Multipath and Atmospheric Propagation Errors in Offshore Aviation DGPS Positioning

Size: px
Start display at page:

Download "Multipath and Atmospheric Propagation Errors in Offshore Aviation DGPS Positioning"

Transcription

1 Multipath and Atmospheric Propagation Errors in Offshore Aviation DGPS Positioning J. Paul Collins, Peter J. Stewart and Richard B. Langley 2nd Workshop on Offshore Aviation Research Centre for Cold Ocean Resources Engineering Memorial University of Newfoundland St. John s, Nfld. September 23 24, 1998

2 INTRODUCTION Part 1: Part 2: Impact of tropospheric delay on DGPS pseudoranges. Results of using simple model to account for vertical separation of aircraft and reference antennas. Impact of reference station multipath on computed aircraft position. Possible solutions, software and hardware techniques.

3 Differential Differential tropospheric tropospheric zenith zenith delay delay upto upto 1000m 1000m above above reference reference station. station. (Represents (Represents zenith zenith DGPS DGPS correction correction error error due due to to altitude altitude separation.) separation.) Differential delay at zenith (m) (1) High Pressure, Vy. Humid (2) Humid Standard Day (3) Standard Day (4) Very Humid Contribution (5) High Pressure, Dry (6) Dry Standard Day (7) Low Pressure, Dry degree mapping function = (approx.) Differential height (m)

4 DGPS DGPS correction correction errors errors at at the the zenith, zenith, when when using using UNB1 UNB1 tropospheric tropospheric delay delay model model at at aircraft aircraft and and reference reference station. station. Differential error at zenith (m) degree mapping function = (approx.) (1) High Pressure, Vy. Humid (2) Humid Standard Day (5) High Pressure, Dry (6) Dry Standard Day (7) Low Pressure, Dry Differential height (m)

5 RECEIVER TECHNOLOGY 12 C/A-code range error (meters) Standard correlator 1-chip spacing BW = 2.0 MHz (max. error = 80 m) E C, D A Strobe correlator, BW = 10.5 MHz (similar to theoretical MEDLL, BW = 8 MHz) B Narrow correlator 0.1-chip spacing BW = 8.0 MHz Second-derivative correlator BW = MHz RMS theoretical error limit for 1 second observation time (MMSE estimator, BW = MHz) F Multipath delay (meters) Weill, L.R. (1997). Conquering multipath: The GPS accuracy battle. GPS World, April, pp

6 2 ( ) ( α 1) MULTIPATH MODELLING Requires pseudorange and dual frequency carrier phase measurements: ( ) C = ρ + c dt dt + I + T + m + n 1 1 C1 C1 ( ) cdt dt N I T m n Φ1 = ρ + + λ Φ + 1 Φ1 ( ) cdt dt N I T m n Φ 2 = ρ + + λ Φ + 2 Φ2 Single frequency combination includes ionospheric contribution: C = 2I λ N + m + n m n 1 Φ C C1 Φ Φ1 I f1 = I = α ; α f 2 1 ( λ λ ) ( 1) ( ) ( 1) ( ) Φ1 Φ2 N N mφ mφ nφ nφ = 2I α α α ( 1) 2 2 C1 1 + Φ1 + Φ2 = mc + nc + B+ M N 1 1 Φ + Φ α 1 α 1 Final combination dominated by pseudorange multipath (m C1 ) and noise (n C1 ).

7 CALIBRATING MULTIPATH C Φ Φ = m + n + B+ MΦ + NΦ C C 1 1 Combination of pseudorange (C 1 ) and dual frequency carrier phases (Φ 1, Φ 2 ) is dominated by pseudorange multipath (m C1 ) and noise (n C1 ). However, accuracy is limited by unknown biases, B, primarily the combination of the carrier phase integer ambiguities. This technique calibrates B from repeated multipath measurements at satellite crossover points, where the multipath should be the same for both satellites. Multipath maps can be constructed as a function of azimuth and elevation angle. Kee, C. and B. Parkinson (1994). Calibration of multipath errors on GPS pseudorange measurements. Proceedings of ION GPS-94, Salt Lake City, Utah, September 20-23, pp

8 RAW AND SMOOTHED C/A C/A CODE MULTIPATH (1) (1)

9 RAW AND SMOOTHED C/A C/A CODE MULTIPATH (2) (2)

10 MULTIPATH ELEVATION ANGLE DEPENDENCE

11 RAW RAW AND AND SMOOTHED DATA, DATA, VERTICAL POSITION 100 Time [hours] Raw C/A code Smoothed C/A code Vertical Position Error [m]

12 RAW DATA, SMOOTHED POSITIONS CA-L1 1 min mean 10 min mean 60 Vertical Position Error [m] Time [hours]

13 RESULTS SUMMARY Residual tropospheric effects, after adequate modelling, only contribute sub-decimetre biases in height. Error in height due to multipath could approach 100 metres. Smoothed data susceptible to cycle slips in noisy reference station environment. Filtering aircraft positions using velocity information should reduce large errors.

14 CONCLUSIONS Residual tropospheric delays should not be a problem for offshore aviation DGPS. Simple model drastically reduces what small error there is. Multipath has potential for severe problems. Combination of techniques: Receiver and antenna technology to limit maximum multipath error. Filtering in either pseudorange domain and/or position domain at aircraft using velocity information.

