. Rugged Design. No Water. The NANIO AIR lasers are a family of Q-switched DPSS lasers engineered

More information

Development of a Compact, Pulsed, 2-Micron, Coherent- Detection, Doppler Wind Lidar Transceiver

Development of a Compact, Pulsed, 2-Micron, Coherent- Detection, Doppler Wind Lidar Transceiver Development of a Compact, Pulsed, 2-Micron, Coherent- Detection, Doppler Wind Lidar Transceiver Michael J. Kavaya, Upendra N. Singh, Grady J. Koch, Jirong Yu, Bo C. Trieu NASA Langley Research Center,

More information

Japan's Greenhouse Gases Observation from Space

Japan's Greenhouse Gases Observation from Space 1 Workshop on EC CEOS Priority on GHG Monitoring Japan's Greenhouse Gases Observation from Space 18 June, 2018@Ispra, Italy Masakatsu NAKAJIMA Japan Aerospace Exploration Agency Development and Operation

More information

Lithium Triborate (LiB 3 O 5, LBO)

Lithium Triborate (LiB 3 O 5, LBO) NLO Cr ys tals Introduction Lithium Triborate (LiB 3 O 5, LBO) Lithium Triborate (LiB 3 O 5 or LBO) is an excellent nonlinear optical crystal discovered and developed by FIRSM, CAS (Fujian Institute of

More information

Detectors that cover a dynamic range of more than 1 million in several dimensions

Detectors that cover a dynamic range of more than 1 million in several dimensions Detectors that cover a dynamic range of more than 1 million in several dimensions Detectors for Astronomy Workshop Garching, Germany 10 October 2009 James W. Beletic Teledyne Providing the best images

More information

200W 500W, Air Cooled QUBE Fiber Lasers

200W 500W, Air Cooled QUBE Fiber Lasers Technical Specification 200W 500W, Air Cooled QUBE Fiber Lasers CONTENTS 1.1 SCOPE 2 1.2 OPTICAL SPECIFICATION 2 1.3 BEAM DELIVERY FIBER SPECIFICATION 3 1.4 ALIGNMENT LASER 4 1.5 POWER DISTRIBUTION 4 1.6

More information

Remote sensing of the oceans Active sensing

Remote sensing of the oceans Active sensing Remote sensing of the oceans Active sensing Gravity Sea level Ocean tides Low frequency motion Scatterometry SAR http://daac.gsfc.nasa.gov/campaign_docs/ocdst/what_is_ocean_color.html Shape of the earth

More information

Current and Future Meteorological Satellite Program of China

Current and Future Meteorological Satellite Program of China Current and Future Meteorological Satellite Program of China ZHANG Wenjian, DONG Chaohua XU Jianmin, YANG Jun China Meteorological Administration May 30, 2005 Beijing, CHINA Outline of the Presentation

More information

SNP High Performances IR Microchip Series

SNP High Performances IR Microchip Series SNP High Performances IR Microchip Series Key features Repetition rate up to 130kHz Ultrashort pulses down to 600ps Multi-kW peak power Excellent beam quality, M²

More information