3/8/2011. Geostationary & Non Geostationary

Size: px
Start display at page:

Download "3/8/2011. Geostationary & Non Geostationary"

Transcription

1 SATELLITE & BROADCAST SYSTEMS IWD 1123 Mobile Technology What is a satellite? A specially designed and compact advanced electronics devices deployed to orbit above our earth space either on a static or dynamic manner. Providing communications and broadcast capabilities. Satellites can be divided into two principal types: Natural Satellites Orbiting moon for any planets are known as a natural satellite Artificial Satellites Object constructed by humans and placed in orbit around the earth or other celestial body The satellite is lifted from the earth's surface by a rocket and, once placed in orbit. Maintains its motion without further rocket propulsion. 1 st satellite was the Sputnik 1 a Russian satellite launch in st US satellite was the Explorer launch in 1 st Malaysia satellite was the launch in Copyrights 2007/2008 S.R Sulaiman Satellites can be divided into five principal types: Research Military, Science, Astronomy Communications Phone, VOIP, Internet Weather News, Forecasts Navigational GPS, Weapon System, Tracking Applications. Improvements and Upgrades Applications of satellite. There are many applications for satellite today's, which includes: Astronomical Communications Earth Observational Navigational Reconnaissance Weather Research satellite. (RS ) Research satellites measure fundamental properties of outer space. Early research satellites included a series of orbiting observatories Example of RS : Hubble Space Telescope, Campton Gamma Ray Observatory, Chandra X-Ray Observatory, Infra Red Observatory and Solar and Heliospheric Observatory Communication Satellite. (CS ) The most important functions of today s satellite Provide a worldwide linkup of radio, telephone, and television. First communication satellite was the Echo passive satellite Problems of early satellite: Limited applications 2 nd Generation satellite Relay 1, Telstar 1 active satellite Non continuous communications 3 rd Generation satellite Intelsat 1 active satellite The first commercial geosynchronous satellite A network of 29 Intelsat satellites in geosynchronous orbit Provides instantaneous communications throughout the world Weather Satellite. (WS ) Also known as a meteorological satellite. Provide continuous, up-to to-date information about large-scale atmospheric conditions. 1 st generation of WS : Trios 1 Transmit infrared television pictures of the earth's cloud cover 2 nd generation of WS : Nimbus Carried six cameras for more detailed scanning 3 rd generation of WS : Itos Geostationary & Night Vision Cameras Transmit visible or infrared photos Focus on a narrow or wide area Maneuver in space to obtain maximum coverage 1

2 Navigational Satellite. (NS ) Developed primarily to satisfy the need for a navigation system that nuclear submarines could use to update their inertial navigation system 1 st generation of NS : Transit 5A Transit satellites provided a constant signal by which aircraft and ships could determine their positions with great accuracy. Transit system had an inherent limitation were some areas of the globe that were not continuously covered 2 nd generation of NS : Navstar/GPS & GLONASS Consists of 24 satellites approximately 11,000 miles above the surface of the earth in six different orbital planes. Users are always in view of at least five satellites which yields highly accurate location information including altitude GLONASS will use the same number of satellites and orbits similar to those of Navstar. Low Orbit Satellite Low Earth Orbit (LEO) refers to a satellite which orbits the earth at altitudes between (very roughly) 200 miles and 930 miles. Low Earth Orbit satellites must travel very quickly to resist the pull of gravity -- approximately 17,000 miles per hour. Because of this, Low Earth Orbit satellites can orbit the planet in as little as 90 minutes. Low Earth Orbit satellite systems require several dozen satellites to provide coverage of the entire planet. Low Earth Orbit satellites typically operate in polar orbits. Low Earth Orbit satellites are used for applications where a short Round Trip Time (RTT) is very important, such as Mobile Satellite Services (MSS).Low Earth Orbit satellites have a typical service life expectancy of five to seven years. Satellite for Communication (Satellite Dish) The major types of satellite dishes are motor-driven dishes, multi-satellites, VSAT, and ad hoc satellites. Other types include DTH, SMATV, CABD, automatic tracking satellite dishes, and big ugly dishes. A motor-driven satellite dish is mounted on a pole which rotates around an axis to detect and receive various satellite signals in the sky. Multi-satellite dishes can pick up data transmissions from several satellite dishes at the same time. A VSAT (Very Small Aperture Terminal) is a 2-way satellite ground station that provides two-way way satellite Internet communication for consumers and private networks. Satellite for Communication (Satellite Dish) Ad hoc satellite dishes are used mainly as recipient reflector antennas of radio frequencies. It is easier to pick up signals on ad hoc satellite dishes when used with a DTH (Direct to Home) satellite. Orbits: Satellite Orbits If placed in an orbit high enough to escape the frictional effects of the earth's atmosphere, the motion of the satellite is controlled by the same laws of celestial mechanics that govern the motions of natural satellites and remain in orbit indefinitely Altitudes A satellite must be placed above an altitude of 320KM (200 Miles) To attain orbital altitude and velocity, multistage rockets are used, with each stage falling away as its fuel is exhausted. A satellite orbit the earth at a velocity of 8km/sec or a massive 28,800km/h At the altitude of 320km the satellite will orbit the earth at interval of 90 min per cycle. At 800km the satellite will completely cycle the earth in 100 min To make the satellite orbit the earth for 24 hour, the altitude must increase to a height of 36,000 km? Orbits: Satellite Orbits Common Satellite Placement Perigee: Also know as a placement of a satellite in an orbit nearest to the earth. Apogee: Apogee is the point at which a satellite in an elliptical orbit is furthest from the Earth. At its apogee, the satellite travels slower than at any other point in its orbit. 2

