Comparative analysis of the effect of ionospheric delay on user position accuracy using single and dual frequency GPS receivers over Indian region

Size: px
Start display at page:

Download "Comparative analysis of the effect of ionospheric delay on user position accuracy using single and dual frequency GPS receivers over Indian region"

Transcription

1 Indian Journal of Radio & Space Physics Vol. 38, February 2009, pp Comparative analysis of the effect of ionospheric delay on user position accuracy using single and dual frequency GPS receivers over Indian region Ashish K Shukla #,*, Priya Shinghal, M R Sivaraman & K Bandyopadhyay SATCOM & IT Applications Area, Space Applications Centre, ISRO, Ahmedabad India # ashishs@sac.isro.gov.in Received 12 February 2008; revised 3 October 2008; accepted 6 October 2008 The ionosphere acts as a prominent source of range errors for users of Global Positioning System (GPS) satellite signals requiring accurate position determination. Various models and mathematical formulations have been devised to calculate the absolute range error caused due to ionospheric delay. The present study aims at comparing two methods for calculating delay due to ionosphere: (i) using grid based model at L1 carrier frequency with bilinear interpolation technique; and (ii) using pseudo-range measurements at both L1 and L2 carrier frequency. For analyzing the effect of ionospheric delay on the seasonal behaviour of positional accuracy, a quantitative analysis has been done for all quiet days (Ap index < 50) in 2005 using GPS data for International GNSS Service (IGS) Bangalore (IISc) receiver in January, March and June. Various corrections such as satellite clock bias, transit time, ionospheric delay corrections, etc. are applied to pseudo-ranges to calculate the user coordinates. For single frequency (L1) receivers, ionospheric delay corrections have been applied using IGS total electron content data derived from grid based ionospheric model; and for the dual frequency receivers, pseudorange measurements at L1 and L2 carrier frequencies have been used. It has been observed that there is an improvement of 1-4 m in the standard deviation of position errors when the ionospheric delay correction is applied using pseudo-range measurements at L1 and L2 frequencies (dual frequency receiver) as compared to L1 frequency only. It has also been observed that some residual errors still remain in the estimated user position even after using dual frequency receivers. Keywords: Ionospheric delay, Global Positioning System, Pseudo-range measurement, Single frequency receiver, Dual frequency receiver, Position accuracy PACS No.: Vv; cf 1 Introduction The signals from GPS satellites experience a delay when passing through the ionosphere. The delay due to ionosphere results in range errors that can vary from few meters to tens of meters. The ionosphere is a dispersive medium, i.e. its refractive index is a function of the operating frequency 1-3. Hence, suitable methods can be adopted for determining the magnitude of delay due to ionosphere using code observables at L1 (1.575 GHz) or both L1 (1.575 GHz) and L2 (1.227 GHz) GPS frequencies. When working with single frequency GPS receivers, a grid based ionospheric model can be used to determine the delay due to ionosphere. Since the magnitude of delay depends linearly upon the number of free electrons passed when traveling through the ionosphere, the model determines the slant ionospheric delay at user s position in terms of total electron content (TEC). The details of the model used in the present study are mentioned in section. Instead of modeling the delay, another approach using GPS code observables at both L1 and L2 frequencies can also be adopted. From the two observables, one at each frequency, a so-called ionosphere free range observable is formed, the mathematical formulation of which is described in later section. In the present study, both the above-mentioned techniques are used to calculate the delay (in meters) due to ionosphere that is separately applied as corrections to the pseudo-range measurements. The measured pseudo-range (R) is written as: R = ρ - c ( b- b ) + c ( T + I ) + ε (1) it ut where, ρ it, is the geometric range between satellite and user; b, is the satellite clock bias; b ut, is the receiver clock bias; T, is the tropospheric delay error; I, is the ionospheric delay error; ε, is the error term consisting of multipath, receiver measurement noise and due to other factors, respectively. A comparative analysis of the standard deviations in positional errors is done using both the methods that shows that accuracy in estimation of user position is more when ionospheric delay corrections are

2 58 INDIAN J RADIO & SPACE PHYS, FEBRUARY 2009 applied using both the L1 and L2 frequency code observables. Thus, this study proves to be helpful in applications where centimeter level accuracy in position computation is required. A detailed description of the two methods used for calculating ionospheric delay is illustrated. 2 Ionospheric corrections using Grid-based model GPS signal delay caused by the ionosphere is directly proportional to the number of free electrons along the ray path of GPS received signal. The TEC along the ray path of the signal from satellite to receiver may be written as the path integral of the electron density along the line of sight. R TEC = Ne( l) dl (2) S where, the subscripts S, and R, identify the satellite and receiver in question, respectively and Ne, is the electron density. This integral can be rewritten as an integral over altitude h: R TEC(E,A,θ,φ) = Ne( h, Ψ( E, A, θ, ϕ)). M ( E, h) dh...(3) where, S M (E,h) [1 (R cos E / (R h)) ] 2 1/2 = e. e+...(4) Here, M (E, h) is known as mapping function or obliquity factor; R e, is the radius of the Earth; and ψ (h, E, A, θ, Ф) defines the ray path; our parameters mentioned are required to specify the ray path uniquely at the ionospheric pierce point. Here, E, is the elevation angle; A, is the azimuth angle; θ, is ionospheric pierce point (IPP) latitude; and Ф, is IPP longitude, respectively. Thus, solving for slant delay is an inherently threedimensional problem. The single-shell model reduces this three-dimensional problem to two-dimensions by introducing the simplifying assumption that the whole ionosphere is compressed only in a neighbourhood of a specified reference height, taken as 350 km 4-5. Due to the presence of equatorial ionospheric anomaly (EIA) over Indian region 6, altitude of maximum electron density varies 7. For the year 2005, a low solar activity period, it is expected to vary from km. Here, for the simplicity it has been taken as 350 km. Mathematically, it is equivalent to setting h as a constant, which allows M (E, h) to be pulled outside the integral. Hence, TECslant = M (E,h). TECVertical (5) Above relation allows estimating the vertical delay at the IPP to be inferred from a measurement of slant delay 3,8. 3 Ionospheric delay estimation at ionospheric grid point (IGP) For the present study, the vertical total electron content (VTEC) at the four IGPs covering IGS Bangalore station has been obtained from the International GNSS Service (IGS) TEC data files downloaded from the site VTEC values have been calculated at every 5 5 grid spacing in latitude and longitude using global ionospheric maps. Maximum electron density altitude has been taken as 350 km as described in the last section. 4 Slant delay estimation at IPP in grid-based model After getting the VTEC values at IGPs, user needs to interpolate from the broadcast IGP delays to that at its computed IPP locations. For this, bilinear interpolation technique is adopted 9,10. This technique has been explained in the following algorithm that computes the delays at user position using the delays at four IGPs. Geometry of the interpolation is illustrated in Fig. 1. For four point interpolation, the mathematical formulation for interpolated vertical IPP delay τ vpp (Φ PP, λ PP ) as a function of IPP latitude Φ PP and longitude λ PP, is: Fig. 1 Four-point interpolation at user s end