A Tropospheric Delay Model for the user of the Wide Area Augmentation System

A Tropospheric Delay Model for the user of the Wide Area Augmentation System A Tropospheric Delay Model for the user of the Wide Area Augmentation System J. Paul Collins and Richard B. Langley 1st October 1996 +641&7%6+1 OBJECTIVES Develop and test a tropospheric propagation delay

More information

UNIT 1 - introduction to GPS

UNIT 1 - introduction to GPS UNIT 1 - introduction to GPS 1. GPS SIGNAL Each GPS satellite transmit two signal for positioning purposes: L1 signal (carrier frequency of 1,575.42 MHz). Modulated onto the L1 carrier are two pseudorandom

More information

Trimble Business Center:

Trimble Business Center: Trimble Business Center: Modernized Approaches for GNSS Baseline Processing Trimble s industry-leading software includes a new dedicated processor for static baselines. The software features dynamic selection

More information

LOCAL IONOSPHERIC MODELLING OF GPS CODE AND CARRIER PHASE OBSERVATIONS

LOCAL IONOSPHERIC MODELLING OF GPS CODE AND CARRIER PHASE OBSERVATIONS Survey Review, 40, 309 pp.71-84 (July 008) LOCAL IONOSPHERIC MODELLING OF GPS CODE AND CARRIER PHASE OBSERVATIONS H. Nahavandchi and A. Soltanpour Norwegian University of Science and Technology, Division

More information

Monitoring the Ionosphere and Neutral Atmosphere with GPS

Monitoring the Ionosphere and Neutral Atmosphere with GPS Monitoring the Ionosphere and Neutral Atmosphere with GPS Richard B. Langley Geodetic Research Laboratory Department of Geodesy and Geomatics Engineering University of New Brunswick Fredericton, N.B. Division

More information

3D-Map Aided Multipath Mitigation for Urban GNSS Positioning

3D-Map Aided Multipath Mitigation for Urban GNSS Positioning Summer School on GNSS 2014 Student Scholarship Award Workshop August 2, 2014 3D-Map Aided Multipath Mitigation for Urban GNSS Positioning I-Wen Chu National Cheng Kung University, Taiwan. Page 1 Outline

More information

Precise Positioning with NovAtel CORRECT Including Performance Analysis

Precise Positioning with NovAtel CORRECT Including Performance Analysis Precise Positioning with NovAtel CORRECT Including Performance Analysis NovAtel White Paper April 2015 Overview This article provides an overview of the challenges and techniques of precise GNSS positioning.

More information

Modelling GPS Observables for Time Transfer

Modelling GPS Observables for Time Transfer Modelling GPS Observables for Time Transfer Marek Ziebart Department of Geomatic Engineering University College London Presentation structure Overview of GPS Time frames in GPS Introduction to GPS observables

More information

Global Positioning System: what it is and how we use it for measuring the earth s movement. May 5, 2009

Global Positioning System: what it is and how we use it for measuring the earth s movement. May 5, 2009 Global Positioning System: what it is and how we use it for measuring the earth s movement. May 5, 2009 References Lectures from K. Larson s Introduction to GNSS http://www.colorado.edu/engineering/asen/

More information

SYSTEMATIC EFFECTS IN GPS AND WAAS TIME TRANSFERS

SYSTEMATIC EFFECTS IN GPS AND WAAS TIME TRANSFERS SYSTEMATIC EFFECTS IN GPS AND WAAS TIME TRANSFERS Bill Klepczynski Innovative Solutions International Abstract Several systematic effects that can influence SBAS and GPS time transfers are discussed. These

More information

LOCAL DEFORMATION MONITORING USING REAL-TIME GPS KINEMATIC TECHNOLOGY: INITIAL STUDY

LOCAL DEFORMATION MONITORING USING REAL-TIME GPS KINEMATIC TECHNOLOGY: INITIAL STUDY LOCAL DEFORMATION MONITORING USING REAL-TIME GPS KINEMATIC TECHNOLOGY: INITIAL STUDY Donghyun (Don) Kim, Richard B. Langley, Jason Bond, and Adam Chrzanowski Department of Geodesy and Geomatics Engineering

More information

FieldGenius Technical Notes GPS Terminology

FieldGenius Technical Notes GPS Terminology FieldGenius Technical Notes GPS Terminology Almanac A set of Keplerian orbital parameters which allow the satellite positions to be predicted into the future. Ambiguity An integer value of the number of

More information

GNSS OBSERVABLES. João F. Galera Monico - UNESP Tuesday 12 Sep

GNSS OBSERVABLES. João F. Galera Monico - UNESP Tuesday 12 Sep GNSS OBSERVABLES João F. Galera Monico - UNESP Tuesday Sep Basic references Basic GNSS Observation Equations Pseudorange Carrier Phase Doppler SNR Signal to Noise Ratio Pseudorange Observation Equation

More information

E. Calais Purdue University - EAS Department Civil 3273

E. Calais Purdue University - EAS Department Civil 3273 E. Calais Purdue University - EAS Department Civil 373 ecalais@purdue.edu GPS signal propagation GPS signal (= carrier phase modulated by satellite PRN code) sent by satellite. About 66 msec (0,000 km)

More information

GPS for crustal deformation studies. May 7, 2009

GPS for crustal deformation studies. May 7, 2009 GPS for crustal deformation studies May 7, 2009 High precision GPS for Geodesy Use precise orbit products (e.g., IGS or JPL) Use specialized modeling software GAMIT/GLOBK GIPSY OASIS BERNESE These software

More information

Detection and Mitigation of Static Multipath in L1 Carrier Phase Measurements Using a Dual- Antenna Approach

Detection and Mitigation of Static Multipath in L1 Carrier Phase Measurements Using a Dual- Antenna Approach Detection and Mitigation of Static Multipath in L1 Carrier Phase Measurements Using a Dual- Antenna Approach M.C. Santos Department of Geodesy and Geomatics Engineering, University of New Brunswick, P.O.