3 Orbits: Geostationary Satellite A geostationary satellite is any satellite which is placed in a geostationary orbit. Satellites in geostationary orbit maintain a constant position relative to the surface of the earth. Geostationary satellites do this by orbiting the earth approximately 22,300 miles above the equator. This orbital path is called the Clarke Belt, in honor of Arthur C. Clarke. In other words, if a satellite in a geostationary orbit is in a certain place above the earth, it will stay in that same spot above the earth. Its latitude stays at zero and its longitude remains constant. Geostationary satellites are commonly used for communications and weather-observation. Simple Quizzes Questions: What are the required altitude if you wanted your satellite to completely orbit the earth in 12 hours? If you deployed your satellite at an altitude of 320 miles, how long does it takes for the satellite to orbit the earth? What will happen to the speed/velocity of an artificial satellite as the altitude placement of the satellite increase? Will the speed also increase? Simple Quizzes Answers: What are the required altitude if you wanted your satellite to completely orbit the earth in 12 hours? * If 24 hour =36,000km 12 hour = 36,000/2 = 18,000km If you deployed your satellite at an altitude of 320 miles, how long does it takes for the satellite to orbit the earth? * 144 Minutes. (1 Miles = 1.61KM) What will happen to the speed/velocity of an artificial satellite as the altitude placement of the satellite increase? Will the speed also increase? * Speed will decrease History The three generations of mobile networks deployed to date (1G, 2G, and 3G) have been defined by their technical characteristics. To date, there have been three distinct generations of mobile cellular networks. The first three generations of mobile networks are conventionally defined by air interfaces and transport technologies. Characteristic Major functionalities 1G - Basic mobile telephony service 2G - Mobile telephony service for mass users with improved ciphering and efficient utilization of the radio spectrum. 25G 2.5G - Mobile Internet services 3G - Enhanced 2.5G services plus global roaming, and emerging new applications. 3.5G Advanced 3G services with added HSDPA, where the HSDPA is also known as High Speed Downlink Packet Access with a speed reaching 14.4Mbps. 4G Fully IP based integrated system which is capable to deliver speed of 100Mbps 1Gbps for data exchange indoor and outdoor with excellent quality and security. 2.75G and 3.75G also available but are not made popular due non linear technology applications. 3

4 Exposure GSM Also known as a Global System for Mobile communications. Is the most popular standard for mobile phones in the world. GSM differs from its predecessors in that both signaling and speech channels are digital, and thus is considered a second generation (2G) mobile phone system. GSM also pioneered a low-cost cost, to the network carrier, alternative to voice calls, the Short message service (SMS, also called "text messaging") Another advantage is that the standard includes one worldwide Emergency telephone number, 112. This makes it easier for international travelers to connect to emergency services without knowing the local emergency number. Exposure 2G Also known as a second generation mobile technology. Commercially launched on the GSM standard in Finland by Radiolinja in G networks were fully digital while previous 1G networks were analog. Three primary benefits of 2G networks over their predecessors were that phone conversations were digitally encrypted, while on analog systems it was possible for third parties to eaves- drop on calls 2G systems were significantly more efficient on the spectrum allowing for far greater mobile phone penetration levels 2G introduced data services for mobile, starting with SMS text messages. Exposure 3G Also known as Third Generation of mobile phone standards and technology Superseding 2G, and preceding 4G. It is based on the International Telecommunication Union (ITU) family of standards under the International Mobile Telecommunications programmed 3G technologies enable network operators to offer users a wider range of more advanced services while achieving greater network capacity. Additional features also include HSPA data transmission capabilities able to deliver speeds up to 14.4Mbit/s on the downlink and 5.8Mbit/s on the uplink. 3G networks are wide area cellular telephone networks which evolved to incorporate high-speed internet access and video telephony. Exposure 4G Also known as Beyond 3G technology or also an abbreviation for Fourth-Generation. A complete evolution in wireless communications A 4G system will be able to provide a comprehensive IP solution where voice, data and streamed multimedia can be given to users on an "Anytime, Anywhere" basis, and at higher data rates than previous generations. 4G will be capable of providing between 100 Mbit/s and 1 Gbit/s speeds both indoors and outdoors, with premium quality and high security. The international telecommunications regulatory and standardization bodies are working for commercial deployment of 4G networks roughly in the time scale Exposure 4G Exposure 4G 4G mobile technology as an example, will give people a more convenience and ease in lifestyle. With the anytime, anywhere, anything, capability, 4G wireless technology will benefit every individual regardless of time and place. 4

5 Exposure 4G & Beyond 3G As hype about multiple standards paths in the wireless technology has caused significant confusion in the market.?? Objectives include improving efficiency, lowering costs, improving services, making use of new spectrum opportunities, and better integration with other open standards. The aim of the project comprises of: Download rates of 100Mbps, and upload rates of 50Mbps for every 20MHz of spectrum Sub-5ms latency for small IP packets. Increased spectrum flexibility, with spectrum slices as small as 1.6MHz. Coexistence with legacy standards (users can transparently start a call or transfer of data in an area using an 3GPP LTE (Third Generation Partnership Programme Long Term) standard, and, should coverage be unavailable, continue the operation without any action on their part using GSM/GPRS or W-CDMA-based UMTS) Frequency Hopping Spread Spectrum The Global Positioning System (GPS) is a satellite-based navigation system that sends and receives radio signals. A GPS receiver acquires these signals and provides you with information. Using GPS technology, you can determine location, velocity, and time, 24 hours a day, in any weather conditions anywhere in the world for free. GPS, formally known as the NAVSTAR (Navigation Satellite Timing and Ranging). Global Positioning System, originally was developed for the military. GPS technology requires the following three segments: Space segment Control segment User segment Space Segment At least 24 GPS satellites orbit the earth twice a day in a specific pattern. They travel at approximately 7,000 miles per hour about 12,000 miles above the earth s surface. These satellites are spaced so that a GPS receiver anywhere in the world can receive signals from at least four of them. Ground Antennas Ground antennas receive the corrected orbital and clock information from the MCS, and then send the corrected information to the appropriate satellites. User Segment The GPS user segment consists of your GPS receiver. Your receiver collects and processes signals from the GPS satellites that are in view and then uses that information to determine and display your location, speed, time, and so forth. Your GPS receiver does not transmit any information back to the satellites. How Accurate Is GPS? GPS technology depends on the accuracy of signals that travel from GPS satellites to a GPS receiver. You can increase accuracy by ensuring that when you use (or at least when you turn on) your GPS receiver, you are in an area with few or no obstacles between you and the wide open sky. When you first turn on your GPS receiver, stand in an open area for a few moments to allow the unit to get a good fix on the satellites (especially if you are heading into an obstructed area). This gives you better accuracy for a longer period of time (about 4-6 hours). It takes between 65 and 85 milliseconds for a signal to travel from a GPS satellite to a GPS receiver on the surface of the earth. Who Uses GPS? GPS technology has many amazing applications on land, at sea, and in the air. You might be surprised to learn about the following examples of how people or professions are already using GPS technology: Agriculture In precision farming, GPS technology helps monitor the application of fertilizer and pesticides. GPS technology also provides location information that helps farmers plow, harvest, map fields, and mark areas of disease or weed infestation. Aviation Aircraft pilots use GPS technology for en route navigation and airport approaches. Satellite navigation provides accurate aircraft location anywhere on or near the earth. Environment GPS technology helps survey disaster areas and map the movement of environmental phenomena (such as forest fires, oil spills, or hurricanes). It is even possible to find locations that have been submerged or altered by natural disasters. 5