3 SHUKLA et al.: COMPARATIVE ANALYSIS OF IONOSPHERIC DELAY EFFECT ON USER POSITION ACCURACY 59 4 vpp ( pp, pp) = Wi ( xpp, ypp) vi (6) i= 1 τ ϕ λ τ where, the general equation for the weighing function is: f (x,y) = xy (7) here, τ vi, are the broadcast grid point vertical delay values at four corners of the IGP grid; and τ vpp, is the desired output value at IPP; and x pp, and y pp, are dimensionless quantities required to calculate the weights at the four grid points 9,10. Weights are calculated in an unbiased manner such that total sum of all the weights at four grid points is equal to unity. Their formulation is given as below: W = x y 1 pp pp W = (1 x ) y 2 pp pp W = (1 x )(1 y ) 3 pp pp W = x (1 y ) 4 pp pp λpp = λpp λ1 ϕpp = ϕpp ϕ1 and x y pp pp λpp = λ λ 2 1 ϕpp = ϕ ϕ 2 1 where, λ 1, is longitude of IGP west of IPP; λ 2, is longitude of IGP east of IPP;, Φ 1, is latitude of IGP south of IPP; and Φ 2, is latitude of IGP north of IPP. The slant delay at user s position can be estimated by multiplying the vertical delay, calculated as mentioned above, with a mapping function, as described earlier. 5 Ionospheric corrections using dual frequency receiver Instead of using grid based ionospheric model for estimation of ionospheric delay at user s location, another method can be adopted. This method uses GPS pseudo-range measurements at both L1 and L2 frequencies. The total electron content (TEC) is computed and converted into ionospheric delay in meters using a conversion factor. Following relation has been used to get total ionospheric delay (including receiver bias and P1-P2 bias): TEC = 9.483( R R ) TEC TEC (8) L2 L1 RC P1-P2 where, R L1, is pseudorange at L1 frequency; R L2, is pseudorange at L2 frequency; TEC RC, is receiver bias error/0.351; and TEC P1_P2, is P1_P2 bias error/0.351, respectively. Therefore, the total ionospheric delay in meters is given as: I = TEC (9) 6 Method of analysis In order to estimate user position accurately using GPS code observable, certain correction terms are applied to remove the bias from pseudo range to get the correct user to satellite range. Since delay due to ionosphere is one of the most important sources of error, in our analysis this delay has been estimated using GPS code observables and method using TEC values. Ionospheric correction terms from both the methods are applied to the corresponding pseudoranges and user position is estimated. Difference in the actual (known) and calculated user position is found which gives the error estimates in x, y and z components. Standard deviation of these errors terms are estimated for both the methods used. A comparative analysis is done using the results obtained from both the methods. 7 Results and discussion Analysis of standard deviations in the position errors with ionospheric correction is applied using single and dual frequency GPS code measurements. SD(x), is the standard deviation of error in x; SD(y), is the standard deviation of error in y; SD(z), is the standard deviation of error in z; and RMSE, is the root mean square error in x, y and z coordinates, respectively at single frequency (L1) and dual frequency (L1, L2) measurements. A comprehensive analysis and comparison of the effect of ionospheric delay using single and dual frequency measurements on the accuracy of

4 60 INDIAN J RADIO & SPACE PHYS, FEBRUARY 2009 estimation of user position has been presented. Variation of root mean square error and the standard deviation of errors in x, y & z coordinates of user position are shown for January, March and June 2005 representing the three different seasons namely, winter, equinox and summer, respectively. The results in Figs 2-4 provide the variation in root mean square error (RMSE) and standard deviation of error estimates for single and dual frequency GPS receivers. A comparison of the results at single and dual frequency measurements indicates that the RMSE estimate is considerably less (1-6 m) when Fig. 2 Variation in x, y and z coordinates of user position when ionospheric delay is calculated from L1 and L1-L2 GPS frequency measurements for four quiet days of January 2005: (a) root mean square of errors; (b) standard deviation of errors Fig. 3 Variation in x, y and z coordinates of user position when ionospheric delay is calculated from L1 and L1-L2 GPS frequency measurements for nine quiet days of March 2005: (a) root mean square of errors; (b) standard deviation of errors Fig. 4 Variation in x, y and z coordinates of user position when ionospheric delay is calculated from L1 and L1-L2 GPS frequency measurements for eight quiet days of June 2005: (a) root mean square of errors; (b) standard deviation of errors

