The calculation of short-circuit current in the electrical design of traction substation

Size: px
Start display at page:

Download "The calculation of short-circuit current in the electrical design of traction substation"

Transcription

1 Advances in Engineering Research (AER), volume International Conference on Engineering and Advanced Technology (ICEAT-16) The calculation of short-circuit current in the electrical design of traction substation DeSheng Zhong Guidaojiaotong Polytechnic Institute, Shenyang 12, China Keywords: short-circuit current, traction substation, traction substation. Abstract. This paper mainly studies the calculation of short-circuit current in the electrical design of a domestic electrified railway traction substation power supply system. The choice of short-circuit point depends on the main transformer capacity that determined according to the traction substation main connection mode and load calculation results, calculation of short-circuit current, Completed the main electrical equipment and selection of busbar according to the results of the short circuit calculation. 1. Introduction The power supply system of electrified railway traction substation that we studied in this paper, use the AT power supply mode, it is double line, section of ascending and descending parallel power supply. Combined with the actual situation of substation, the choice of connection mode is feeder circuit breaker 50% spare. ecause of the 220/10kV distribution substation built with the substation together, leads to two private electricity transformers from 10 kv bus bar for the needs of the resources reasonable use and safety of power supply. Traction transformer capacity should be able to bear the maximum load of substation, and meet the requirements of railway transport normal, therefore chooses four kva single-phase traction transformer. According to J/T , choose D-QY50000 traction transformer, its parameters are shown in table 1. Table 1 The parameters of single-phase traction transformer High Voltage Low Voltage Connection (kv) (kv) Symbol 220±2 2.5% Ii0 o-load loss (kw) 40 Load loss o-load Short-circuit (kw) Current Impedance % 12% 2. The required raw materials for Calculate Feeding section1 n=.5, =140pair/day, 1k=180pair/day; Feeding section2 n=.8, =150pair/day, 1k=200pair/day; n interval number; The train logarithm of the feeding section; 1k Maximum number of train. The rest of the original calculation data are shown in table 2. Copyright 2017, the Authors. Published by Atlantis Press. This is an open access article under the CC Y-C license ( 60

2 Feeding section Table 2 The required raw materials for Calculate The total running The energy consumption Electricity running time of train in t( t time t(min) t g (min) g ) A(kVA.h) up train down train up train down train up train down train Calculation of short-circuit current Short circuit is a low edance short sub on conductive part of different potential, includes conductive parts to ground between subs. The main purpose of the calculation of short-circuit current is complete electrical equipment selection and busbar selection, In this design, the calculation of short-circuit current in accordance with the three phase short circuit calculation, and assumes that the system for the infinite power[1]. nit reactance of transmission lines x 1 = 0.4Ω/km, ase Capacity voltage = (Average voltage rating of power lines). av.n = MVA,reference (1) Equivalent circuit diagram and the calculation of each component reactance etwork diagram of this design is slified according to the main connection mode selection and operation mode for a long time, draw the network diagram as shown in figure 1, T1, T2 are the two 50 mva single-phase traction transformer in figure. First of all, short-circuit point selection, according to the analysis can select k1, two short-circuit point to calculate short circuit current, as shown in figure kv side SES is a bridge connection, when the switch is closed, when run in parallel with two way power supply, it is the largest operation mode, slified equivalent calculation of network diagram is shown in figure 2. G1 G2 220kV k 1 G 220kV k 1 1 T 1 T 2 2 kv k 2 kv Fig.1 Short circuit network wiring diagram Fig.2 Equivalent network diagram According to the provisions in China standard, take 220 kv voltage benchmark of =20kV. Set G1, G2 short-circuit point from k1 distance of l1=l2=km, The MAO value of linear reactance is: * * 1 = 2 = xl 11 = 0.4 = Above formula: x 1 Line reactance, Ω/m ; l line length, m. (2) The calculation of short-circuit current 1The calculation of short-circuit current of k1 point The current benchmark is: k 2 61

3 Above formula: I = = = (ka) S Three-phase power value, Generally take MVA; Voltage reference value, kv. The MAO value of total reactance: * * * = 1 / / 2 = = The MAO value of three phase short circuit current cycle componen: * 1 I = = 25 k1 * 1 Impact currentfor of three-phase short-circuit: i = 2.55I = (ka) Maximum RMS of the three-phase short-circuit current: I = 1.52I = 9.5 (ka) Maximum continuous working current: S (50 50) 10 Igmax = 1.05 = 1.05 = The calculation of short-circuit current of point Approximate equivalent circuit of V/ wiring traction transformer as shown in figure (a), Y type equivalent circuit as shown in figure (b) (A) Z 2 I Z 1 2Z T s I T E I F F Z T F 4Zs Z1 Z2 2Z Z s 1 4Zs Z1 Z (a) The approximate equivalent circuit (b) Y type equivalent circuit Fig. Equivalent circuit of V/ wiring traction transformer 2 * 2 * 2 System edance: Zs = Zs. = 1. = 0.04 = 0. ( Ω ) Analyzing the characteristics of the V/ wiring traction transformer connection, and according to the single-phase traction transformer parameters are known to be elected in table 2: k(1-2) (%)= k(1-) (%)=12 Traction transformer primary side after short circuit edance seen from secondary side is: k(1-2) (%) 12 Z12 = 12 = = = 1.82 ( Ω ) ST 50 Similarly, Traction transformer primary side after short circuit edance seen from tertiary side is: k(1-) (%) 12 Z1 = 1 = = = 1.82 ( Ω ) ST 50 When T busbar one-phase ground fault at kv side, short circuit current is: I = dt Z Z Z = 2Z Z = (ka) s 1 2 s 1 2 E T E F 62