6 Ground Transportation GPS technology helps with automatic vehicle location and in-vehicle navigation systems. Many navigation systems show the vehicle s location on an electronic street map, allowing drivers to keep track of where they are and to look up other destinations. Some systems automatically create a route and give turn-by-turn directions. GPS technology also helps monitor and plan routes for delivery vans and emergency vehicles. Marine GPS technology helps with marine navigation, traffic routing, underwater surveying, navigational hazard location, and mapping. Commercial fishing fleets use it to navigate to optimum fishing locations and to track fish migrations. Military Military aircraft, ships, submarines, tanks, jeeps, and equipment use GPS technology for many purposes including basic navigation, target designation, close air support, weapon technology, and rendezvous. Public Safety Emergency and other specialty fleets use satellite navigation for location and status information. Rail Precise knowledge of train location is essential to prevent collisions, maintain smooth traffic flow, and minimize costly delays. Digital maps and onboard inertial units allow fully-automated train control. Outdoor and exercise enthusiasts use GPS technology to stay apprised of location, heading, bearing, speed, distance, and time. In addition, they can accurately mark and record any location and return to that precise spot. Space GPS technology helps track and control satellites in orbit. Future booster rockets and reusable launch vehicles will launch, orbit the earth, return, and land, all under automatic control. Space shuttles also use GPS navigation. Surveying Surveyors use GPS technology for simple tasks (such as defining property lines) or for complex tasks (such as building infrastructures in urban centers). Locating a precise point of reference used to be very time consuming. With GPS technology, two people can survey dozens of control points in an hour. Surveying and mapping roads and rail systems can also be accomplished from mobile platforms to save time and money. Timing Delivering precise time to any user is one of the most important functions of GPS technology. This technology helps synchronize clocks and events around the world. Pager companies depend on GPS satellites to synchronize the transmission of information throughout their systems. Investment banking firms rely on this service every day to record international transactions simultaneously. End of Chapter #2 6

In this unit we are going to speak about satellite communications. Satellites are useful for connecting to remote areas, or when you want to

In this unit we are going to speak about satellite communications. Satellites are useful for connecting to remote areas, or when you want to In this unit we are going to speak about satellite communications. Satellites are useful for connecting to remote areas, or when you want to broadcast video or data with minimal infrastructure. A communications

More information

9/22/08. Satellite Systems. History of satellite communication. Applications. History Basics Localization Handover Routing Systems

9/22/08. Satellite Systems. History of satellite communication. Applications. History Basics Localization Handover Routing Systems Satellite Systems History Basics Localization Handover Routing Systems History of satellite communication 1945 Arthur C. Clarke publishes an essay about Extra Terrestrial Relays 1957 first satellite SPUTNIK

More information

Entity Tracking and Surveillance using the Modified Biometric System, GPS-3

Entity Tracking and Surveillance using the Modified Biometric System, GPS-3 Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 3, Number 9 (2013), pp. 1115-1120 Research India Publications http://www.ripublication.com/aeee.htm Entity Tracking and Surveillance

More information

Bluetooth BlueTooth - Allows users to make wireless connections between various communication devices such as mobile phones, desktop and notebook comp

Bluetooth BlueTooth - Allows users to make wireless connections between various communication devices such as mobile phones, desktop and notebook comp ECE 271 Week 8 Bluetooth BlueTooth - Allows users to make wireless connections between various communication devices such as mobile phones, desktop and notebook computers - Uses radio transmission - Point-to-multipoint

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK SATELLITE COMMUNICATION AND ITS APPLICATIONS SHEETAL RAJPUT Dept. of Computer Science

More information

An Introduction to Airline Communication Types

An Introduction to Airline Communication Types AN INTEL COMPANY An Introduction to Airline Communication Types By Chip Downing, Senior Director, Aerospace & Defense WHEN IT MATTERS, IT RUNS ON WIND RIVER EXECUTIVE SUMMARY Today s global airliners use

More information

Lecture 1 Introduction

Lecture 1 Introduction Advanced Electronic Communication Systems Lecture 1 Introduction Dr.Eng. Basem ElHalawany Title Lecturer: Lecturer Webpage: Room/Email Teaching Assistant (TA) Course Webpage References Course Info Advanced

More information

Glossary of Satellite Terms

Glossary of Satellite Terms Glossary of Satellite Terms Satellite Terms A-D The following terms and definitions will help familiarize you with your Satellite solution. Adaptive Coding and Modulation (ACM) Technology which automatically

More information

Principal Investigator Co-Principal Investigator Co-Principal Investigator Prof. Talat Ahmad Vice-Chancellor Jamia Millia Islamia Delhi

Principal Investigator Co-Principal Investigator Co-Principal Investigator Prof. Talat Ahmad Vice-Chancellor Jamia Millia Islamia Delhi Subject Paper No and Title Module No and Title Module Tag Geology Remote Sensing and GIS Concepts of Global Navigation Satellite RS & GIS XXXIII Principal Investigator Co-Principal Investigator Co-Principal

More information

The topic we are going to see in this unit, the global positioning system, is not directly related with the computer networks we use everyday, but it

The topic we are going to see in this unit, the global positioning system, is not directly related with the computer networks we use everyday, but it The topic we are going to see in this unit, the global positioning system, is not directly related with the computer networks we use everyday, but it is indeed a kind of computer network, as the specialised