5 SHUKLA et al.: COMPARATIVE ANALYSIS OF IONOSPHERIC DELAY EFFECT ON USER POSITION ACCURACY 61 Fig. 5 Variation of errors in x, y and z coordinates of user position when ionospheric delay is calculated from L1 and L1-L2 GPS frequency measurements for 27 January 2005 ionospheric correction is applied using dual frequency code measurements as compared to single frequency. Similar observations can also be seen for standard deviation plots that provide a statistical view of the observations. Since the vertical total electron content values at the IGP have been taken from IGS data, it is quite possible that the estimation of VTEC at these points may not be precise as there are only few IGS stations around Indian region. A denser network of IGS receivers over Indian region may help to provide more accurate VTEC values at the grid points over Indian region. Another reason for inferior performance from single frequency receiver may be due to the estimation inaccuracy of VTEC values at IGPs from the model used. Figure 5 shows a comparison between the absolute errors in x, y and z coordinates of user position when delay due to ionosphere has been applied using the two above-mentioned methods. Decrease in absolute errors is evident when the correction is applied using dual frequency measurements, but at some instances it increases, which may be due to some instrumental bias still present or other unknown error sources. Further, it has been observed from the results [Figs 4(a) and (b)] that RMSE and standard deviation in errors reaches a maximum in the month of June around the summer solstice, i.e. 21 June. It has also been observed that some residual errors still remain in the estimated user position even after using dual frequency receivers. Acknowledgements Authors are thankful to Dr K S Dasgupta, Deputy Director, SITAA, and Dr Deval Mehta, for their constructive suggestions. Authors are also thankful to the anonymous reviewers for their suggestions towards the improvement of the manuscript. Authors express their sincere thanks to scientists/engineers from IGS responsible for providing precise GPS satellite ephemeredes, clock offset files and grid based IGS TEC data used for carrying out this study and continuous support from all the team members from ISRO. References 1. Davies K, Ionospheric radio propagation, (Dover Publications Inc., New York), 1966, Kaplan E D, Understanding GPS: Principles and applications, (Artech House), 1996, Misra P & Enge P, Global Positioning System signals: Measurements and performance, (G J Press, Massachusetts), 2001, Walter T, Hansen A, Blanch J, & Enge P, Robust detection of ionospheric irregularities, Proceedings of Institute of Navigation Global Positioning System, (Salt Lake City, USA), Mannucci A J, Wilson B D, Yuan D N, Ho C H, Lindqwister U J & Runge T F, A Global mapping technique for GPSderived ionospheric total electron content measurements, Radio Sci (USA), 33 (1998) Rama Rao P V S, Jayachandran P T & Sri Ram P, Ionospferic irregularities: The role of the equatorial ionization anomaly, Radio Sci (USA), 32 (1997) Rama Rao P V S., Niranjan K, Prasad D S V V D, Krishna S G & Uma G, On the validity of the ionospheric pierce point (IPP) altitude of 350 km in the Indian equatorial and lowlatitude sector, Ann Geophys (France), 24 (2006) Tsui J B Y, Fundamentals of global positioning system receivers: a software approach, (John Wiley & Sons), 2000, RTCA Special Committee 159, Minimum operational performance standards for airborne equipment using Global Positioning System/Wide Area Augmented System, RTCA/DO 229 C, November Sivaraman M R, Grid based ionospheric model, Internal Technical Note TN-336, (SAC-ISRO, India), 2001, 8.

An Assessment of Mapping Functions for VTEC Estimation using Measurements of Low Latitude Dual Frequency GPS Receiver

An Assessment of Mapping Functions for VTEC Estimation using Measurements of Low Latitude Dual Frequency GPS Receiver An Assessment of Mapping Functions for VTEC Estimation using Measurements of Low Latitude Dual Frequency GPS Receiver Mrs. K. Durga Rao 1 Asst. Prof. Dr. L.B.College of Engg. for Women, Visakhapatnam,

More information

Ionospheric Estimation using Extended Kriging for a low latitude SBAS

Ionospheric Estimation using Extended Kriging for a low latitude SBAS Ionospheric Estimation using Extended Kriging for a low latitude SBAS Juan Blanch, odd Walter, Per Enge, Stanford University ABSRAC he ionosphere causes the most difficult error to mitigate in Satellite

More information

Ionospheric Corrections for GNSS

Ionospheric Corrections for GNSS Ionospheric Corrections for GNSS The Atmosphere and its Effect on GNSS Systems 14 to 16 April 2008 Santiago, Chile Ing. Roland Lejeune Overview Ionospheric delay corrections Core constellations GPS GALILEO

More information

Influence of Major Geomagnetic Storms Occurred in the Year 2011 On TEC Over Bangalore Station In India

Influence of Major Geomagnetic Storms Occurred in the Year 2011 On TEC Over Bangalore Station In India International Journal of Electronics and Communication Engineering. ISSN 0974-2166 Volume 6, Number 1 (2013), pp. 105-110 International Research Publication House http://www.irphouse.com Influence of Major

More information

GPS Ray Tracing to Show the Effect of Ionospheric Horizontal Gradeint to L 1 and L 2 at Ionospheric Pierce Point

GPS Ray Tracing to Show the Effect of Ionospheric Horizontal Gradeint to L 1 and L 2 at Ionospheric Pierce Point Proceeding of the 2009 International Conference on Space Science and Communication 26-27 October 2009, Port Dickson, Negeri Sembilan, Malaysia GPS Ray Tracing to Show the Effect of Ionospheric Horizontal