4 When F busbar one-phase ground fault at kv side, short circuit current is: I = df Zs Z1 Z = 2Zs Z = (ka) 1 When phase fault between F and T busbar at kv side, short circuit current is: 55 I = dtf IdT 8Zs 4Z1 Z2 Z = 4Zs Z1 Z < 12 From the above analysis, When F or T busbar one-phase ground fault at kv side, Short circuit current is greater than phase fault between F and T busbar at kv side, so I =I dt =I df =11.6kA. short circuit act current is: i = 2.55I = (ka) The biggest valid values for short circuit current: I = 1.52I = (ka) Maximum continuous working current is: S (50 50) 10 Igmax = 1.05 = 1.05 = Electrical equipment and the choice of bus According to the actual short circuit state calibration, is to check the thermal stability and dynamic stability of electrical equipment[2]. It is concluded that the choice of the electrical equipment as shown in table : Table Electrical equipment (A) Electrical Equipment Type Model Primary Cut-Out Vacuum Circuit reaker ZW-2 High Voltage Isolator 220kV Side Disconnector 2 kv Side Disconnector GW4-220 GW kV Side Current Transformer LCW7-220 Current Transformer 2 kv Side Current Transformer LDG-5 220kV Side Voltage Transformer JDCF-220 Voltage Transformer 2 kv Side Voltage Transformer JDZ- The choice of the bus: LGJ - 95/15 type steel core aluminum stranded wire is chosen as the 220 kv busbar side bridge[];choose LF - 21 y type aluminum manganese alloy tubular busbar as 2 x kv bus side. 5. Summary According to the result of short circuit calculation, and considering the actual situation of the traction substation, completed the selection of electrical equipment and bus, provide the basis for the whole electrical design of traction substation of electrified railway power supply system. References [1] D. L. Garrett and K. A. Wallace, A critical analysis of grounding practices for railroad tracks in electric utility systems, in IEEE PES Winter Meeting, ew York, 1992, Paper o: 92 WM 6

5 220-4 PWRD. [2] Practical Applications of ASI/IEEE Standard , IEEE Guide for Safety, IEEE Tutorial Course, 86 EH025-5-PWR. [] IEEE Guide for Measuring Earth Resistivity, Ground Impedance and Earth Potentials of a Ground System, IEEE Standard 81,

SAMPLE EXAM PROBLEM PROTECTION (6 OF 80 PROBLEMS)

SAMPLE EXAM PROBLEM PROTECTION (6 OF 80 PROBLEMS) SAMPLE EXAM PROBLEM PROTECTION (6 OF 80 PROBLEMS) SLIDE In this video, we will cover a sample exam problem for the Power PE Exam. This exam problem falls under the topic of Protection, which accounts for

More information

ELECTRICAL POWER TRANSMISSION TRAINER

ELECTRICAL POWER TRANSMISSION TRAINER ELECTRICAL POWER TRANSMISSION TRAINER ELECTRICAL POWER TRANSMISSION TRAINER This training system has been designed to provide the students with a fully comprehensive knowledge in Electrical Power Engineering

More information

Electricity Ten Year Statement November Electricity Ten Year Statement November Appendix D

Electricity Ten Year Statement November Electricity Ten Year Statement November Appendix D Electricity Ten Year Statement November 2017 01 Electricity Ten Year Statement November 2017 001 Appendix D 1 Short-circuit currents 02 2 Short-circuit current terminology 04 3 Data requirements 07 4 Fault

More information

3-phase short-circuit current (Isc) at any point within a LV installation

3-phase short-circuit current (Isc) at any point within a LV installation 3-phase short-circuit current (Isc) at any point within a LV installation In a 3-phase installation Isc at any point is given by: where U 20 = phase-to-phase voltage of the open circuited secondary windings

More information

ABB AG - EPDS. I S -limiter The worldʼs fastest limiting and switching device

ABB AG - EPDS. I S -limiter The worldʼs fastest limiting and switching device ABB AG - EPDS The worldʼs fastest limiting and switching device Agenda The world s fastest limiting and switching device Customers Function: Insert-holder with insert Comparison: I S -limiter Circuit-breaker

More information

Lecturer: Dr. J B E AL-ATRASH No. of Pages: 4

Lecturer: Dr. J B E AL-ATRASH No. of Pages: 4 Philadelphia University Faculty of Engineering Dept. of Electrical Engineering Student Name: Student Number: Final Exam Course Title: Design of T&D System Date: 15 th June 2016 Course No: 610 515/650511

More information

Analysis of a 405 km transmission line with series compensation

Analysis of a 405 km transmission line with series compensation Analysis of a 405 km transmission line with series compensation by Dr. Rupert Gouws, North-West University This paper presents an investigative case study and energy efficiency analysis of the 405 km,

More information

Three-phase short-circuit current (Isc) calculation at any point within a LV installation using impedance method

Three-phase short-circuit current (Isc) calculation at any point within a LV installation using impedance method Three-phase short-circuit current (Isc) calculation at any point within a LV installation using impedance method Calculation of Isc by the impedance method In a 3-phase installation Isc at any point is

More information

MV network design & devices selection EXERCISE BOOK

MV network design & devices selection EXERCISE BOOK MV network design & devices selection EXERCISE BOOK EXERCISES 01 - MV substation architectures 02 - MV substation architectures 03 - Industrial C13-200 MV substation 04 - Max. distance between surge arrester

More information

BE Semester- VI (Electrical Engineering) Question Bank (E 605 ELECTRICAL POWER SYSTEM - II) Y - Y transformer : 300 MVA, 33Y / 220Y kv, X = 15 %