More information

Coexistence of fixed and space services at 2 GHz

Coexistence of fixed and space services at 2 GHz July 2012, issue 2.0.0 4RF Application Note Coexistence of fixed and space services at 2 GHz Contents 1. Introduction 2 2. Use of 2 GHz band by space services 3 3. Coexistence options for 2 GHz space services

More information

Dimov Stojče Ilčev. CNS Systems

Dimov Stojče Ilčev. CNS Systems Stratospheric Platform Systems (SPS) Presentation by: Dimov Stojče Ilčev Durban University of Technology (DUT) Space Science Centre (SSC) CNS Systems August 2011 SPS for Mobile CNS Applications Stratospheric

More information

Mobile Communications Chapter 5: Satellite Systems

Mobile Communications Chapter 5: Satellite Systems Mobile Communications Chapter 5: Satellite Systems History Basics Localization Handover Routing Systems Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 5.1 History of satellite communication

More information

Day 1 Part1 course. Basics of satellite communications

Day 1 Part1 course. Basics of satellite communications Day 1 Part1 course Basics of satellite communications 1 Historical Perspective of satellite communications 2 1- Birth of satellite communications Satellites are able to fulfill a number of roles. One of

More information

Chapter 5 3G Wireless Systems. Mrs.M.R.Kuveskar.

Chapter 5 3G Wireless Systems. Mrs.M.R.Kuveskar. Chapter 5 3G Wireless Systems Mrs.M.R.Kuveskar. Upgrade paths for 2G Technologies 2G IS-95 GSM- IS-136 & PDC 2.5G IS-95B HSCSD GPRS EDGE Cdma2000-1xRTT W-CDMA 3G Cdma2000-1xEV,DV,DO EDGE Cdma2000-3xRTT

More information

t =1 Transmitter #2 Figure 1-1 One Way Ranging Schematic

t =1 Transmitter #2 Figure 1-1 One Way Ranging Schematic 1.0 Introduction OpenSource GPS is open source software that runs a GPS receiver based on the Zarlink GP2015 / GP2021 front end and digital processing chipset. It is a fully functional GPS receiver which

More information

Data and Computer Communications Chapter 4 Transmission Media

Data and Computer Communications Chapter 4 Transmission Media Data and Computer Communications Chapter 4 Transmission Media Ninth Edition by William Stallings Data and Computer Communications, Ninth Edition by William Stallings, (c) Pearson Education - Prentice Hall,

More information

Unit 0: Brief history, present and future of the wireless communications

Unit 0: Brief history, present and future of the wireless communications Unit 0: Brief history, present and future of the wireless communications Wireless communications course Ronal D. Montoya M. http://tableroalparque.weebly.com/radiocomunicaciones.html ronalmontoya5310@correo.itm.edu.co

More information

EELE 5451 Satellite Communications

EELE 5451 Satellite Communications EELE 5451 Satellite Communications Introduction Applications include: Communications systems, Remote sensing (detection of water pollution, monitoring of weather conditions, search and rescue operations).

More information

Lecture-1 CHAPTER 2 INTRODUCTION TO GPS

Lecture-1 CHAPTER 2 INTRODUCTION TO GPS Lecture-1 CHAPTER 2 INTRODUCTION TO GPS 2.1 History of GPS GPS is a global navigation satellite system (GNSS). It is the commonly used acronym of NAVSTAR (NAVigation System with Time And Ranging) GPS (Global

More information

IPSTAR Disaster Recovery and Emergency Communications

IPSTAR Disaster Recovery and Emergency Communications IPSTAR Disaster Recovery and Emergency Communications March 2009 COPYRIGHT THAICOM PLC 2009 PROPRIETARY Content Introduction 3 Advantages 4 Applications 5 Equipment 6-7 IPSTAR Enterprise Series IPSTAR

More information

Mobile Wireless Communications - Overview

Mobile Wireless Communications - Overview S. R. Zinka srinivasa_zinka@daiict.ac.in October 16, 2014 First of all... Which frequencies we can use for wireless communications? Atmospheric Attenuation of EM Waves 100 % Gamma rays, X-rays and ultraviolet

More information

GLOBAL POSITIONING SYSTEMS

GLOBAL POSITIONING SYSTEMS GLOBAL POSITIONING SYSTEMS Maps & Geospatial Concepts Fall 2015 Before GPS Historical look at navigation Giant concrete arrows that point your way across America What are these giant arrows? Some kind

More information

UMTS: Universal Mobile Telecommunications System

UMTS: Universal Mobile Telecommunications System Department of Computer Science Institute for System Architecture, Chair for Computer Networks UMTS: Universal Mobile Telecommunications System Mobile Communication and Mobile Computing Prof. Dr. Alexander

More information

DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA. SATELLITE COMMUNICATIONS (EEC 021) QUESTION BANK

DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA. SATELLITE COMMUNICATIONS (EEC 021) QUESTION BANK DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA. SATELLITE COMMUNICATIONS (EEC 021) QUESTION BANK 1. Write the advantages and disadvantages of Satellite Communication. 2. Distinguish between active and

More information

APPLICATION PROGRAMMING: MOBILE COMPUTING [ INEA00112W ] Marek Piasecki PhD Wireless Telecommunication

APPLICATION PROGRAMMING: MOBILE COMPUTING [ INEA00112W ] Marek Piasecki PhD Wireless Telecommunication APPLICATION PROGRAMMING: MOBILE COMPUTING [ INEA00112W ] Marek Piasecki PhD Wireless Telecommunication (W6/2013) What is Wireless Communication? Transmitting/receiving voice and data using electromagnetic

More information

IS-95 /CdmaOne Standard. By Mrs.M.R.Kuveskar.

IS-95 /CdmaOne Standard. By Mrs.M.R.Kuveskar. IS-95 /CdmaOne Standard By Mrs.M.R.Kuveskar. CDMA Classification of CDMA Systems CDMA SYSTEMS CDMA one CDMA 2000 IS95 IS95B JSTD 008 Narrow Band Wide Band CDMA Multiple Access in CDMA: Each user is assigned

More information

Evolving International Regulation on Satellite Services

Evolving International Regulation on Satellite Services Evolving International Regulation on Satellite Services Inter-Agency Meeting on Outer Space Activities 2017 Mitsuhiro Sakamoto Radiocommunication Bureau International Telecommunication Union IMPORTANCE

More information

Primer on GPS Operations

Primer on GPS Operations MP Rugged Wireless Modem Primer on GPS Operations 2130313 Rev 1.0 Cover illustration by Emma Jantz-Lee (age 11). An Introduction to GPS This primer is intended to provide the foundation for understanding

More information

Unguided Media and Matched Filter After this lecture, you will be able to Example?