More information

Monitoring the Ionosphere and Neutral Atmosphere with GPS

Monitoring the Ionosphere and Neutral Atmosphere with GPS Monitoring the Ionosphere and Neutral Atmosphere with GPS Richard B. Langley Geodetic Research Laboratory Department of Geodesy and Geomatics Engineering University of New Brunswick Fredericton, N.B. Division

More information

ESTIMATION OF IONOSPHERIC DELAY FOR SINGLE AND DUAL FREQUENCY GPS RECEIVERS: A COMPARISON

ESTIMATION OF IONOSPHERIC DELAY FOR SINGLE AND DUAL FREQUENCY GPS RECEIVERS: A COMPARISON ESTMATON OF ONOSPHERC DELAY FOR SNGLE AND DUAL FREQUENCY GPS RECEVERS: A COMPARSON K. Durga Rao, Dr. V B S Srilatha ndira Dutt Dept. of ECE, GTAM UNVERSTY Abstract: Global Positioning System is the emerging

More information

Estimation Method of Ionospheric TEC Distribution using Single Frequency Measurements of GPS Signals

Estimation Method of Ionospheric TEC Distribution using Single Frequency Measurements of GPS Signals Estimation Method of Ionospheric TEC Distribution using Single Frequency Measurements of GPS Signals Win Zaw Hein #, Yoshitaka Goto #, Yoshiya Kasahara # # Division of Electrical Engineering and Computer

More information

Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric storms

Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric storms RADIO SCIENCE, VOL. 40,, doi:10.1029/2005rs003279, 2005 Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric storms Attila Komjathy, Lawrence Sparks,

More information

Assessment of WAAS Correction Data in Eastern Canada

Assessment of WAAS Correction Data in Eastern Canada Abstract Assessment of WAAS Correction Data in Eastern Canada Hyunho Rho and Richard B. Langley Geodetic Research Laboratory University of New Brunswick P.O. Box Fredericton, NB Canada, E3B 5A3 As part

More information

A study of the ionospheric effect on GBAS (Ground-Based Augmentation System) using the nation-wide GPS network data in Japan

A study of the ionospheric effect on GBAS (Ground-Based Augmentation System) using the nation-wide GPS network data in Japan A study of the ionospheric effect on GBAS (Ground-Based Augmentation System) using the nation-wide GPS network data in Japan Takayuki Yoshihara, Electronic Navigation Research Institute (ENRI) Naoki Fujii,

More information

Effects of magnetic storms on GPS signals

Effects of magnetic storms on GPS signals Effects of magnetic storms on GPS signals Andreja Sušnik Supervisor: doc.dr. Biagio Forte Outline 1. Background - GPS system - Ionosphere 2. Ionospheric Scintillations 3. Experimental data 4. Conclusions

More information

Ionospheric Data Processing and Analysis

Ionospheric Data Processing and Analysis Ionospheric Data Processing and Analysis Dr. Charles Carrano 1 Dr. Keith Groves 2 1 Boston College, Institute for Scientific Research 2 Air Force Research Laboratory, Space Vehicles Directorate Workshop

More information

Performance Evaluation of Global Differential GPS (GDGPS) for Single Frequency C/A Code Receivers

Performance Evaluation of Global Differential GPS (GDGPS) for Single Frequency C/A Code Receivers Performance Evaluation of Global Differential GPS (GDGPS) for Single Frequency C/A Code Receivers Sundar Raman, SiRF Technology, Inc. Lionel Garin, SiRF Technology, Inc. BIOGRAPHY Sundar Raman holds a

More information

REAL-TIME ESTIMATION OF IONOSPHERIC DELAY USING DUAL FREQUENCY GPS OBSERVATIONS

REAL-TIME ESTIMATION OF IONOSPHERIC DELAY USING DUAL FREQUENCY GPS OBSERVATIONS European Scientific Journal May 03 edition vol.9, o.5 ISS: 857 788 (Print e - ISS 857-743 REAL-TIME ESTIMATIO OF IOOSPHERIC DELAY USIG DUAL FREQUECY GPS OBSERVATIOS Dhiraj Sunehra, M.Tech., PhD Jawaharlal

More information

Significance of instrumental biases and dilution of precision in the context of GAGAN

Significance of instrumental biases and dilution of precision in the context of GAGAN Indian Journal of Radio & Space Physics Vol. 36, October 2007, pp. 405-410 Significance of instrumental biases and dilution of precision in the context of GAGAN Quddusa Sultana 1, Dhiraj Sunehra, D Venkata

More information

4 Ionosphere and Thermosphere

4 Ionosphere and Thermosphere 4 Ionosphere and Thermosphere 4-1 Derivation of TEC and Estimation of Instrumental Biases from GEONET in Japan This paper presents a method to derive the ionospheric total electron content (TEC) and to

More information

Total Electron Content (TEC) and Model Validation at an Equatorial Region

Total Electron Content (TEC) and Model Validation at an Equatorial Region Total Electron Content (TEC) and Model Validation at an Equatorial Region NORSUZILA YA ACOB 1, MARDINA ABDULLAH 2,* MAHAMOD ISMAIL 2,* AND AZAMI ZAHARIM 3,** 1 Faculty of Electrical Engineering, Universiti

More information

GPS interfrequency biases and total electron content errors in ionospheric imaging over Europe

GPS interfrequency biases and total electron content errors in ionospheric imaging over Europe RADIO SCIENCE, VOL. 41,, doi:10.1029/2005rs003269, 2006 GPS interfrequency biases and total electron content errors in ionospheric imaging over Europe Richard M. Dear 1 and Cathryn N. Mitchell 1 Received

More information

Measuring Total Electron Content. Investigation of Two Different Techniques

Measuring Total Electron Content. Investigation of Two Different Techniques Measuring Total Electron Content with GNSS: Investigation of Two Different Techniques Benoît Bidaine 1 F.R.S. FNRS B.Bidaine@ulg.ac.be Prof. René Warnant 1,2 R.Warnant@oma.be 1 University of Liège (Unit