BE Semester- VI (Electrical Engineering) Question Bank (E 605 ELECTRICAL POWER SYSTEM - II) Y - Y transformer : 300 MVA, 33Y / 220Y kv, X = 15 % BE Semester- V (Electrical Engineering) Question Bank (E 605 ELECTRCAL POWER SYSTEM - ) All questions carry equal marks (10 marks) Q.1 Explain per unit system in context with three-phase power system and

More information

The Advantages and Application of Three Winding Transformers

The Advantages and Application of Three Winding Transformers The Advantages and Application of Three Winding Transformers MSc, CEng, FIEE, FIMechE, FIPENZ Principal, Sinclair Knight Merz Abstract Although seldom used in Australia and New Zealand, three winding transformers

More information

SHORT CIRCUIT ANALYSIS OF 220/132 KV SUBSTATION BY USING ETAP

SHORT CIRCUIT ANALYSIS OF 220/132 KV SUBSTATION BY USING ETAP SHORT CIRCUIT ANALYSIS OF 220/132 KV SUBSTATION BY USING ETAP Kiran V. Natkar 1, Naveen Kumar 2 1 Student, M.E., Electrical Power System, MSS CET/ Dr. B.A.M. University, (India) 2 Electrical Power System,

More information

Appendix D Fault Levels

Appendix D Fault Levels Appendix D Fault Levels Page 1 Electricity Ten Year Statement November 2013 D.1 Short Circuit Currents Short Circuit Currents Three phase to earth and single phase to earth short circuit current analyses

More information

2C73 Setting Guide. High Impedance Differential Relay. relay monitoring systems pty ltd Advanced Protection Devices

2C73 Setting Guide. High Impedance Differential Relay. relay monitoring systems pty ltd Advanced Protection Devices 2C73 Setting Guide High Impedance Differential Relay relay monitoring systems pty ltd Advanced Protection Devices 1. INTRODUCTION This document provides guidelines for the performance calculations required

More information

Company Directive STANDARD TECHNIQUE: SD7F/2. Determination of Short Circuit Duty for Switchgear on the WPD Distribution System

Company Directive STANDARD TECHNIQUE: SD7F/2. Determination of Short Circuit Duty for Switchgear on the WPD Distribution System Company Directive STANDARD TECHNIQUE: SD7F/2 Determination of Short Circuit Duty for Switchgear on the WPD Distribution System Policy Summary This document provides guidance on calculation of fault levels

More information

2 METHODOLOGY. The method of reactive power compensation, proposed in this research is suitable

2 METHODOLOGY. The method of reactive power compensation, proposed in this research is suitable 2 METHODOLOGY 2.1 BASE LOAD REACTIVE POWER REQUIREMENT The method of reactive power compensation, proposed in this research is suitable to meet the base reactive power requirement of the network. The base

More information

2C73 Setting Guide. High Impedance Differential Relay. Advanced Protection Devices. relay monitoring systems pty ltd

2C73 Setting Guide. High Impedance Differential Relay. Advanced Protection Devices. relay monitoring systems pty ltd 2C73 Setting Guide High Impedance Differential Relay relay monitoring systems pty ltd Advanced Protection Devices 1. INTRODUCTION This document provides guidelines for the performance calculations required

More information

D-UPFC Application as the Series Power Device in the Massive Roof-top PVs and Domestic Loads

D-UPFC Application as the Series Power Device in the Massive Roof-top PVs and Domestic Loads Current Photovoltaic Research 4(4) 131-139 (2016) pissn 2288-3274 DOI:https://doi.org/10.21218/CPR.2016.4.4.131 eissn 2508-125X D-UPFC Application as the Series Power Device in the Massive Roof-top PVs

More information

Chapter 2: Transformers

Chapter 2: Transformers Chapter 2: Transformers 2-1. The secondary winding of a transformer has a terminal voltage of v s (t) = 282.8 sin 377t V. The turns ratio of the transformer is 100:200 (a = 0.50). If the secondary current

More information

TABLE OF CONTENT

TABLE OF CONTENT Page : 1 of 34 Project Engineering Standard www.klmtechgroup.com KLM Technology #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor Bahru Malaysia TABLE OF CONTENT SCOPE 3 REFERENCES

More information

EH2741 Communication and Control in Electric Power Systems Lecture 2

EH2741 Communication and Control in Electric Power Systems Lecture 2 KTH ROYAL INSTITUTE OF TECHNOLOGY EH2741 Communication and Control in Electric Power Systems Lecture 2 Lars Nordström larsno@kth.se Course map Outline Transmission Grids vs Distribution grids Primary Equipment

More information

Level 6 Graduate Diploma in Engineering Electrical Energy Systems

Level 6 Graduate Diploma in Engineering Electrical Energy Systems 9210-114 Level 6 Graduate Diploma in Engineering Electrical Energy Systems Sample Paper You should have the following for this examination one answer book non-programmable calculator pen, pencil, ruler,

More information

R10. III B.Tech. II Semester Supplementary Examinations, January POWER SYSTEM ANALYSIS (Electrical and Electronics Engineering) Time: 3 Hours

R10. III B.Tech. II Semester Supplementary Examinations, January POWER SYSTEM ANALYSIS (Electrical and Electronics Engineering) Time: 3 Hours Code No: R3 R1 Set No: 1 III B.Tech. II Semester Supplementary Examinations, January -14 POWER SYSTEM ANALYSIS (Electrical and Electronics Engineering) Time: 3 Hours Max Marks: 75 Answer any FIVE Questions

More information

Saturday-Sunday Training Report

Saturday-Sunday Training Report DEPARTMENT OF ELECTRICAL ENGINEERING Saturday-Sunday Training Report 9 th -10 th January,2015 At 220 KV Substation, Shapur H.O.D Prof. M. M. Baraiya T. P. O Prof. M. M. Makavana Visited Student Nagariya