Unguided Media and Matched Filter After this lecture, you will be able to Example? Unguided Media and Matched Filter After this lecture, you will be able to describe the physical and transmission characteristics of various unguided media Example? B.1 Unguided media Guided to unguided

More information

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) Long Term Evolution (LTE) What is LTE? LTE is the next generation of Mobile broadband technology Data Rates up to 100Mbps Next level of

More information

GE 113 REMOTE SENSING

GE 113 REMOTE SENSING GE 113 REMOTE SENSING Topic 9. Introduction to Global Positioning Systems (GPS) and Other GNSS Technologies Lecturer: Engr. Jojene R. Santillan jrsantillan@carsu.edu.ph Division of Geodetic Engineering

More information

PRINCIPLES AND FUNCTIONING OF GPS/ DGPS /ETS ER A. K. ATABUDHI, ORSAC

PRINCIPLES AND FUNCTIONING OF GPS/ DGPS /ETS ER A. K. ATABUDHI, ORSAC PRINCIPLES AND FUNCTIONING OF GPS/ DGPS /ETS ER A. K. ATABUDHI, ORSAC GPS GPS, which stands for Global Positioning System, is the only system today able to show you your exact position on the Earth anytime,

More information

Satisfying growth demands for offshore communications

Satisfying growth demands for offshore communications Satisfying growth demands for offshore communications Michael Carter, Sales Director Network and Data Services GVF Oil & Gas Communications Europe 2014, Aberdeen Overview 1. Who we are 2. Key drivers for

More information

Global Navigation Satellite Systems (GNSS): GPS, GLONASS, GALILEO

Global Navigation Satellite Systems (GNSS): GPS, GLONASS, GALILEO Global Navigation Satellite Systems ():,, Dr Guergana Guerova Marie Curie Fellow Department of Meteorology and Geophysics Physics Faculty, Sofia University National Culture High School, 13 November 2012,

More information

ORBCOMM Machine-To-Machine (M2M)

ORBCOMM Machine-To-Machine (M2M) ORBCOMM Machine-To-Machine (M2M) Texas V & C-Sigma November 2012 Global M2M Connecting the World s Assets Machine-To-Machine (M2M) Applications Global M2M Wireless Network for Narrowband Data Applications

More information

Lecture 03. Introduction to Global Positioning Systems

Lecture 03. Introduction to Global Positioning Systems Lecture 03 Introduction to Global Positioning Systems Introduction to Global Positioning Systems: From time immemorial humans have been trying to locate their position and find their ways on the planet

More information

How is GPS Used in Farming? Equipment Guidance Systems

How is GPS Used in Farming? Equipment Guidance Systems GPS Applications in Crop Production John Nowatzki, Extension Geospatial Specialist, Vern Hofman, Extension Ag Engineer Lowell Disrud, Assistant Professor, Kraig Nelson, Graduate Student Introduction The

More information

Challenges and Solutions for GPS Receiver Test

Challenges and Solutions for GPS Receiver Test Challenges and Solutions for GPS Receiver Test Presenter: Mirin Lew January 28, 2010 Agenda GPS technology concepts GPS and GNSS overview Assisted GPS (A-GPS) Basic tests required for GPS receiver verification

More information

Direct Link Communication II: Wireless Media. Current Trend

Direct Link Communication II: Wireless Media. Current Trend Direct Link Communication II: Wireless Media Current Trend WLAN explosion (also called WiFi) took most by surprise cellular telephony: 3G/4G cellular providers/telcos/data in the same mix self-organization

More information

Global Navigation Satellite Systems (GNSS): GPS, GLONASS, GALILEO

Global Navigation Satellite Systems (GNSS): GPS, GLONASS, GALILEO Global Navigation Satellite Systems ():,, Dr Guergana Guerova Marie Curie Fellow Department of Meteorology and Geophysics Physics Faculty, Sofia University Actual topics in the modern physics, Sofia University,

More information

Govt. Engineering College Jhalawar Model Question Paper Subject- Remote Sensing & GIS

Govt. Engineering College Jhalawar Model Question Paper Subject- Remote Sensing & GIS Govt. Engineering College Jhalawar Model Question Paper Subject- Remote Sensing & GIS Time: Max. Marks: Q1. What is remote Sensing? Explain the basic components of a Remote Sensing system. Q2. What is

More information

Unguided Transmission Media

Unguided Transmission Media CS311 Data Communication Unguided Transmission Media by Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in Web: http://home.iitj.ac.in/~manaskhatua http://manaskhatua.github.io/

More information

A Service-Oriented Architecture based Global Positioning System

A Service-Oriented Architecture based Global Positioning System IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719, Volume 2, Issue 10 (October 2012), PP 09-13 A Service-Oriented Architecture based Global Positioning System Mohammed Jaleeluddin

More information

GLOBAL NAVIGATION SATELLITE SYSTEMS (GNSS) ECE 2526E Tuesday, 24 April 2018

GLOBAL NAVIGATION SATELLITE SYSTEMS (GNSS) ECE 2526E Tuesday, 24 April 2018 GLOBAL NAVIGATION SATELLITE SYSTEMS (GNSS) ECE 2526E Tuesday, 24 April 2018 MAJOR GLOBAL NAVIGATION SATELLITE SYSTEMS (GNSS) Global Navigation Satellite System (GNSS) includes: 1. Global Position System

More information

Satellite Navigation (and positioning)

Satellite Navigation (and positioning) Satellite Navigation (and positioning) Picture: ESA AE4E08 Instructors: Sandra Verhagen, Hans van der Marel, Christian Tiberius Course 2010 2011, lecture 1 Today s topics Course organisation Course contents

More information

Lecture 04. Elements of Global Positioning Systems

Lecture 04. Elements of Global Positioning Systems Lecture 04 Elements of Global Positioning Systems Elements of GPS: During the last lecture class we talked about Global Positioning Systems and its applications. With so many innumerable applications of

More information

Digital surveillance devices?