More information

The Benefits of Three Frequencies for the High Accuracy Positioning

The Benefits of Three Frequencies for the High Accuracy Positioning The Benefits of Three Frequencies for the High Accuracy Positioning Nobuaki Kubo (Tokyo University of Marine and Science Technology) Akio Yasuda (Tokyo University of Marine and Science Technology) Isao

More information

Introduction to DGNSS

Introduction to DGNSS Introduction to DGNSS Jaume Sanz Subirana J. Miguel Juan Zornoza Research group of Astronomy & Geomatics (gage) Technical University of Catalunya (UPC), Spain. Web site: http://www.gage.upc.edu Hanoi,

More information

AIRPORT MULTIPATH SIMULATION AND MEASUREMENT TOOL FOR SITING DGPS REFERENCE STATIONS

AIRPORT MULTIPATH SIMULATION AND MEASUREMENT TOOL FOR SITING DGPS REFERENCE STATIONS AIRPORT MULTIPATH SIMULATION AND MEASUREMENT TOOL FOR SITING DGPS REFERENCE STATIONS ABSTRACT Christophe MACABIAU, Benoît ROTURIER CNS Research Laboratory of the ENAC, ENAC, 7 avenue Edouard Belin, BP

More information

CHAPTER 2 GPS GEODESY. Estelar. The science of geodesy is concerned with the earth by quantitatively

CHAPTER 2 GPS GEODESY. Estelar. The science of geodesy is concerned with the earth by quantitatively CHAPTER 2 GPS GEODESY 2.1. INTRODUCTION The science of geodesy is concerned with the earth by quantitatively describing the coordinates of each point on the surface in a global or local coordinate system.

More information

Latest PPP Efforts at UNB ( )

Latest PPP Efforts at UNB ( ) Latest PPP Efforts at UNB (2007-2008) Simon Banville Rodrigo F. Leandro Hyunho Rho Richard B. Langley Marcelo C. Santos May 27 2008 GEOIDE Annual Conference Niagara Falls, ON, Canada Outline Impact of

More information

TEST RESULTS OF A HIGH GAIN ADVANCED GPS RECEIVER

TEST RESULTS OF A HIGH GAIN ADVANCED GPS RECEIVER TEST RESULTS OF A HIGH GAIN ADVANCED GPS RECEIVER ABSTRACT Dr. Alison Brown, Randy Silva, Gengsheng Zhang,; NAVSYS Corporation. NAVSYS High Gain Advanced GPS Receiver () uses a digital beam-steering antenna

More information

HIGH GAIN ADVANCED GPS RECEIVER

HIGH GAIN ADVANCED GPS RECEIVER ABSTRACT HIGH GAIN ADVANCED GPS RECEIVER NAVSYS High Gain Advanced () uses a digital beam-steering antenna array to enable up to eight GPS satellites to be tracked, each with up to dbi of additional antenna

More information

The Possibility of Precise Positioning in the Urban Area

The Possibility of Precise Positioning in the Urban Area Presented at GNSS 004 The 004 International Symposium on GNSS/GPS Sydney, Australia 6 8 December 004 The Possibility of Precise Positioning in the Urban Area Nobuai Kubo Toyo University of Marine Science

More information

The Possibility of Precise Automobile Navigation using GPS/QZS L5 and (Galileo E5) Pseudo ranges

The Possibility of Precise Automobile Navigation using GPS/QZS L5 and (Galileo E5) Pseudo ranges The Possibility of Precise Automobile Navigation using GPS/QZS L5 and (Galileo E5 Pseudo ranges ION ITM ITM 013 Hiroko Tokura, Taro Suzuki, Tomoji Takasu, Nobuaki Kubo (Tokyo University of Marine Scienceand

More information

Precise Positioning with Smartphones running Android 7 or later

Precise Positioning with Smartphones running Android 7 or later Precise Positioning with Smartphones running Android 7 or later * René Warnant, * Cécile Deprez, + Quentin Warnant * University of Liege Geodesy and GNSS + Augmenteo, Plaine Image, Lille (France) Belgian

More information

Principles of Global Positioning Systems Spring 2008

Principles of Global Positioning Systems Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 12.540 Principles of Global Positioning Systems Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 12.540

More information

Tajul Ariffin Musa. Tajul A. Musa. Dept. of Geomatics Eng, FKSG, Universiti Teknologi Malaysia, Skudai, Johor, MALAYSIA.

Tajul Ariffin Musa. Tajul A. Musa. Dept. of Geomatics Eng, FKSG, Universiti Teknologi Malaysia, Skudai, Johor, MALAYSIA. Tajul Ariffin Musa Dept. of Geomatics Eng, FKSG, Universiti Teknologi Malaysia, 81310 Skudai, Johor, MALAYSIA. Phone : +6075530830;+6075530883; Mobile : +60177294601 Fax : +6075566163 E-mail : tajul@fksg.utm.my

More information

Assessment of the Accuracy of Processing GPS Static Baselines Up To 40 Km Using Single and Dual Frequency GPS Receivers.

Assessment of the Accuracy of Processing GPS Static Baselines Up To 40 Km Using Single and Dual Frequency GPS Receivers. International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Assessment of the Accuracy of Processing GPS Static Baselines Up To 40 Km Using Single and Dual Frequency GPS Receivers. Khaled

More information

Guochang Xu GPS. Theory, Algorithms and Applications. Second Edition. With 59 Figures. Sprin ger

Guochang Xu GPS. Theory, Algorithms and Applications. Second Edition. With 59 Figures. Sprin ger Guochang Xu GPS Theory, Algorithms and Applications Second Edition With 59 Figures Sprin ger Contents 1 Introduction 1 1.1 AKeyNoteofGPS 2 1.2 A Brief Message About GLONASS 3 1.3 Basic Information of Galileo

More information

Using a Sky Projection to Evaluate Pseudorange Multipath and to Improve the Differential Pseudorange Position

Using a Sky Projection to Evaluate Pseudorange Multipath and to Improve the Differential Pseudorange Position Using a Sky Projection to Evaluate Pseudorange Multipath and to Improve the Differential Pseudorange Position Dana G. Hynes System Test Group, NovAtel Inc. BIOGRAPHY Dana Hynes has been creating software