More information

EFFECTS OF IONOSPHERIC SMALL-SCALE STRUCTURES ON GNSS

EFFECTS OF IONOSPHERIC SMALL-SCALE STRUCTURES ON GNSS EFFECTS OF IONOSPHERIC SMALL-SCALE STRUCTURES ON GNSS G. Wautelet, S. Lejeune, R. Warnant Royal Meteorological Institute of Belgium, Avenue Circulaire 3 B-8 Brussels (Belgium) e-mail: gilles.wautelet@oma.be

More information

April - 1 May, GNSS Derived TEC Data Calibration

April - 1 May, GNSS Derived TEC Data Calibration 2333-44 Workshop on Science Applications of GNSS in Developing Countries (11-27 April), followed by the: Seminar on Development and Use of the Ionospheric NeQuick Model (30 April-1 May) 11 April - 1 May,

More information

LEO GPS Measurements to Study the Topside Ionospheric Irregularities

LEO GPS Measurements to Study the Topside Ionospheric Irregularities LEO GPS Measurements to Study the Topside Ionospheric Irregularities Irina Zakharenkova and Elvira Astafyeva 1 Institut de Physique du Globe de Paris, Paris Sorbonne Cité, Univ. Paris Diderot, UMR CNRS

More information

Estimation of Rain attenuation and Ionospheric delay at a Low-Latitude Indian Station

Estimation of Rain attenuation and Ionospheric delay at a Low-Latitude Indian Station Estimation of Rain attenuation and Ionospheric delay at a Low-Latitude Indian Station Amita Gaur 1, Som Kumar Sharma 2 1 Vellore Institute of Technology, Vellore, India 2 Physical Research Laboratory,

More information

Study and analysis of Differential GNSS and Precise Point Positioning

Study and analysis of Differential GNSS and Precise Point Positioning IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 2 Ver. I (Mar Apr. 2014), PP 53-59 Study and analysis of Differential GNSS and Precise

More information

ANALYSIS OF GPS SATELLITE OBSERVABILITY OVER THE INDIAN SOUTHERN REGION

ANALYSIS OF GPS SATELLITE OBSERVABILITY OVER THE INDIAN SOUTHERN REGION TJPRC: International Journal of Signal Processing Systems (TJPRC: IJSPS) Vol. 1, Issue 2, Dec 2017, 1-14 TJPRC Pvt. Ltd. ANALYSIS OF GPS SATELLITE OBSERVABILITY OVER THE INDIAN SOUTHERN REGION ANU SREE

More information

The Atmosphere and its Effect on GNSS Systems 14 to 16 April 2008 Santiago, Chile

The Atmosphere and its Effect on GNSS Systems 14 to 16 April 2008 Santiago, Chile Description of a Real-Time Algorithm for Detecting Ionospheric Depletions for SBAS and the Statistics of Depletions in South America During the Peak of the Current Solar Cycle The Atmosphere and its Effect

More information

Current GPS Monitoring Activities in Thailand and Total Electron Content (TEC) Study at Chumphon and Bangkok, Thailand

Current GPS Monitoring Activities in Thailand and Total Electron Content (TEC) Study at Chumphon and Bangkok, Thailand EIWACS 2010 The 2nd ENRI International Workshop on ATM/CNS 10-12 November, 2010, Tokyo, Japan Current GPS Monitoring Activities in Thailand and Total Electron Content (TEC) Study at Chumphon and Bangkok,

More information

Annales Geophysicae. Ann. Geophys., 24, , European Geosciences Union 2006

Annales Geophysicae. Ann. Geophys., 24, , European Geosciences Union 2006 Ann. Geophys., 24, 3279 3292, 2006 European Geosciences Union 2006 Annales Geophysicae Temporal and spatial variations in TEC using simultaneous measurements from the Indian GPS network of receivers during

More information

LOCAL IONOSPHERIC MODELLING OF GPS CODE AND CARRIER PHASE OBSERVATIONS

LOCAL IONOSPHERIC MODELLING OF GPS CODE AND CARRIER PHASE OBSERVATIONS Survey Review, 40, 309 pp.71-84 (July 008) LOCAL IONOSPHERIC MODELLING OF GPS CODE AND CARRIER PHASE OBSERVATIONS H. Nahavandchi and A. Soltanpour Norwegian University of Science and Technology, Division

More information

An Investigation of Local-Scale Spatial Gradient of Ionospheric Delay Using the Nation-Wide GPS Network Data in Japan

An Investigation of Local-Scale Spatial Gradient of Ionospheric Delay Using the Nation-Wide GPS Network Data in Japan An Investigation of Local-Scale Spatial Gradient of Ionospheric Delay Using the Nation-Wide GPS Network Data in Japan Takayuki Yoshihara, Takeyasu Sakai and Naoki Fujii, Electronic Navigation Research

More information

Generation of Klobuchar Coefficients for Ionospheric Error Simulation

Generation of Klobuchar Coefficients for Ionospheric Error Simulation Research Paper J. Astron. Space Sci. 27(2), 11722 () DOI:.14/JASS..27.2.117 Generation of Klobuchar Coefficients for Ionospheric Error Simulation Chang-Moon Lee 1, Kwan-Dong Park 1, Jihyun Ha 2, and Sanguk

More information

Satellite Navigation Science and Technology for Africa. 23 March - 9 April, The African Ionosphere

Satellite Navigation Science and Technology for Africa. 23 March - 9 April, The African Ionosphere 2025-28 Satellite Navigation Science and Technology for Africa 23 March - 9 April, 2009 The African Ionosphere Radicella Sandro Maria Abdus Salam Intern. Centre For Theoretical Physics Aeronomy and Radiopropagation