Digital surveillance devices? Technology Framework Tracking Technologies Don Mason Associate Director Copyright 2011 National Center for Justice and the Rule of Law All Rights Reserved Digital surveillance devices? Digital surveillance

More information

Airborne Satellite Communications on the Move Solutions Overview

Airborne Satellite Communications on the Move Solutions Overview Airborne Satellite Communications on the Move Solutions Overview High-Speed Broadband in the Sky The connected aircraft is taking the business of commercial airline to new heights. In-flight systems are

More information

COMM 907:Spread Spectrum Communications

COMM 907:Spread Spectrum Communications COMM 907: Spread Spectrum Communications Dr. Ahmed El-Mahdy Professor in Communications Department The German University in Cairo Text Book [1] R. Michael Buehrer, Code Division Multiple Access (CDMA),

More information

Planning of LTE Radio Networks in WinProp

Planning of LTE Radio Networks in WinProp Planning of LTE Radio Networks in WinProp AWE Communications GmbH Otto-Lilienthal-Str. 36 D-71034 Böblingen mail@awe-communications.com Issue Date Changes V1.0 Nov. 2010 First version of document V2.0

More information

Direct Link Communication II: Wireless Media. Motivation

Direct Link Communication II: Wireless Media. Motivation Direct Link Communication II: Wireless Media Motivation WLAN explosion cellular telephony: 3G/4G cellular providers/telcos in the mix self-organization by citizens for local access large-scale hot spots:

More information

GLOBAL POSITIONING SYSTEMS. Knowing where and when

GLOBAL POSITIONING SYSTEMS. Knowing where and when GLOBAL POSITIONING SYSTEMS Knowing where and when Overview Continuous position fixes Worldwide coverage Latitude/Longitude/Height Centimeter accuracy Accurate time Feasibility studies begun in 1960 s.

More information

SEN366 (SEN374) (Introduction to) Computer Networks

SEN366 (SEN374) (Introduction to) Computer Networks SEN366 (SEN374) (Introduction to) Computer Networks Prof. Dr. Hasan Hüseyin BALIK (8 th Week) Cellular Wireless Network 8.Outline Principles of Cellular Networks Cellular Network Generations LTE-Advanced

More information

Minimum requirements related to technical performance for IMT-2020 radio interface(s)

Minimum requirements related to technical performance for IMT-2020 radio interface(s) Report ITU-R M.2410-0 (11/2017) Minimum requirements related to technical performance for IMT-2020 radio interface(s) M Series Mobile, radiodetermination, amateur and related satellite services ii Rep.

More information

Satisfying growth demands for maritime communications. Michael Carter, Sales Director Network & Data Services

Satisfying growth demands for maritime communications. Michael Carter, Sales Director Network & Data Services Satisfying growth demands for maritime communications Michael Carter, Sales Director Network & Data Services Overview 1. 2. Key drivers for maritime growth 3. Why Ka band? 4. satellite & coverage Planned

More information

Basics of Satellite Navigation an Elementary Introduction Prof. Dr. Bernhard Hofmann-Wellenhof Graz, University of Technology, Austria

Basics of Satellite Navigation an Elementary Introduction Prof. Dr. Bernhard Hofmann-Wellenhof Graz, University of Technology, Austria Basics of Satellite Navigation an Elementary Introduction Prof. Dr. Bernhard Hofmann-Wellenhof Graz, University of Technology, Austria CONCEPT OF GPS Prof. Dr. Bernhard Hofmann-Wellenhof Graz, University

More information

Mobile Communication and Mobile Computing

Mobile Communication and Mobile Computing Department of Computer Science Institute for System Architecture, Chair for Computer Networks Mobile Communication and Mobile Computing Prof. Dr. Alexander Schill http://www.rn.inf.tu-dresden.de Structure

More information

2 INTRODUCTION TO GNSS REFLECTOMERY

2 INTRODUCTION TO GNSS REFLECTOMERY 2 INTRODUCTION TO GNSS REFLECTOMERY 2.1 Introduction The use of Global Navigation Satellite Systems (GNSS) signals reflected by the sea surface for altimetry applications was first suggested by Martín-Neira

More information

RADIO LINK ASPECT OF GSM

RADIO LINK ASPECT OF GSM RADIO LINK ASPECT OF GSM The GSM spectral allocation is 25 MHz for base transmission (935 960 MHz) and 25 MHz for mobile transmission With each 200 KHz bandwidth, total number of channel provided is 125

More information

Digital Surveillance Devices?

Digital Surveillance Devices? Technology Framework Tracking Technologies Don Mason Associate Director Digital Surveillance Devices? Digital Surveillance Devices? Secure Continuous Remote Alcohol Monitor SCRAM Page 1 Location Tracking

More information

Public Workshop on Optimising the Use of the Radio Spectrum by the Public Sector in the EU. Applications and Technologies

Public Workshop on Optimising the Use of the Radio Spectrum by the Public Sector in the EU. Applications and Technologies Public Workshop on Optimising the Use of the Radio Spectrum by the Public Sector in the EU Applications and Technologies John Burns, Aegis Systems Ltd 1st April 2008 0 Scope of Presentation Overview of

More information

RECOMMENDATION ITU-R M.1310* TRANSPORT INFORMATION AND CONTROL SYSTEMS (TICS) OBJECTIVES AND REQUIREMENTS (Question ITU-R 205/8)

RECOMMENDATION ITU-R M.1310* TRANSPORT INFORMATION AND CONTROL SYSTEMS (TICS) OBJECTIVES AND REQUIREMENTS (Question ITU-R 205/8) Rec. ITU-R M.1310 1 RECOMMENDATION ITU-R M.1310* TRANSPORT INFORMATION AND CONTROL SYSTEMS (TICS) OBJECTIVES AND REQUIREMENTS (Question ITU-R 205/8) Rec. ITU-R M.1310 (1997) Summary This Recommendation

More information

Question 1: Do you have any comments on our approach to this review?:

Question 1: Do you have any comments on our approach to this review?: Question 1: Do you have any comments on our approach to this review?: Iridium supports Ofcom to take a long-term strategic approach to spectrum planning for space services. As operator of a global satellite

More information

Ammar Abu-Hudrouss Islamic University Gaza

Ammar Abu-Hudrouss Islamic University Gaza Wireless Communications n Ammar Abu-Hudrouss Islamic University Gaza ١ Course Syllabus References 1. A. Molisch,, Wiely IEEE, 2nd Edition, 2011. 2. Rappaport, p : Principles and Practice, Prentice Hall

More information

Future Concepts for Galileo SAR & Ground Segment. Executive summary

Future Concepts for Galileo SAR & Ground Segment. Executive summary Future Concepts for Galileo SAR & Ground Segment TABLE OF CONTENT GALILEO CONTRIBUTION TO THE COSPAS/SARSAT MEOSAR SYSTEM... 3 OBJECTIVES OF THE STUDY... 3 ADDED VALUE OF SAR PROCESSING ON-BOARD G2G SATELLITES...