More information

An Introduction to GPS

An Introduction to GPS An Introduction to GPS You are here The GPS system: what is GPS Principles of GPS: how does it work Processing of GPS: getting precise results Yellowstone deformation: an example What is GPS? System to

More information

Broadcast Ionospheric Model Accuracy and the Effect of Neglecting Ionospheric Effects on C/A Code Measurements on a 500 km Baseline

Broadcast Ionospheric Model Accuracy and the Effect of Neglecting Ionospheric Effects on C/A Code Measurements on a 500 km Baseline Broadcast Ionospheric Model Accuracy and the Effect of Neglecting Ionospheric Effects on C/A Code Measurements on a 500 km Baseline Intro By David MacDonald Waypoint Consulting May 2002 The ionosphere

More information

Fundamentals of GPS for high-precision geodesy

Fundamentals of GPS for high-precision geodesy Fundamentals of GPS for high-precision geodesy T. A. Herring M. A. Floyd R. W. King Massachusetts Institute of Technology, Cambridge, MA, USA UNAVCO Headquarters, Boulder, Colorado, USA 19 23 June 2017

More information

Bernhard Hofnlann-Wellenhof Herbert Lichtenegger Elmar Wasle. GNSS - Global Navigation Satellite Systenls. GPS, GLONASS, Galileo, and nl0re

Bernhard Hofnlann-Wellenhof Herbert Lichtenegger Elmar Wasle. GNSS - Global Navigation Satellite Systenls. GPS, GLONASS, Galileo, and nl0re Bernhard Hofnlann-Wellenhof Herbert Lichtenegger Elmar Wasle GNSS - Global Navigation Satellite Systenls GPS, GLONASS, Galileo, and nl0re SpringerWienNewYork Contents Abbreviations xxi 1 Introduction 1

More information

Reduction of Pseudorange Multipath Error in Static Positioning. Tokyo University of Mercantile Marine Nobuaki Kubo Akio Yasuda

Reduction of Pseudorange Multipath Error in Static Positioning. Tokyo University of Mercantile Marine Nobuaki Kubo Akio Yasuda Reduction of Pseudorange Multipath Error in Static Positioning Tokyo University of Mercantile Marine Nobuaki Kubo Akio Yasuda Brief Many researchers have tried to reduce the multipath effect from both

More information

Integration of GPS with a Rubidium Clock and a Barometer for Land Vehicle Navigation

Integration of GPS with a Rubidium Clock and a Barometer for Land Vehicle Navigation Integration of GPS with a Rubidium Clock and a Barometer for Land Vehicle Navigation Zhaonian Zhang, Department of Geomatics Engineering, The University of Calgary BIOGRAPHY Zhaonian Zhang is a MSc student

More information

THE INFLUENCE OF ZENITH TROPOSPHERIC DELAY ON PPP-RTK. S. Nistor a, *, A.S. Buda a,

THE INFLUENCE OF ZENITH TROPOSPHERIC DELAY ON PPP-RTK. S. Nistor a, *, A.S. Buda a, THE INFLUENCE OF ZENITH TROPOSPHERIC DELAY ON PPP-RTK S. Nistor a, *, A.S. Buda a, a University of Oradea, Faculty of Civil Engineering, Cadastre and Architecture, Department Cadastre-Architecture, Romania,

More information

Positioning with Single and Dual Frequency Smartphones Running Android 7 or Later

Positioning with Single and Dual Frequency Smartphones Running Android 7 or Later Positioning with Single and Dual Frequency Smartphones Running Android 7 or Later * René Warnant, *Laura Van De Vyvere, + Quentin Warnant * University of Liege Geodesy and GNSS + Augmenteo, Plaine Image,

More information

CONVERGENCE TIME IMPROVEMENT OF PRECISE POINT POSITIONING

CONVERGENCE TIME IMPROVEMENT OF PRECISE POINT POSITIONING CONVERGENCE TIME IMPROVEMENT OF PRECISE POINT POSITIONING Mohamed Elsobeiey and Ahmed El-Rabbany Department of Civil Engineering (Geomatics Option) Ryerson University, CANADA Outline Introduction Impact

More information

Fundamentals of GPS Navigation

Fundamentals of GPS Navigation Fundamentals of GPS Navigation Kiril Alexiev 1 /76 2 /76 At the traditional January media briefing in Paris (January 18, 2017), European Space Agency (ESA) General Director Jan Woerner explained the knowns

More information

Performance Assessment of Dual Frequency GBAS Protection Level Algorithms using a Dual Constellation and Non-Gaussian Error Distributions

Performance Assessment of Dual Frequency GBAS Protection Level Algorithms using a Dual Constellation and Non-Gaussian Error Distributions Performance Assessment of Dual Frequency GBAS Protection Level Algorithms using a Dual Constellation and Non-Gaussian Error Distributions Patrick Rémi, German Aerospace Center (DLR) Boubeker Belabbas,

More information

Using GPS Receivers to Study the Upper Atmosphere

Using GPS Receivers to Study the Upper Atmosphere Using GPS Receivers to Study the Upper Atmosphere Jonathan J. Makela University of Illinois at Urbana-Champaign jmakela@illinois.edu With a big THANKS to Anthea Coster for providing some very useful slides!