More information

PUBLICATIONS. Space Weather. Satellite-based augmentation systems: A novel and cost-effective tool for ionospheric and space weather studies

PUBLICATIONS. Space Weather. Satellite-based augmentation systems: A novel and cost-effective tool for ionospheric and space weather studies PUBLICATIONS RESEARCH ARTICLE Key Points: Indian SBAS-GAGAN is commissioned over low-latitude region SBAS can be used effectively for large-scale ionospheric studies Demonstrates the capability using two

More information

Space Weather influence on satellite based navigation and precise positioning

Space Weather influence on satellite based navigation and precise positioning Space Weather influence on satellite based navigation and precise positioning R. Warnant, S. Lejeune, M. Bavier Royal Observatory of Belgium Avenue Circulaire, 3 B-1180 Brussels (Belgium) What this talk

More information

Effect of Differential Code Biases on the GPS CORS Network: A Case Study of Egyptian Permanent GPS Network (EPGN)

Effect of Differential Code Biases on the GPS CORS Network: A Case Study of Egyptian Permanent GPS Network (EPGN) Effect of Differential Code Biases on the GPS CORS Network: A Case Study of Egyptian Permanent GPS Network (EPGN) Mohammed A. Abid 1, 2*, Ashraf Mousa 3, Mostafa Rabah 4, Mahmoud El mewafi 1, and Ahmed

More information

3D-Map Aided Multipath Mitigation for Urban GNSS Positioning

3D-Map Aided Multipath Mitigation for Urban GNSS Positioning Summer School on GNSS 2014 Student Scholarship Award Workshop August 2, 2014 3D-Map Aided Multipath Mitigation for Urban GNSS Positioning I-Wen Chu National Cheng Kung University, Taiwan. Page 1 Outline

More information

Chapter 2 Analysis of Polar Ionospheric Scintillation Characteristics Based on GPS Data

Chapter 2 Analysis of Polar Ionospheric Scintillation Characteristics Based on GPS Data Chapter 2 Analysis of Polar Ionospheric Scintillation Characteristics Based on GPS Data Lijing Pan and Ping Yin Abstract Ionospheric scintillation is one of the important factors that affect the performance

More information

Space Weather and the Ionosphere

Space Weather and the Ionosphere Dynamic Positioning Conference October 17-18, 2000 Sensors Space Weather and the Ionosphere Grant Marshall Trimble Navigation, Inc. Note: Use the Page Down key to view this presentation correctly Space

More information

[EN-107] Impact of the low latitude ionosphere disturbances on GNSS studied with a three-dimensional ionosphere model

[EN-107] Impact of the low latitude ionosphere disturbances on GNSS studied with a three-dimensional ionosphere model ENRI Int. Workshop on ATM/CNS. Tokyo, Japan (EIWAC21) [EN-17] Impact of the low latitude ionosphere disturbances on GNSS studied with a three-dimensional ionosphere model + S. Saito N. FUjii Communication

More information

Ionospheric Modeling for WADGPS at Northern Latitudes

Ionospheric Modeling for WADGPS at Northern Latitudes Ionospheric Modeling for WADGPS at Northern Latitudes Peter J. Stewart and Richard B. Langley Geodetic Research Laboratory, Department of Geodesy and Geomatics Engineering, University of New Brunswick,

More information

Incorporating WAAS Data Into an Ionospheric Model for Correcting Satellite Radar Observations

Incorporating WAAS Data Into an Ionospheric Model for Correcting Satellite Radar Observations Incorporating WAAS Data Into an Ionospheric Model for Correcting Satellite Radar Observations Carl Toews, Anthea Coster, Lori Thornton, Eric Phelps, Susan Shulman MIT Lincoln Laboratory BIOGRAPHY Carl

More information

Study of the Ionosphere Irregularities Caused by Space Weather Activity on the Base of GNSS Measurements

Study of the Ionosphere Irregularities Caused by Space Weather Activity on the Base of GNSS Measurements Study of the Ionosphere Irregularities Caused by Space Weather Activity on the Base of GNSS Measurements Iu. Cherniak 1, I. Zakharenkova 1,2, A. Krankowski 1 1 Space Radio Research Center,, University

More information

Global Correction Services for GNSS

Global Correction Services for GNSS Global Correction Services for GNSS Hemisphere GNSS Whitepaper September 5, 2015 Overview Since the early days of GPS, new industries emerged while existing industries evolved to use position data in real-time.

More information

Significant of Earth s Magnetic Field and Ionospheric Horizontal Gradient to GPS Signals

Significant of Earth s Magnetic Field and Ionospheric Horizontal Gradient to GPS Signals Proceeding of the 2013 IEEE International Conference on Space Science and Communication (IconSpace), 1-3 July 2013, Melaka, Malaysia Significant of Earth s Magnetic Field and Ionospheric Horizontal Gradient

More information

Measurement Error and Fault Models for Multi-Constellation Navigation Systems. Mathieu Joerger Illinois Institute of Technology

Measurement Error and Fault Models for Multi-Constellation Navigation Systems. Mathieu Joerger Illinois Institute of Technology Measurement Error and Fault Models for Multi-Constellation Navigation Systems Mathieu Joerger Illinois Institute of Technology Colloquium on Satellite Navigation at TU München May 16, 2011 1 Multi-Constellation

More information

James M Anderson. in collaboration with Jan Noordam and Oleg Smirnov. MPIfR, Bonn, 2006 Dec 07

James M Anderson. in collaboration with Jan Noordam and Oleg Smirnov. MPIfR, Bonn, 2006 Dec 07 Ionospheric Calibration for Long-Baseline, Low-Frequency Interferometry in collaboration with Jan Noordam and Oleg Smirnov Page 1/36 Outline The challenge for radioastronomy Introduction to the ionosphere

More information

Matlab Simulation Toolset for SBAS Availability Analysis

Matlab Simulation Toolset for SBAS Availability Analysis Matlab Simulation Toolset for SBAS Availability Analysis Shau-Shiun Jan, Wyant Chan, Todd Walter, Per Enge Department of Aeronautics and Astronautics Stanford University, California 94305 ABSTRACT This

More information

Tajul Ariffin Musa. Tajul A. Musa. Dept. of Geomatics Eng, FKSG, Universiti Teknologi Malaysia, Skudai, Johor, MALAYSIA.