More information

3Ø Short-Circuit Calculations

3Ø Short-Circuit Calculations 3Ø Short-Circuit Calculations Why Short-Circuit Calculations Several sections of the National Electrical Code relate to proper overcurrent protection. Safe and reliable application of overcurrent protective

More information

Short Circuit Current Calculations

Short Circuit Current Calculations Introduction Several sections of the National Electrical Code relate to proper overcurrent protection. Safe and reliable application of overcurrent protective devices based on these sections mandate that

More information

Relay Coordination in the Protection of Radially- Connected Power System Network

Relay Coordination in the Protection of Radially- Connected Power System Network Relay Coordination in the Protection of Radially- Connected Power System Network Zankhana Shah Electrical Department, Kalol institute of research centre, Ahemedabad-Mehshana Highway, kalol, India 1 zankhu.shah@gmail.com

More information

The Influence of Odevity of Carrier Ratio on Three-level Rectifier Wang Pengzhan1, a, Luo Wei2, Yang Shasha1, Cao Tianzhi3 and Li Huawei1

The Influence of Odevity of Carrier Ratio on Three-level Rectifier Wang Pengzhan1, a, Luo Wei2, Yang Shasha1, Cao Tianzhi3 and Li Huawei1 4th International Conference on Machinery, Materials and Information Technology Applications (ICMMITA 216) The Influence of Odevity of Carrier Ratio on Three-level Rectifier Wang Pengzhan1, a, Luo Wei2,

More information

, ,54 A

, ,54 A AEB5EN2 Ground fault Example Power line 22 kv has the partial capacity to the ground 4,3.0 F/km. Decide whether ground fault currents compensation is required if the line length is 30 km. We calculate

More information

Ground Fault Detection using Zigzag Grounding Transformer in Ungrounded System

Ground Fault Detection using Zigzag Grounding Transformer in Ungrounded System Ground Fault Detection using Zigzag Grounding Transformer in Ungrounded System Dhruvita Mandaliya 1, Ajay M. Patel 2, Tarang Thakkar 3 1 PG Student, Electrical Engineering Department, Birla Vishvakarma

More information

Calculation of Transient Overvoltages by using EMTP software in a 2-Phase 132KV GIS

Calculation of Transient Overvoltages by using EMTP software in a 2-Phase 132KV GIS Calculation of Transient Overvoltages by using EMTP software in a 2-Phase 132KV GIS M. Kondalu, Dr. P.S. Subramanyam Electrical & Electronics Engineering, JNT University. Hyderabad. Joginpally B.R. Engineering

More information

EDS FAULT LEVELS

EDS FAULT LEVELS Document Number: EDS 08-1110 Network(s): Summary: EPN, LPN, SPN ENGINEERING DESIGN STANDARD EDS 08-1110 FAULT LEVELS This standard provides guidance on the calculation, application and availability of

More information

USING OVER-DAMPING METHOD TO SUPPRESS THE FERRO-RESONANCE OF POTENTIAL TRANSFORMER

USING OVER-DAMPING METHOD TO SUPPRESS THE FERRO-RESONANCE OF POTENTIAL TRANSFORMER USING OVER-DAMPING METHOD TO SUPPRESS THE FERRO-RESONANCE OF POTENTIAL TRANSFORMER Lai Tianjiang, Lai Tianyu, Lai Qingbo Dalian Electric Power Company, China jimata@mail.dlptt.ln.cn 1 Forward In power

More information

Numbering System for Protective Devices, Control and Indication Devices for Power Systems

Numbering System for Protective Devices, Control and Indication Devices for Power Systems Appendix C Numbering System for Protective Devices, Control and Indication Devices for Power Systems C.1 APPLICATION OF PROTECTIVE RELAYS, CONTROL AND ALARM DEVICES FOR POWER SYSTEM CIRCUITS The requirements

More information

Ferroresonance Experience in UK: Simulations and Measurements

Ferroresonance Experience in UK: Simulations and Measurements Ferroresonance Experience in UK: Simulations and Measurements Zia Emin BSc MSc PhD AMIEE zia.emin@uk.ngrid.com Yu Kwong Tong PhD CEng MIEE kwong.tong@uk.ngrid.com National Grid Company Kelvin Avenue, Surrey

More information

Deployment of Real-time State Estimator and Load Flow in BC Hydro DMS - Challenges and Opportunities

Deployment of Real-time State Estimator and Load Flow in BC Hydro DMS - Challenges and Opportunities IEEE PES General Meeting, Vancouver, Canada, July 2013 Deployment of Real-time State Estimator and Load Flow in BC Hydro DMS - Challenges and Opportunities Djordje Atanackovic, BC Hydro Valentina Dabic,

More information

ELECTRICAL POWER ENGINEERING

ELECTRICAL POWER ENGINEERING Introduction This trainer has been designed to provide students with a fully comprehensive knowledge in Electrical Power Engineering systems. The trainer is composed of a set of modules for the simulation

More information

Single Line Diagram of Substations

Single Line Diagram of Substations Single Line Diagram of Substations Substations Electric power is produced at the power generating stations, which are generally located far away from the load centers. High voltage transmission lines are

More information

POWER SYSTEM ANALYSIS TADP 641 SETTING OF OVERCURRENT RELAYS

POWER SYSTEM ANALYSIS TADP 641 SETTING OF OVERCURRENT RELAYS POWER SYSTEM ANALYSIS TADP 641 SETTING OF OVERCURRENT RELAYS Juan Manuel Gers, PhD Protection coordination principles Relay coordination is the process of selecting settings that will assure that the relays

More information

BUS2000 Busbar Differential Protection System

BUS2000 Busbar Differential Protection System BUS2000 Busbar Differential Protection System Differential overcurrent system with percentage restraint protection 1 Typical Busbar Arrangements Single Busbar Double Busbar with Coupler Breaker and a Half