More information

Carrier Phase Multipath Corrections Based on GNSS Signal Quality Measurements to Improve CORS Observations

Carrier Phase Multipath Corrections Based on GNSS Signal Quality Measurements to Improve CORS Observations Carrier Phase Multipath Corrections Based on GNSS Signal Quality Measurements to Improve CORS Observations Christian Rost and Lambert Wanninger Geodetic Institute Technische Universität Dresden Dresden,

More information

Evaluation of Multi-Constellation GNSS Precise Point Positioning (PPP) Techniques in Egypt

Evaluation of Multi-Constellation GNSS Precise Point Positioning (PPP) Techniques in Egypt Evaluation of Multi-Constellation GNSS Precise Point Positioning (PPP) Techniques in Egypt Mahmoud Abd Rabbou and Adel El-Shazly Department of Civil Engineering, Cairo University Presented by; Dr. Mahmoud

More information

Study and analysis of Differential GNSS and Precise Point Positioning

Study and analysis of Differential GNSS and Precise Point Positioning IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 2 Ver. I (Mar Apr. 2014), PP 53-59 Study and analysis of Differential GNSS and Precise

More information

Validation of Multiple Hypothesis RAIM Algorithm Using Dual-frequency GNSS Signals

Validation of Multiple Hypothesis RAIM Algorithm Using Dual-frequency GNSS Signals Validation of Multiple Hypothesis RAIM Algorithm Using Dual-frequency GNSS Signals Alexandru Ene, Juan Blanch, Todd Walter, J. David Powell Stanford University, Stanford CA, USA BIOGRAPHY Alexandru Ene

More information

GPS STATIC-PPP POSITIONING ACCURACY VARIATION WITH OBSERVATION RECORDING INTERVAL FOR HYDROGRAPHIC APPLICATIONS (ASWAN, EGYPT)

GPS STATIC-PPP POSITIONING ACCURACY VARIATION WITH OBSERVATION RECORDING INTERVAL FOR HYDROGRAPHIC APPLICATIONS (ASWAN, EGYPT) GPS STATIC-PPP POSITIONING ACCURACY VARIATION WITH OBSERVATION RECORDING INTERVAL FOR HYDROGRAPHIC APPLICATIONS (ASWAN, EGYPT) Ashraf Farah Associate Professor,College of Engineering, Aswan University,

More information

Data Acquisition Experiment using NovAtel Dual Frequency GPS Receiver

Data Acquisition Experiment using NovAtel Dual Frequency GPS Receiver Data Acquisition Experiment using NovAtel Dual Frequency GPS Receiver Dhiraj Sunehra Jawaharlal Nehru Technological University Hyderabad, Andhra Pradesh, India Abstract The advent of very large scale integration

More information

Several ground-based augmentation system (GBAS) Galileo E1 and E5a Performance

Several ground-based augmentation system (GBAS) Galileo E1 and E5a Performance » COVER STORY Galileo E1 and E5a Performance For Multi-Frequency, Multi-Constellation GBAS Analysis of new Galileo signals at an experimental ground-based augmentation system (GBAS) compares noise and

More information

Analysis of Multiple GPS Antennas for Multipath Mitigation in Vehicular Navigation

Analysis of Multiple GPS Antennas for Multipath Mitigation in Vehicular Navigation Analysis of Multiple GPS s for Multipath Mitigation in Vehicular Navigation R. A. Nayak, M. E. Cannon Department of Geomatics Engineering University of Calgary, Calgary C. Wilson, G. Zhang DaimlerChrysler

More information

Integer Ambiguity Resolution for Precise Point Positioning Patrick Henkel

Integer Ambiguity Resolution for Precise Point Positioning Patrick Henkel Integer Ambiguity Resolution for Precise Point Positioning Patrick Henkel Overview Introduction Sequential Best-Integer Equivariant Estimation Multi-frequency code carrier linear combinations Galileo:

More information

Development of a Pseudo Quasi Zenith Satellite and Multipath Analysis Using an Airborne platform

Development of a Pseudo Quasi Zenith Satellite and Multipath Analysis Using an Airborne platform Journal of Global Positioning Systems (7) Vol.6, No.: 16-13 Development of a Pseudo Quasi Zenith Satellite and Multipath Analysis Using an Airborne platform Toshiaki Tsujii, Hiroshi Tomita, Yoshinori Okuno

More information

DYNAMIC POSITIONING CONFERENCE

DYNAMIC POSITIONING CONFERENCE DYNAMIC POSITIONING CONFERENCE Advances in DGPS Systems 28 September 2004 Ole Ørpen Fugro Seastar, Oslo, Norway SCOPE OF PRESENTATION -Background. -Carrier Phase Based Solutions. -Orbit/Clock Solutions.

More information

PDHonline Course L105 (12 PDH) GPS Surveying. Instructor: Jan Van Sickle, P.L.S. PDH Online PDH Center

PDHonline Course L105 (12 PDH) GPS Surveying. Instructor: Jan Van Sickle, P.L.S. PDH Online PDH Center PDHonline Course L105 (12 PDH) GPS Surveying Instructor: Jan Van Sickle, P.L.S. 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org www.pdhcenter.com

More information

Prototype Software-based Receiver for Remote Sensing using Reflected GPS Signals. Dinesh Manandhar The University of Tokyo

Prototype Software-based Receiver for Remote Sensing using Reflected GPS Signals. Dinesh Manandhar The University of Tokyo Prototype Software-based Receiver for Remote Sensing using Reflected GPS Signals Dinesh Manandhar The University of Tokyo dinesh@qzss.org 1 Contents Background Remote Sensing Capability System Architecture

More information

Effect of errors in position coordinates of the receiving antenna on single satellite GPS timing

Effect of errors in position coordinates of the receiving antenna on single satellite GPS timing Indian Journal of Pure & Applied Physics Vol. 48, June 200, pp. 429-434 Effect of errors in position coordinates of the receiving antenna on single satellite GPS timing Suman Sharma & P Banerjee National