Tajul Ariffin Musa. Tajul A. Musa. Dept. of Geomatics Eng, FKSG, Universiti Teknologi Malaysia, Skudai, Johor, MALAYSIA. Tajul Ariffin Musa Dept. of Geomatics Eng, FKSG, Universiti Teknologi Malaysia, 81310 Skudai, Johor, MALAYSIA. Phone : +6075530830;+6075530883; Mobile : +60177294601 Fax : +6075566163 E-mail : tajul@fksg.utm.my

More information

UNIT 1 - introduction to GPS

UNIT 1 - introduction to GPS UNIT 1 - introduction to GPS 1. GPS SIGNAL Each GPS satellite transmit two signal for positioning purposes: L1 signal (carrier frequency of 1,575.42 MHz). Modulated onto the L1 carrier are two pseudorandom

More information

Global Positioning System: what it is and how we use it for measuring the earth s movement. May 5, 2009

Global Positioning System: what it is and how we use it for measuring the earth s movement. May 5, 2009 Global Positioning System: what it is and how we use it for measuring the earth s movement. May 5, 2009 References Lectures from K. Larson s Introduction to GNSS http://www.colorado.edu/engineering/asen/

More information

GPS based total electron content (TEC) anomalies and their association with large magnitude earthquakes occurred around Indian region

GPS based total electron content (TEC) anomalies and their association with large magnitude earthquakes occurred around Indian region Indian Journal of Radio & Space Physics Vol 42, June 2013, pp 131-135 GPS based total electron content (TEC) anomalies and their association with large magnitude earthquakes occurred around Indian region

More information

Assessment of Nominal Ionosphere Spatial Decorrelation for LAAS

Assessment of Nominal Ionosphere Spatial Decorrelation for LAAS Assessment of Nominal Ionosphere Spatial Decorrelation for LAAS Jiyun Lee, Sam Pullen, Seebany Datta-Barua, and Per Enge Stanford University, Stanford, California 9-8 Abstract The Local Area Augmentation

More information

TEC Estimation Using GNSS. Luigi Ciraolo, ICTP. Kigali, July 9th 2014

TEC Estimation Using GNSS. Luigi Ciraolo, ICTP. Kigali, July 9th 2014 TEC Estimation Using GNSS Luigi Ciraolo, ICTP Workshop: African School on Space Science: Related Applications and Awareness for Sustainable Development of the Region Kigali, July 9th 2014 GNSS observables

More information

Modelling GPS Observables for Time Transfer

Modelling GPS Observables for Time Transfer Modelling GPS Observables for Time Transfer Marek Ziebart Department of Geomatic Engineering University College London Presentation structure Overview of GPS Time frames in GPS Introduction to GPS observables

More information

To Estimate The Regional Ionospheric TEC From GEONET Observation

To Estimate The Regional Ionospheric TEC From GEONET Observation To Estimate The Regional Ionospheric TEC From GEONET Observation Jinsong Ping(Email: jsping@miz.nao.ac.jp) 1,2, Nobuyuki Kawano 2,3, Mamoru Sekido 4 1. Dept. Astronomy, Beijing Normal University, Haidian,

More information

NAVIGATION SYSTEMS PANEL (NSP) NSP Working Group meetings. Impact of ionospheric effects on SBAS L1 operations. Montreal, Canada, October, 2006

NAVIGATION SYSTEMS PANEL (NSP) NSP Working Group meetings. Impact of ionospheric effects on SBAS L1 operations. Montreal, Canada, October, 2006 NAVIGATION SYSTEMS PANEL (NSP) NSP Working Group meetings Agenda Item 2b: Impact of ionospheric effects on SBAS L1 operations Montreal, Canada, October, 26 WORKING PAPER CHARACTERISATION OF IONOSPHERE

More information

Impact of the low latitude ionosphere disturbances on GNSS studied with a three-dimensional ionosphere model

Impact of the low latitude ionosphere disturbances on GNSS studied with a three-dimensional ionosphere model Impact of the low latitude ionosphere disturbances on GNSS studied with a three-dimensional ionosphere model Susumu Saito and Naoki Fujii Communication, Navigation, and Surveillance Department, Electronic

More information

Swarm L2 TEC Product Description

Swarm L2 TEC Product Description Swarm Expert Support Laboratories Swarm L2 TEC Product Description British Geological Survey (BGS) National Space Institute DTU Space (DTU) Delft Institute of Earth Observation and Space Systems (DUT)

More information

Integrity of Satellite Navigation in the Arctic

Integrity of Satellite Navigation in the Arctic Integrity of Satellite Navigation in the Arctic TODD WALTER & TYLER REID STANFORD UNIVERSITY APRIL 2018 Satellite Based Augmentation Systems (SBAS) in 2018 2 SBAS Networks in 2021? 3 What is Meant by Integrity?