More information

ESB National Grid Transmission Planning Criteria

ESB National Grid Transmission Planning Criteria ESB National Grid Transmission Planning Criteria 1 General Principles 1.1 Objective The specific function of transmission planning is to ensure the co-ordinated development of a reliable, efficient, and

More information

Validation of a Power Transformer Model for Ferroresonance with System Tests on a 400 kv Circuit

Validation of a Power Transformer Model for Ferroresonance with System Tests on a 400 kv Circuit Validation of a Power Transformer Model for Ferroresonance with System Tests on a 4 kv Circuit Charalambos Charalambous 1, Z.D. Wang 1, Jie Li 1, Mark Osborne 2 and Paul Jarman 2 Abstract-- National Grid

More information

Cork Institute of Technology. Autumn 2008 Electrical Energy Systems (Time: 3 Hours)

Cork Institute of Technology. Autumn 2008 Electrical Energy Systems (Time: 3 Hours) Cork Institute of Technology Bachelor of Science (Honours) in Electrical Power Systems - Award Instructions Answer FIVE questions. (EELPS_8_Y4) Autumn 2008 Electrical Energy Systems (Time: 3 Hours) Examiners:

More information

Topic 6 Quiz, February 2017 Impedance and Fault Current Calculations For Radial Systems TLC ONLY!!!!! DUE DATE FOR TLC- February 14, 2017

Topic 6 Quiz, February 2017 Impedance and Fault Current Calculations For Radial Systems TLC ONLY!!!!! DUE DATE FOR TLC- February 14, 2017 Topic 6 Quiz, February 2017 Impedance and Fault Current Calculations For Radial Systems TLC ONLY!!!!! DUE DATE FOR TLC- February 14, 2017 NAME: LOCATION: 1. The primitive self-inductance per foot of length

More information

PROBLEMS. Figure13.74 For Prob Figure13.72 For Prob Figure13.75 For Prob Figure13.73 For Prob Figure13.76 For Prob

PROBLEMS. Figure13.74 For Prob Figure13.72 For Prob Figure13.75 For Prob Figure13.73 For Prob Figure13.76 For Prob CHAPTER 13 Magnetically Coupled Circuits 571 13.9 In order to match a source with internal impedance of 500 to a 15- load, what is needed is: (a) step-up linear transformer (b) step-down linear transformer

More information

Electromagnetic Transient Simulation for Study on Commutation Failures in HVDC Systems

Electromagnetic Transient Simulation for Study on Commutation Failures in HVDC Systems Electromagnetic Transient Simulation for Study on Commutation Failures in HVDC Systems Xia Chengjun, Xu Yang, Shan Yuanda Abstract--In order to improve reliability of HVDC transmission system, commutation

More information

LIGHTNING OVERVOLTAGES AND THE QUALITY OF SUPPLY: A CASE STUDY OF A SUBSTATION

LIGHTNING OVERVOLTAGES AND THE QUALITY OF SUPPLY: A CASE STUDY OF A SUBSTATION LIGHTNING OVERVOLTAGES AND THE QUALITY OF SUPPLY: A CASE STUDY OF A SUBSTATION Andreas SUMPER sumper@citcea.upc.es Antoni SUDRIÀ sudria@citcea.upc.es Samuel GALCERAN galceran@citcea.upc.es Joan RULL rull@citcea.upc.es

More information

Fixed Series Compensation

Fixed Series Compensation Fixed Series Compensation High-reliable turnkey services for fixed series compensation NR Electric Corporation The Fixed Series Compensation (FSC) solution is composed of NR's PCS-9570 FSC control and

More information

Substation: From the Outside Looking In.

Substation: From the Outside Looking In. 1 Substation: From the Outside Looking In. Moderator n Ron Spataro AVO Training Institute Marketing Manager 2 Q&A n Send us your questions and comments during the presentation 3 Today s Presenter n Greg

More information

Unit 2. Single Line Diagram of Substations

Unit 2. Single Line Diagram of Substations Unit 2 Single Line Diagram of Substations Substations Electric power is produced at the power generating stations, which are generally located far away from the load centers. High voltage transmission

More information

Protection of Electrical Networks. Christophe Prévé

Protection of Electrical Networks. Christophe Prévé Protection of Electrical Networks Christophe Prévé This Page Intentionally Left Blank Protection of Electrical Networks This Page Intentionally Left Blank Protection of Electrical Networks Christophe Prévé

More information

Chapter # : 17 Symmetrical Fault Calculations

Chapter # : 17 Symmetrical Fault Calculations Chapter # : 17 Symmetrical Fault Calculations Introduction Most of the faults on the power system lead to a short-circuit condition. The short circuit current flows through the equipment, causing considerable

More information

ScienceDirect. Simulation Models for Various Neutral Earthing Methods in Medium Voltage Systems

ScienceDirect. Simulation Models for Various Neutral Earthing Methods in Medium Voltage Systems Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 1 (15 ) 118 1191 5th DAAAM International Symposium on Intelligent Manufacturing and Automation, DAAAM 1 Simulation Models for

More information

Improved differential relay for bus bar protection scheme with saturated current transformers based on second order harmonics

Improved differential relay for bus bar protection scheme with saturated current transformers based on second order harmonics Journal of King Saud University Engineering Sciences (2016) xxx, xxx xxx King Saud University Journal of King Saud University Engineering Sciences www.ksu.edu.sa www.sciencedirect.com ORIGINAL ARTICLES

More information

Fatima Michael college of Engineering and Technology

Fatima Michael college of Engineering and Technology Fatima Michael college of Engineering and Technology DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE2303 TRANSMISSION AND DISTRIBUTION SEM: V Question bank UNIT I INTRODUCTION 1. What is the electric