More information

Space Situational Awareness 2015: GPS Applications in Space

Space Situational Awareness 2015: GPS Applications in Space Space Situational Awareness 2015: GPS Applications in Space James J. Miller, Deputy Director Policy & Strategic Communications Division May 13, 2015 GPS Extends the Reach of NASA Networks to Enable New

More information

Two-way satellite Internet consists of:

Two-way satellite Internet consists of: 1. INTRODUCTION Airborne Internet is a private, secure and reliable peer-to-peer aircraft communications network that uses the same technology as the commercial Internet. It is an implementation which

More information

Useful Definitions. The two books are:

Useful Definitions. The two books are: RESOURCES LIBRARY NEWS ARTICLES PAPERS & DOCUMENTS TECHNICAL DOCUMENTS PACIFIC ISLAND REGIONAL MAPS LINKS TO PAGES OF INTEREST Useful Definitions The following are some definitions of terms from two books

More information

Satellite Communications Testing

Satellite Communications Testing Satellite Communications Testing SATELLITE COMMUNICATIONS TESTING Traditionally, the satellite industry has relied on geosynchronous earth orbit (GEO) satellites that take years to build and require very

More information

S-Band: a new space for mobile communication in Europe Orazio Pulvirenti MSS Project Manager Eutelsat Innovation Team

S-Band: a new space for mobile communication in Europe Orazio Pulvirenti MSS Project Manager Eutelsat Innovation Team S-Band: a new space for mobile communication in Europe Orazio Pulvirenti MSS Project Manager Eutelsat Innovation Team Evolutions in Satellite Telecommunication Ground Segments Noordwijk, June 5 th 2008

More information

Satellite Basics Term Glossary

Satellite Basics Term Glossary Satellite Basics Term Glossary AES Advanced Encryption Standard is an encryption standard comprised of three blocks of ciphers AES 128, AES 192, and AES 256 ACM Adaptive Coding and Modulation uses an algorithm

More information

5G deployment below 6 GHz

5G deployment below 6 GHz 5G deployment below 6 GHz Ubiquitous coverage for critical communication and massive IoT White Paper There has been much attention on the ability of new 5G radio to make use of high frequency spectrum,

More information

Long Term Evolution (LTE) Radio Network Planning Using Atoll

Long Term Evolution (LTE) Radio Network Planning Using Atoll Long Term Evolution (LTE) Radio Network Planning Using Atoll Gullipalli S.D. Rohit Gagan, Kondamuri N. Nikhitha, Electronics and Communication Department, Baba Institute of Technology and Sciences - Vizag

More information

WIRELESS COMMUNICATION STUDY NOTES

WIRELESS COMMUNICATION STUDY NOTES WIRELESS COMMUNICATION STUDY NOTES TOPIC 1 OVERVIEW AND EVOLUTION OF WIRELESS COMMUNICATION CHAPTER ONE CONTENTS 0 Introduction 0 Objectives 23 Main Content 23 Concept of Wireless Communication Wireless

More information

Basic Satellite Communication. Thaicom Customer and Network Services Department

Basic Satellite Communication. Thaicom Customer and Network Services Department Basic Satellite Communication Thaicom Customer and Network Services Department Satellite Communication System Control & Monitoring Station Satellite Space Segment Uplink Signals Downlink Signals Receive

More information

UNITED NATIONS UNIVERSITY Institute for Environment & Human Security (UNU-EHS) Bonn, Germany

UNITED NATIONS UNIVERSITY Institute for Environment & Human Security (UNU-EHS) Bonn, Germany UNITED NATIONS UNIVERSITY Institute for Environment & Human Security (UNU-EHS) Bonn, Germany Introduction to GPS technology Prof. Dr. Jörg Szarzynski Education Programme Director Head of Section EduSphere

More information

Chapter 1: Telecommunication Fundamentals

Chapter 1: Telecommunication Fundamentals Chapter 1: Telecommunication Fundamentals Block Diagram of a communication system Noise n(t) m(t) Information (base-band signal) Signal Processing Carrier Circuits s(t) Transmission Medium r(t) Signal

More information

GNSS: orbits, signals, and methods

GNSS: orbits, signals, and methods Part I GNSS: orbits, signals, and methods 1 GNSS ground and space segments Global Navigation Satellite Systems (GNSS) at the time of writing comprise four systems, two of which are fully operational and

More information

BASIC CONCEPTS OF HSPA

BASIC CONCEPTS OF HSPA 284 23-3087 Uen Rev A BASIC CONCEPTS OF HSPA February 2007 White Paper HSPA is a vital part of WCDMA evolution and provides improved end-user experience as well as cost-efficient mobile/wireless broadband.

More information

An insight in the evolution of GEO satellite technologies for broadband services

An insight in the evolution of GEO satellite technologies for broadband services An insight in the evolution of GEO satellite technologies for broadband services EUROPEAN SATELLITE INDUSTRY ROADMAP MARCH 14 TH, BRUSSELS Future broadband technologies 1/2 2 The need for informing the

More information

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: PHYSICS

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: PHYSICS COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: PHYSICS COURSE: PHY 423 DISCLAIMER The contents of this document are intended for practice and leaning purposes at the undergraduate level.