More information

ESTIMATION OF IONOSPHERIC DELAY FOR SINGLE AND DUAL FREQUENCY GPS RECEIVERS: A COMPARISON

ESTIMATION OF IONOSPHERIC DELAY FOR SINGLE AND DUAL FREQUENCY GPS RECEIVERS: A COMPARISON ESTMATON OF ONOSPHERC DELAY FOR SNGLE AND DUAL FREQUENCY GPS RECEVERS: A COMPARSON K. Durga Rao, Dr. V B S Srilatha ndira Dutt Dept. of ECE, GTAM UNVERSTY Abstract: Global Positioning System is the emerging

More information

Real-Time Carrier Phase Ambiguity Resolution for GPS/GLONASS Reference Station Networks

Real-Time Carrier Phase Ambiguity Resolution for GPS/GLONASS Reference Station Networks Real-Time Carrier Phase Ambiguity Resolution for GPS/GLONASS Reference Station Networks Liwen Dai, Jinling Wang, Chris Rizos and Shaowei Han School of Geomatic Engineering University of New South Wales

More information

MONITORING SEA LEVEL USING GPS

MONITORING SEA LEVEL USING GPS 38 MONITORING SEA LEVEL USING GPS Hasanuddin Z. Abidin* Abstract GPS (Global Positioning System) is a passive, all-weather satellite-based navigation and positioning system, which is designed to provide

More information

UCGE Reports Number Augmentation of GPS with Pseudolites in a Marine Environment. Thomas G. Morley. Department of Geomatics Engineering

UCGE Reports Number Augmentation of GPS with Pseudolites in a Marine Environment. Thomas G. Morley. Department of Geomatics Engineering Geomatics Engineering UCGE Reports Number 218 Department of Geomatics Engineering Augmentation of GPS with Pseudolites in a Marine Environment By Thomas G. Morley May, 1997 Calgary, Alberta, Canada THE

More information

Bernese GPS Software 4.2

Bernese GPS Software 4.2 Bernese GPS Software 4.2 Introduction Signal Processing Geodetic Use Details of modules Bernese GPS Software 4.2 Highest Accuracy GPS Surveys Research and Education Big Permanent GPS arrays Commercial

More information

Ionospheric Modeling for WADGPS at Northern Latitudes

Ionospheric Modeling for WADGPS at Northern Latitudes Ionospheric Modeling for WADGPS at Northern Latitudes Peter J. Stewart and Richard B. Langley Geodetic Research Laboratory, Department of Geodesy and Geomatics Engineering, University of New Brunswick,

More information

AN INVESTIGATION ON THE USE OF GPS FOR DEFORMATION MONITORING IN OPEN PIT MINES

AN INVESTIGATION ON THE USE OF GPS FOR DEFORMATION MONITORING IN OPEN PIT MINES 1 AN INVESTIGATION ON THE USE OF GPS FOR DEFORMATION MONITORING IN OPEN PIT MINES Jason Bond, Donghyun (Don) Kim, Richard B. Langley and Adam Chrzanowski Department of Geodesy and Geomatics Engineering,

More information

Digital Land Surveying and Mapping (DLS and M) Dr. Jayanta Kumar Ghosh Department of Civil Engineering Indian Institute of Technology, Roorkee

Digital Land Surveying and Mapping (DLS and M) Dr. Jayanta Kumar Ghosh Department of Civil Engineering Indian Institute of Technology, Roorkee Digital Land Surveying and Mapping (DLS and M) Dr. Jayanta Kumar Ghosh Department of Civil Engineering Indian Institute of Technology, Roorkee Lecture 11 Errors in GPS Observables Welcome students. Lesson

More information

EXPERIMENTAL ONE AXIS ATTITUDE DETERMINATION USING GPS CARRIER PHASE MEASUREMENTS

EXPERIMENTAL ONE AXIS ATTITUDE DETERMINATION USING GPS CARRIER PHASE MEASUREMENTS EXPERIMENTAL ONE AXIS ATTITUDE DETERMINATION USING GPS CARRIER PHASE MEASUREMENTS Arcélio Costa Louro INPE - National Institute for Space Research E-mail: aclouro@dss.inpe.br Roberto Vieira da Fonseca

More information

Principles of the Global Positioning System Lecture 08

Principles of the Global Positioning System Lecture 08 12.540 Principles of the Global Positioning System Lecture 08 Prof. Thomas Herring http://geoweb.mit.edu/~tah/12.540 Summary Review: Examined methods for measuring distances Examined GPS codes that allow

More information

Mitigation of GPS Carrier Phase Multipath Effects in Real-Time Kinematic Applications

Mitigation of GPS Carrier Phase Multipath Effects in Real-Time Kinematic Applications Mitigation of GPS Carrier Phase Multipath Effects in Real-Time Kinematic Applications Donghyun Kim and Richard B. Langley Geodetic Research Laboratory, Department of Geodesy and Geomatics Engineering,

More information

Scientific Journal of Silesian University of Technology. Series Transport Zeszyty Naukowe Politechniki Śląskiej. Seria Transport

Scientific Journal of Silesian University of Technology. Series Transport Zeszyty Naukowe Politechniki Śląskiej. Seria Transport Scientific Journal of Silesian University of Technology. Series Transport Zeszyty Naukowe Politechniki Śląskiej. Seria Transport Volume 89 2015 p-issn: 0209-3324 e-issn: 2450-1549 DOI: Journal homepage:

More information

The CASSIOPE Satellite Ionospheric Profiling Experiment

The CASSIOPE Satellite Ionospheric Profiling Experiment The CASSIOPE Satellite Ionospheric Profiling Experiment Richard B. Langley and Don Kim Geodetic Research Laboratory Dept. of Geodesy and Geomatics Engineering University of New Brunswick Fredericton, N.B.