More information

UNIVERSITY OF SWAZILAND MAIN EXAMINATION, DECEMBER 2016

UNIVERSITY OF SWAZILAND MAIN EXAMINATION, DECEMBER 2016 UNIVERSITY OF SWAZILAND MAIN EXAMINATION, DECEMBER 2016 FACULTY OF SCIENCE AND ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING TITLE OF PAPER: POWER SYSTEM ANALYSIS AND OPERATION COURSE

More information

EH27401 Communication and Control in Electric Power Systems Lecture 2. Lars Nordström

EH27401 Communication and Control in Electric Power Systems Lecture 2. Lars Nordström EH27401 Communication and Control in Electric Power Systems Lecture 2 Lars Nordström larsn@ics.kth.se 1 Course map 2 Outline 1. Power System Topologies Transmission Grids vs Distribution grids Radial grids

More information

MV ELECTRICAL TRANSMISSION DESIGN AND CONSTRUCTION STANDARD. PART 1: GENERAL 1.01 Transformer

MV ELECTRICAL TRANSMISSION DESIGN AND CONSTRUCTION STANDARD. PART 1: GENERAL 1.01 Transformer PART 1: GENERAL 1.01 Transformer A. This section includes liquid filled, pad mounted distribution transformers with primary voltage of 12kV or 4.16kV (The University will determine primary voltage), with

More information

PSV3St _ Phase-Sequence Voltage Protection Stage1 (PSV3St1) Stage2 (PSV3St2)

PSV3St _ Phase-Sequence Voltage Protection Stage1 (PSV3St1) Stage2 (PSV3St2) 1MRS752324-MUM Issued: 3/2000 Version: D/23.06.2005 Data subject to change without notice PSV3St _ Phase-Sequence Voltage Protection Stage1 (PSV3St1) Stage2 (PSV3St2) Contents 1. Introduction... 2 1.1

More information

Gas-Insulated Medium-Voltage Switchgear siemens.com/8dab12

Gas-Insulated Medium-Voltage Switchgear siemens.com/8dab12 8DB 12 blue GIS Gas-Insulated Medium-Voltage Switchgear siemens.com/8dab12 Features Gas-insulated switchgear (GIS) type 8D/B has been an integral part of the medium-voltage portfolio at Siemens for more

More information

A Review Comprehension: Guideline for Testing of HV, EHV and UHV Substation Equipment

A Review Comprehension: Guideline for Testing of HV, EHV and UHV Substation Equipment International Research Journal of Engineering and Technology (IRJET) eissn: 23 0056 Volume: 04 Issue: 02 Feb 2017 www.irjet.net pissn: 072 A Review Comprehension: Guideline for Testing of HV, EHV and UHV

More information

Analysis Recloser as Reader Flow Disturbances in SUTM 20KV Feeders Tambak Wedi (Electricity Company) UPJ Kenjeran

Analysis Recloser as Reader Flow Disturbances in SUTM 20KV Feeders Tambak Wedi (Electricity Company) UPJ Kenjeran International Journal of Electronic Engineering and Computer Science Vol. 1, No. 3, 2016, pp. 65-69 http://www.aiscience.org/journal/ijeecs Analysis Recloser as Reader Flow Disturbances in SUTM 20KV Feeders

More information

G81 PART 1 FRAMEWORK APPENDIX

G81 PART 1 FRAMEWORK APPENDIX G81 PART 1 FRAMEWORK APPENDIX Housing Development design framework appendix to be read in conjunction with the latest version of: ENA Engineering Recommendation G81 Part 1 Framework for design and planning,

More information

Course ELEC Introduction to electric power and energy systems. Additional exercises with answers December reactive power compensation

Course ELEC Introduction to electric power and energy systems. Additional exercises with answers December reactive power compensation Course ELEC0014 - Introduction to electric power and energy systems Additional exercises with answers December 2017 Exercise A1 Consider the system represented in the figure below. The four transmission

More information

In Class Examples (ICE)

In Class Examples (ICE) In Class Examples (ICE) 1 1. A 3φ 765kV, 60Hz, 300km, completely transposed line has the following positive-sequence impedance and admittance: z = 0.0165 + j0.3306 = 0.3310 87.14 o Ω/km y = j4.67 410-6

More information

Electrical Protection System Design and Operation

Electrical Protection System Design and Operation ELEC9713 Industrial and Commercial Power Systems Electrical Protection System Design and Operation 1. Function of Electrical Protection Systems The three primary aims of overcurrent electrical protection

More information

The Effect of Fault States of the Twelve-pulse Rectifier During the Recuperation

The Effect of Fault States of the Twelve-pulse Rectifier During the Recuperation Transactions on Electrical Engineering, Vol. 3 (04), No. 8 The Effect of Fault States of the Twelve-pulse Rectifier During the Recuperation Ladislav Mlynařík ), Radovan Doleček ), ) University of Pardubice,

More information

A Guide to the DC Decay of Fault Current and X/R Ratios

A Guide to the DC Decay of Fault Current and X/R Ratios A Guide to the DC Decay of Fault Current and X/R Ratios Introduction This guide presents a guide to the theory of DC decay of fault currents and X/R ratios and the calculation of these values in Ipsa.