More information

S a t e l l i t e T i m e a n d L o c a t i o n. N o v e m b e r John Fischer VP Advanced R&D

S a t e l l i t e T i m e a n d L o c a t i o n. N o v e m b e r John Fischer VP Advanced R&D STL - S a t e l l i t e T i m e a n d L o c a t i o n N o v e m b e r 2 0 1 7 John Fischer VP Advanced R&D jfischer@orolia.com 11/28/201 1 7 WHY AUGMENT GNSS? Recent UK Study Economic Input to UK of a

More information

Key technologies for future wireless systems

Key technologies for future wireless systems Key technologies for future wireless systems Dr. Kari Pehkonen Workshop on Future Wireless Communication Systems and Algorithms 12.8.2002 1 NOKIA 4G trends and drivers Many definitions for the term 4G

More information

Co-Existence of UMTS900 and GSM-R Systems

Co-Existence of UMTS900 and GSM-R Systems Asdfadsfad Omnitele Whitepaper Co-Existence of UMTS900 and GSM-R Systems 30 August 2011 Omnitele Ltd. Tallberginkatu 2A P.O. Box 969, 00101 Helsinki Finland Phone: +358 9 695991 Fax: +358 9 177182 E-mail:

More information

Monitoring the Earth Surface from space

Monitoring the Earth Surface from space Monitoring the Earth Surface from space Picture of the surface from optical Imagery, i.e. obtained by telescopes or cameras operating in visual bandwith. Shape of the surface from radar imagery Surface

More information

Delivering More for Less Where You Want It, When You Want It!

Delivering More for Less Where You Want It, When You Want It! Delivering More for Less Where You Want It, When You Want It! O3b Networks Government Solutions Military Communications and Information Systems Conference (MIlCis) 2013 O3b Networks at a Glance What we

More information

SATELLITE SUBSYSTEMS. Networks and Communication Department. Dr. Marwah Ahmed

SATELLITE SUBSYSTEMS. Networks and Communication Department. Dr. Marwah Ahmed 1 SATELLITE SUBSYSTEMS Networks and Communication Department Dr. Marwah Ahmed Outlines Attitude and Orbit Control System (AOCS) Telemetry, Tracking, Command and Monitoring (TTC & M) Power System Communication

More information

Satellite Communications. Chapter 9

Satellite Communications. Chapter 9 Satellite Communications Chapter 9 Satellite-Related Terms Earth Stations antenna systems on or near earth Uplink transmission from an earth station to a satellite Downlink transmission from a satellite

More information

Satellite Communications. Chapter 9

Satellite Communications. Chapter 9 Satellite Communications Chapter 9 Satellite-Related Terms Earth Stations antenna systems on or near earth Uplink transmission from an earth station to a satellite Downlink transmission from a satellite

More information

Testing Carrier Aggregation in LTE-Advanced Network Infrastructure

Testing Carrier Aggregation in LTE-Advanced Network Infrastructure TM500 Family White Paper December 2015 Testing Carrier Aggregation in LTE-Advanced Network Infrastructure Contents Introduction... Error! Bookmark not defined. Evolution to LTE-Advanced... 3 Bandwidths...

More information

GPS Global Positioning System

GPS Global Positioning System GPS Global Positioning System 10.04.2012 1 Agenda What is GPS? Basic consept History GPS receivers How they work Comunication Message format Satellite frequencies Sources of GPS signal errors 10.04.2012

More information

WINNER+ Miia Mustonen VTT Technical Research Centre of Finland. Slide 1. Event: CWC & VTT GIGA Seminar 2008 Date: 4th of December 2008

WINNER+ Miia Mustonen VTT Technical Research Centre of Finland. Slide 1. Event: CWC & VTT GIGA Seminar 2008 Date: 4th of December 2008 Process and Requirements for IMT-Advanced Miia Mustonen VTT Technical Research Centre of Finland Slide 1 Outline Definitions Process and time schedule of IMT-Advanced Minimum requirements Technical Performance

More information

COURSE PLAN. The course material and references are available in the website

COURSE PLAN. The course material and references are available in the website COURSE PLAN 1. Course Title SATELLITE COMMUNICATION 5. Semester VIII A & C Sec 2. Course Code EC 409 6. Academic Year 2015-2016 3. Course Faculty S.SADHISH PRABHU 7. Department ECE 4. Theory / Practical

More information

GLOBAL POSITIONING SYSTEMS

GLOBAL POSITIONING SYSTEMS GLOBAL POSITIONING SYSTEMS GPS & GIS Fall 2017 Global Positioning Systems GPS is a general term for the navigation system consisting of 24-32 satellites orbiting the Earth, broadcasting data that allows

More information

Status of COMPASS/BeiDou Development

Status of COMPASS/BeiDou Development Status of COMPASS/BeiDou Development Stanford s 2009 PNT Challenges and Opportunities Symposium October 21-22,2009 Cao Chong China Technical Application Association for GPS Contents 1. Basic Principles

More information

Data and Computer Communications. Tenth Edition by William Stallings

Data and Computer Communications. Tenth Edition by William Stallings Data and Computer Communications Tenth Edition by William Stallings Data and Computer Communications, Tenth Edition by William Stallings, (c) Pearson Education - 2013 CHAPTER 10 Cellular Wireless Network

More information

INSTITUTE OF AERONAUTICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING ASSIGNMENT QUESTIONS Course Name : SATELLITE COMMUNICATIONS Course Code : A80452-R13

More information

GPS: The Basics. Darrell R. Dean, Jr. Civil and Environmental Engineering West Virginia University. Expected Learning Outcomes for GPS

GPS: The Basics. Darrell R. Dean, Jr. Civil and Environmental Engineering West Virginia University. Expected Learning Outcomes for GPS GPS: The Basics Darrell R. Dean, Jr. Civil and Environmental Engineering West Virginia University Expected Learning Outcomes for GPS Explain the acronym GPS Name 3 important tdt dates in history of GPS

More information

Satellite Orbit & Spectrum Resources for Future Innovation WRC-15 OUTCOME

Satellite Orbit & Spectrum Resources for Future Innovation WRC-15 OUTCOME Satellite Orbit & Spectrum Resources for Future Innovation WRC-15 OUTCOME International Telecommunication Union ITU International Satellite Symposium 2016 150 years 1865 International Telegraph Union 25

More information