More information

A Positon and Orientation Post-Processing Software Package for Land Applications - New Technology

A Positon and Orientation Post-Processing Software Package for Land Applications - New Technology A Positon and Orientation Post-Processing Software Package for Land Applications - New Technology Tatyana Bourke, Applanix Corporation Abstract This paper describes a post-processing software package that

More information

KALMAN-FILTER-BASED GPS AMBIGUITY RESOLUTION FOR REAL-TIME LONG-BASELINE KINEMATIC APPLICATIONS

KALMAN-FILTER-BASED GPS AMBIGUITY RESOLUTION FOR REAL-TIME LONG-BASELINE KINEMATIC APPLICATIONS KALMAN-FILTER-BASED GPS AMBIGUITY RESOLUTION FOR REAL-TIME LONG-BASELINE KINEMATIC APPLICATIONS Donghyun Kim and Richard B. Langley Geodetic Research Laboratory, Department of Geodesy and Geomatics Engineering,

More information

GPS: History, Operation, Processing

GPS: History, Operation, Processing GPS: History, Operation, Processing Impor tant Dates 1970 s: conceived as radionavigation system for the US military: realtime locations with few-meter accuracy. 1978: first satellite launched 1983: Declared

More information

GPS data correction using encoders and INS sensors

GPS data correction using encoders and INS sensors GPS data correction using encoders and INS sensors Sid Ahmed Berrabah Mechanical Department, Royal Military School, Belgium, Avenue de la Renaissance 30, 1000 Brussels, Belgium sidahmed.berrabah@rma.ac.be

More information

Global Navigation Satellite Systems II

Global Navigation Satellite Systems II Global Navigation Satellite Systems II AERO4701 Space Engineering 3 Week 4 Last Week Examined the problem of satellite coverage and constellation design Looked at the GPS satellite constellation Overview

More information

To Estimate The Regional Ionospheric TEC From GEONET Observation

To Estimate The Regional Ionospheric TEC From GEONET Observation To Estimate The Regional Ionospheric TEC From GEONET Observation Jinsong Ping(Email: jsping@miz.nao.ac.jp) 1,2, Nobuyuki Kawano 2,3, Mamoru Sekido 4 1. Dept. Astronomy, Beijing Normal University, Haidian,

More information

Performance of Long-Baseline Real-Time Kinematic Applications by Improving Tropospheric Delay Modeling

Performance of Long-Baseline Real-Time Kinematic Applications by Improving Tropospheric Delay Modeling Performance of Long-Baseline Real-Time Kinematic Applications by Improving Tropospheric Delay Modeling Don Kim 1, Sunil Bisnath 2, Richard B. Langley 1 and Peter Dare 1 1 Geodetic Research Laboratory,

More information

GNSS Technologies. PPP and RTK

GNSS Technologies. PPP and RTK PPP and RTK 29.02.2016 Content Carrier phase based positioning PPP RTK VRS Slides based on: GNSS Applications and Methods, by S. Gleason and D. Gebre-Egziabher (Eds.), Artech House Inc., 2009 http://www.gnssapplications.org/

More information

POWERGPS : A New Family of High Precision GPS Products

POWERGPS : A New Family of High Precision GPS Products POWERGPS : A New Family of High Precision GPS Products Hiroshi Okamoto and Kazunori Miyahara, Sokkia Corp. Ron Hatch and Tenny Sharpe, NAVCOM Technology Inc. BIOGRAPHY Mr. Okamoto is the Manager of Research

More information

The Benefit of Triple Frequency on Cycle Slip Detection

The Benefit of Triple Frequency on Cycle Slip Detection Presented at the FIG Congress 2018, The Benefit of Triple Frequency on Cycle Slip Detection May 6-11, 2018 in Istanbul, Turkey Dong Sheng Zhao 1, Craig Hancock 1, Gethin Roberts 2, Lawrence Lau 1 1 The

More information

A GPS RECEIVER DESIGNED FOR CARRIER-PHASE TIME TRANSFER

A GPS RECEIVER DESIGNED FOR CARRIER-PHASE TIME TRANSFER A GPS RECEIVER DESIGNED FOR CARRIER-PHASE TIME TRANSFER Alison Brown, Randy Silva, NAVSYS Corporation and Ed Powers, US Naval Observatory BIOGRAPHY Alison Brown is the President and CEO of NAVSYS Corp.

More information

Assessment of WAAS Correction Data in Eastern Canada

Assessment of WAAS Correction Data in Eastern Canada Abstract Assessment of WAAS Correction Data in Eastern Canada Hyunho Rho and Richard B. Langley Geodetic Research Laboratory University of New Brunswick P.O. Box Fredericton, NB Canada, E3B 5A3 As part

More information

MINOS Timing and GPS Precise Point Positioning

MINOS Timing and GPS Precise Point Positioning MINOS Timing and GPS Precise Point Positioning Stephen Mitchell US Naval Observatory stephen.mitchell@usno.navy.mil for the International Workshop on Accelerator Alignment 2012 in Batavia, IL A Joint

More information

Optimization of Cascade Integer Resolution with Three Civil GPS Frequencies

Optimization of Cascade Integer Resolution with Three Civil GPS Frequencies Optimization of Cascade Integer Resolution with Three Civil GPS Frequencies Jaewoo Jung, Per Enge, Stanford University Boris Pervan, Illinois Institute of Technology BIOGRAPHY Dr. Jaewoo Jung received

More information

Assessing & Mitigation of risks on railways operational scenarios

Assessing & Mitigation of risks on railways operational scenarios R H I N O S Railway High Integrity Navigation Overlay System Assessing & Mitigation of risks on railways operational scenarios Rome, June 22 nd 2017 Anja Grosch, Ilaria Martini, Omar Garcia Crespillo (DLR)

More information

The Global Positioning System

The Global Positioning System The Global Positioning System 5-1 US GPS Facts of Note DoD navigation system First launch on 22 Feb 1978, fully operational in 1994 ~$15 billion (?) invested to date 24 (+/-) Earth-orbiting satellites