More information

ELEC Transmission i and

ELEC Transmission i and ELEC-1104 Lecture 5: Transmission i and Distribution ib ti Power System Layout Transmission and Distribution The transmission system is to transmit a large amount of energy from the power stations s to

More information

Safety earthing. Sector Energy PTI NC. Copyright Siemens AG All rights reserved. Theodor Connor

Safety earthing. Sector Energy PTI NC. Copyright Siemens AG All rights reserved. Theodor Connor Safety earthing Sector Energy PTI NC Theodor Connor Copyright Siemens AG 2008. All rights reserved. Content Introduction Theoretical background Soil Analysis Design of earthing system Measurements on earthing

More information

a) Determine the smallest, standard-sized circuit breaker that should be used to protect this branch circuit.

a) Determine the smallest, standard-sized circuit breaker that should be used to protect this branch circuit. ECET4520 Exam II Sample Exam Problems Instructions: This exam is closed book, except for the reference booklet provided by your instructor and one (8.5 x11 ) sheet of handwritten notes that may not contain

More information

Digital Simulation of Thyristor Controlled Interphase Power Control Technology (TC- IPC) to limit the fault currents

Digital Simulation of Thyristor Controlled Interphase Power Control Technology (TC- IPC) to limit the fault currents Digital Simulation of Thyristor Controlled Interphase Power Control Technology (TC- IPC) to limit the fault currents V.V.Satyanarayana Rao.R #1, S.Rama Reddy *2 # EEE Department,SCSVMV University Kanchipuram,India

More information

Extensive LV cable network. Figure 1: Simplified SLD of the transformer and associated LV network

Extensive LV cable network. Figure 1: Simplified SLD of the transformer and associated LV network Copyright 2017 ABB. All rights reserved. 1. Introduction Many distribution networks around the world have limited earth-fault current by a resistor located in the LV winding neutral point of for example

More information

I -limiter The world s fastest switching device

I -limiter The world s fastest switching device I S -limiter 2 I S -limiter The world s fastest switching device Reduces substation cost Solves short-circuit problems in new substations and substation extensions Optimum solution for interconnection

More information

IDAHO PURPA GENERATOR INTERCONNECTION REQUEST (Application Form)

IDAHO PURPA GENERATOR INTERCONNECTION REQUEST (Application Form) IDAHO PURPA GENERATOR INTERCONNECTION REQUEST (Application Form) Transmission Provider: IDAHO POWER COMPANY Designated Contact Person: Jeremiah Creason Address: 1221 W. Idaho Street, Boise ID 83702 Telephone

More information

ELECTRICAL NETWORKS SPECIFICATION TECHNICAL SPECIFICATION FOR A 230V/110V AND 400V/110V TRANSFORMER

ELECTRICAL NETWORKS SPECIFICATION TECHNICAL SPECIFICATION FOR A 230V/110V AND 400V/110V TRANSFORMER Approval Amendment Record Approval Date Version Description 03/05/2017 1 Initial issue PRINTOUT MAY NOT BE UP-TO-DATE; REFER TO METRO INTRANET FOR THE LATEST VERSION Page 1 of 13 Table of Contents 1. Purpose...

More information

86 chapter 2 Transformers

86 chapter 2 Transformers 86 chapter 2 Transformers Wb 1.2x10 3 0 1/60 2/60 3/60 4/60 5/60 6/60 t (sec) 1.2x10 3 FIGURE P2.2 2.3 A single-phase transformer has 800 turns on the primary winding and 400 turns on the secondary winding.

More information

Connection Impact Assessment Application

Connection Impact Assessment Application Connection Impact Assessment Application This form is for generators applying for Connection Impact Assessment (CIA) and for generators with a project size >10 kw. Please return the completed form by email,

More information

Available online at ScienceDirect. Energy Procedia 53 (2014 ) 86 94

Available online at  ScienceDirect. Energy Procedia 53 (2014 ) 86 94 Available online at www.sciencedirect.com ScienceDirect Energy Procedia 53 (2014 ) 86 94 EERA DeepWind 2014, 11th Deep Sea Offshore Wind R&D Conference Dynamic Series Compensation for the Reinforcement

More information

RAIDK, RAIDG, RAPDK and RACIK Phase overcurrent and earth-fault protection assemblies based on single phase measuring elements

RAIDK, RAIDG, RAPDK and RACIK Phase overcurrent and earth-fault protection assemblies based on single phase measuring elements RAIDK, RAIDG, RAPDK and RACIK Phase overcurrent and earth-fault protection assemblies based on single phase measuring elements User s Guide General Most faults in power systems can be detected by applying

More information

IEEE Power Engineering Society 2001 Winter Meeting Columbus, OH. Panel Session. Data for Modeling System Transients

IEEE Power Engineering Society 2001 Winter Meeting Columbus, OH. Panel Session. Data for Modeling System Transients IEEE Power Engineering Society 2001 Winter Meeting Columbus, OH Panel Session Data for Modeling System Transients Parameters for Modeling Transmission Lines and Transformers in Transient Studies Bruce

More information

High Performance Current Transducer IT 200-S ULTRASTAB = A. ε L

High Performance Current Transducer IT 200-S ULTRASTAB = A. ε L High Performance Current Transducer IT 200-S ULTRASTAB For the electronic measurement of currents: DC, AC, pulsed..., with galvanic isolation between the primary circuit and the secondary circuit. I PM

More information

Optimal Reactive Power Dispatch Considering Power Loss of Transformer

Optimal Reactive Power Dispatch Considering Power Loss of Transformer Optimal Reactive Power Dispatch Considering Power Loss of Transformer AN Guo Jun1, a, MAO Le Er2, b, YAO Qiang1, c, SHI Chang Min1, d, and WU Lan Xu3, e* 1 East Inner Mongolia EPRI, Zhaowuda Road, Jinqiao

More information

EVALUATION OF DIFFERENT SOLUTIONS OF FAULTED PHASE EARTHING TECHNIQUE FOR AN EARTH FAULT CURRENT LIMITATION

EVALUATION OF DIFFERENT SOLUTIONS OF FAULTED PHASE EARTHING TECHNIQUE FOR AN EARTH FAULT CURRENT LIMITATION EVALUATION OF DIFFERENT SOLUTIONS OF FAULTED PHASE EARTHING TECHNIQUE FOR AN EARTH FAULT CURRENT LIMITATION David TOPOLANEK Petr TOMAN Michal PTACEK Jaromir DVORAK Brno University of Technology - Czech