More information

Total Electron Content (TEC) and Model Validation at an Equatorial Region

Total Electron Content (TEC) and Model Validation at an Equatorial Region Total Electron Content (TEC) and Model Validation at an Equatorial Region NORSUZILA YA ACOB 1, MARDINA ABDULLAH 2,* MAHAMOD ISMAIL 2,* AND AZAMI ZAHARIM 3,** 1 Faculty of Electrical Engineering, Universiti

More information

http://www.ion.org/awards/ Congratulations Institute of Navigation Honorees The Annual s Program is sponsored by the Institute of Navigation to recognize individuals making significant contributions,

More information

REAL-TIME GPS ATTITUDE DETERMINATION SYSTEM BASED ON EPOCH-BY-EPOCH TECHNOLOGY

REAL-TIME GPS ATTITUDE DETERMINATION SYSTEM BASED ON EPOCH-BY-EPOCH TECHNOLOGY REAL-TIME GPS ATTITUDE DETERMINATION SYSTEM BASED ON EPOCH-BY-EPOCH TECHNOLOGY Dr. Yehuda Bock 1, Thomas J. Macdonald 2, John H. Merts 3, William H. Spires III 3, Dr. Lydia Bock 1, Dr. Jeffrey A. Fayman

More information

ANALYSIS OF GPS SATELLITE OBSERVABILITY OVER THE INDIAN SOUTHERN REGION

ANALYSIS OF GPS SATELLITE OBSERVABILITY OVER THE INDIAN SOUTHERN REGION TJPRC: International Journal of Signal Processing Systems (TJPRC: IJSPS) Vol. 1, Issue 2, Dec 2017, 1-14 TJPRC Pvt. Ltd. ANALYSIS OF GPS SATELLITE OBSERVABILITY OVER THE INDIAN SOUTHERN REGION ANU SREE

More information

GPS Error and Biases

GPS Error and Biases Component-I(A) - Personal Details Role Name Affiliation Principal Investigator Prof.MasoodAhsanSiddiqui Department of Geography, JamiaMilliaIslamia, New Delhi Paper Coordinator, if any Dr. Mahaveer Punia

More information

Improving the GPS Data Processing Algorithm for Precise Static Relative Positioning

Improving the GPS Data Processing Algorithm for Precise Static Relative Positioning Improving the GPS Data Processing Algorithm for Precise Static Relative Positioning by Chalermchon Satirapod BEng, Chulalongkorn University, Bangkok, Thailand, 1994 MEng, Chulalongkorn University, Bangkok,

More information

High Gain Advanced GPS Receiver

High Gain Advanced GPS Receiver High Gain Advanced GPS Receiver NAVSYS Corporation 14960 Woodcarver Road, Colorado Springs, CO 80921 Introduction The NAVSYS High Gain Advanced GPS Receiver (HAGR) is a digital beam steering receiver designed

More information

Performance Analysis of Carrier-Phase DGPS Navigation for Shipboard Landing of Aircraft

Performance Analysis of Carrier-Phase DGPS Navigation for Shipboard Landing of Aircraft Performance Analysis of Carrier-Phase DGPS Navigation for Shipboard Landing of Aircraft BORIS PERVAN and FANG-CHENG CHAN Illinois Institute of Technology, Chicago, Illinois DEMOZ GEBRE-EGZIABHER, SAM PULLEN,

More information

CDAAC Ionospheric Products

CDAAC Ionospheric Products CDAAC Ionospheric Products Stig Syndergaard COSMIC Project Office COSMIC retreat, Oct 13 14, 5 COSMIC Ionospheric Measurements GPS receiver: { Total Electron Content (TEC) to all GPS satellites in view

More information

A study of the ionospheric effect on GBAS (Ground-Based Augmentation System) using the nation-wide GPS network data in Japan

A study of the ionospheric effect on GBAS (Ground-Based Augmentation System) using the nation-wide GPS network data in Japan A study of the ionospheric effect on GBAS (Ground-Based Augmentation System) using the nation-wide GPS network data in Japan Takayuki Yoshihara, Electronic Navigation Research Institute (ENRI) Naoki Fujii,

More information

Performance Evaluation of Multiple Reference Station GPS RTK for a Medium Scale Network

Performance Evaluation of Multiple Reference Station GPS RTK for a Medium Scale Network Journal of Global Positioning Systems (2004) Vol. 3, No. 12: 173182 Performance Evaluation of Multiple Reference Station GPS RTK for a Medium Scale Network T.H. Diep Dao, Paul Alves and Gérard Lachapelle

More information

UCGE Reports Number 20054

UCGE Reports Number 20054 UCGE Reports Number 20054 Department of Geomatics Engineering An Analysis of Some Critical Error Sources in Static GPS Surveying (URL: http://www.geomatics.ucalgary.ca/links/gradtheses.html) by Weigen

More information

DECIMETER LEVEL MAPPING USING DIFFERENTIAL PHASE MEASUREMENTS OF GPS HANDHELD RECEIVERS

DECIMETER LEVEL MAPPING USING DIFFERENTIAL PHASE MEASUREMENTS OF GPS HANDHELD RECEIVERS DECIMETER LEVEL MAPPING USING DIFFERENTIAL PHASE MEASUREMENTS OF GPS HANDHELD RECEIVERS Dr. Ahmed El-Mowafy Civil and Environmental Engineering Department College of Engineering The United Arab Emirates

More information

Multisystem Real Time Precise-Point-Positioning, today with GPS+GLONASS in the near future also with QZSS, Galileo, Compass, IRNSS

Multisystem Real Time Precise-Point-Positioning, today with GPS+GLONASS in the near future also with QZSS, Galileo, Compass, IRNSS 2 International Symposium on /GNSS October 26-28, 2. Multisystem Real Time Precise-Point-Positioning, today with +GLONASS in the near future also with QZSS, Galileo, Compass, IRNSS Álvaro Mozo García,

More information