More information

Study of Centralized Anti-Islanding Method on Large-Scale Photovoltaic Power Plants

Study of Centralized Anti-Islanding Method on Large-Scale Photovoltaic Power Plants 4th International Conference on Machinery, Materials and Information Technology Applications (ICMMITA 2016) Study of Centralized Anti-Islanding Method on Large-Scale Photovoltaic Power Plants Chen-Xin

More information

Markus Abplanalp, 7. Braunschweiger Supraleiterseminar, Strombegrenzerkonzepte im Vergleich

Markus Abplanalp, 7. Braunschweiger Supraleiterseminar, Strombegrenzerkonzepte im Vergleich Markus Abplanalp, 7. Braunschweiger Supraleiterseminar, 6.6.2013 Strombegrenzerkonzepte im Vergleich Motivation Why fault current Limiter? Compromise in Power Systems High short-circuit capacity during

More information

DS2000ICLA. Specification highlights Symbol Unit Min Typ Max. Features. Applications: 1 ppm linearity. MPS for particles accelerators.

DS2000ICLA. Specification highlights Symbol Unit Min Typ Max. Features. Applications: 1 ppm linearity. MPS for particles accelerators. Ultra-stable, high precision (ppm class) fluxgate technology DS Series current transducer for non-intrusive, isolated DC and AC current measurement up to 3000A Features ppm linearity 0 ppm offset Current

More information

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit. Current transducer ITC 2000-S/SP2 N = 2000 A For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit. Features Bipolar and insulated

More information

Exercises on overhead power lines (and underground cables)

Exercises on overhead power lines (and underground cables) Exercises on overhead power lines (and underground cables) 1 From the laws of Electromagnetism it can be shown that l c = 1 v 2 where v is the speed of propagation of electromagnetic waves in the environment

More information

IGEE 402 Power System Analysis. FINAL EXAMINATION Fall 2004

IGEE 402 Power System Analysis. FINAL EXAMINATION Fall 2004 IGEE 40 Power System Analysis FINAL EXAMINATION Fall 004 Special instructions: - Duration: 150 minutes. - Material allowed: a crib sheet (double sided 8.5 x 11), calculator. - Attempt 4 out of 7 questions.

More information

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit. Current transducer LF 1010-S/SPA2 I PN = 1000 A For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit. Features Bipolar and

More information

PROBLEMS on Transformers

PROBLEMS on Transformers PROBLEMS on Transformers (A) Simple Problems 1. A single-phase, 250-kVA, 11-kV/415-V, 50-Hz transformer has 80 turns on the secondary. Calculate (a) the approximate values of the primary and secondary

More information

Ground Fault Currents in Unit Generator-Transformer at Various NGR and Transformer Configurations

Ground Fault Currents in Unit Generator-Transformer at Various NGR and Transformer Configurations Ground Fault Currents in Unit Generator-Transformer at Various NGR and Transformer Configurations A.R. Sultan, M.W. Mustafa, M.Saini Faculty of Electrical Engineering Universiti Teknologi Malaysia (UTM)

More information

Simulations of open phase conditions on the high voltage side of YNd05-power plant transformers

Simulations of open phase conditions on the high voltage side of YNd05-power plant transformers Simulations of open phase conditions on the high voltage side of YNd05-power plant transformers Disclaimer: All information presented in the report, the results and the related computer program, data,

More information

G. KOEPPL Koeppl Power Experts Switzerland

G. KOEPPL Koeppl Power Experts Switzerland PS3: Substation Design: New Solutions and Experiences Bus-Node Substation A Big Improvement in Short-Circuit and Switching Properties at Reduced Substation Costs G. KOEPPL Koeppl Power Experts Switzerland

More information

Power Quality enhancement of a distribution line with DSTATCOM

Power Quality enhancement of a distribution line with DSTATCOM ower Quality enhancement of a distribution line with DSTATCOM Divya arashar 1 Department of Electrical Engineering BSACET Mathura INDIA Aseem Chandel 2 SMIEEE,Deepak arashar 3 Department of Electrical

More information

Catenary and autotransformer coupled optimization for 2x25kV systems planning

Catenary and autotransformer coupled optimization for 2x25kV systems planning Power Supply System Analysis, Design and Planning 113 Catenary and autotransformer coupled optimization for 2x25kV systems planning E. Pilo, L. Rouco & A. Fernández Instituto de Investigación Tecnológica,

More information

Research on State Estimation and Information Processing Method for Intelligent Substation

Research on State Estimation and Information Processing Method for Intelligent Substation , pp.89-93 http://dx.doi.org/10.14257/astl.2015.83.17 Research on State Estimation and Information Processing Method for Intelligent Substation Tongwei Yu 1, Xingchao Yang 2 1 Electric Power Research Institute,

More information

Module 10. Initiation Code RELIABILITY ACCOUNTABILITY

Module 10. Initiation Code RELIABILITY ACCOUNTABILITY Module 10 Initiation Code 1 M10 Initiation Code This is not the Initiating cause code The Outage Initiation Codes describe where an Automatic Outage was initiated on the power system. Element-Initiated

More information

Overvoltage Protection of Light Railway Transportation Systems

Overvoltage Protection of Light Railway Transportation Systems Overvoltage Protection of Light Railway Transportation Systems F. Delfino, R. Procopio, Student Member, IEEE, and M. Rossi, Student Member, IEEE Abstract In this paper the behavior of the power supply

More information