More information

Spatial and Temporal Variations of GPS-Derived TEC over Malaysia from 2003 to 2009

Spatial and Temporal Variations of GPS-Derived TEC over Malaysia from 2003 to 2009 Spatial and Temporal Variations of GPS-Derived TEC over Malaysia from 2003 to 2009 Leong, S. K., Musa, T. A. & Abdullah, K. A. UTM-GNSS & Geodynamics Research Group, Infocomm Research Alliance, Faculty

More information

ROTI Maps: a new IGS s ionospheric product characterizing the ionospheric irregularities occurrence

ROTI Maps: a new IGS s ionospheric product characterizing the ionospheric irregularities occurrence 3-7 July 2017 ROTI Maps: a new IGS s ionospheric product characterizing the ionospheric irregularities occurrence Iurii Cherniak Andrzej Krankowski Irina Zakharenkova Space Radio-Diagnostic Research Center,

More information

Introduction to DGNSS

Introduction to DGNSS Introduction to DGNSS Jaume Sanz Subirana J. Miguel Juan Zornoza Research group of Astronomy & Geomatics (gage) Technical University of Catalunya (UPC), Spain. Web site: http://www.gage.upc.edu Hanoi,

More information

RECOMMENDATION ITU-R P HF PROPAGATION PREDICTION METHOD* (Question ITU-R 223/3)

RECOMMENDATION ITU-R P HF PROPAGATION PREDICTION METHOD* (Question ITU-R 223/3) Rec. ITU-R P.533-6 1 RECOMMENDATION ITU-R P.533-6 HF PROPAGATION PREDICTION METHOD* (Question ITU-R 223/3) Rec. ITU-R P.533-6 (1978-1982-1990-1992-1994-1995-1999) The ITU Radiocommunication Assembly, considering

More information

Second and Third Order Ionospheric Effect on Global Positioning System (GPS) Signals along Equatorial International Geodetic Services (Igs) Stations

Second and Third Order Ionospheric Effect on Global Positioning System (GPS) Signals along Equatorial International Geodetic Services (Igs) Stations Second and Third Order Ionospheric Effect on Global Positioning System (GPS) Signals along Equatorial International Geodetic Services (Igs) Stations Asmamaw CHANIE, Ethiopia Keywords: GPS, Ionospheric

More information

imaging of the ionosphere and its applications to radio propagation Fundamentals of tomographic Ionospheric Tomography I: Ionospheric Tomography I:

imaging of the ionosphere and its applications to radio propagation Fundamentals of tomographic Ionospheric Tomography I: Ionospheric Tomography I: Ionospheric Tomography I: Ionospheric Tomography I: Fundamentals of tomographic imaging of the ionosphere and its applications to radio propagation Summary Introduction to tomography Introduction to tomography

More information

Multipath and Atmospheric Propagation Errors in Offshore Aviation DGPS Positioning

Multipath and Atmospheric Propagation Errors in Offshore Aviation DGPS Positioning Multipath and Atmospheric Propagation Errors in Offshore Aviation DGPS Positioning J. Paul Collins, Peter J. Stewart and Richard B. Langley 2nd Workshop on Offshore Aviation Research Centre for Cold Ocean

More information

Comparison of GPS receiver DCB estimation methods using a GPS network

Comparison of GPS receiver DCB estimation methods using a GPS network Earth Planets Space, 65, 707 711, 2013 Comparison of GPS receiver DCB estimation methods using a GPS network Byung-Kyu Choi 1, Jong-Uk Park 1, Kyoung Min Roh 1, and Sang-Jeong Lee 2 1 Space Science Division,

More information

FieldGenius Technical Notes GPS Terminology

FieldGenius Technical Notes GPS Terminology FieldGenius Technical Notes GPS Terminology Almanac A set of Keplerian orbital parameters which allow the satellite positions to be predicted into the future. Ambiguity An integer value of the number of

More information

Tropospheric Delay Correction in L1-SAIF Augmentation

Tropospheric Delay Correction in L1-SAIF Augmentation International Global Navigation Satellite Systems Society IGNSS Symposium 007 The University of New South Wales, Sydney, Australia 4 6 December, 007 Tropospheric Delay Correction in L1-SAIF Augmentation

More information

E. Calais Purdue University - EAS Department Civil 3273

E. Calais Purdue University - EAS Department Civil 3273 E. Calais Purdue University - EAS Department Civil 373 ecalais@purdue.edu GPS signal propagation GPS signal (= carrier phase modulated by satellite PRN code) sent by satellite. About 66 msec (0,000 km)

More information

Bernese GPS Software 4.2

Bernese GPS Software 4.2 Bernese GPS Software 4.2 Introduction Signal Processing Geodetic Use Details of modules Bernese GPS Software 4.2 Highest Accuracy GPS Surveys Research and Education Big Permanent GPS arrays Commercial

More information

Integer Ambiguity Resolution for Precise Point Positioning Patrick Henkel

Integer Ambiguity Resolution for Precise Point Positioning Patrick Henkel Integer Ambiguity Resolution for Precise Point Positioning Patrick Henkel Overview Introduction Sequential Best-Integer Equivariant Estimation Multi-frequency code carrier linear combinations Galileo:

More information

Posicionamento por ponto com. Posicionamento por satélite UNESP PP 2017 Prof. Galera

Posicionamento por ponto com. Posicionamento por satélite UNESP PP 2017 Prof. Galera Posicionamento por ponto com multiconstelação GNSS Posicionamento por satélite UNESP PP 2017 Prof. Galera Single-GNSS Observation Equations Considering j = 1; : : : ; f S the frequencies of a certain GNSS

More information

Derivation of TEC and estimation of instrumental biases from GEONET in Japan

Derivation of TEC and estimation of instrumental biases from GEONET in Japan Derivation of TEC and estimation of instrumental biases from GEONET in Japan G Ma, T Maruyama To cite this version: G Ma, T Maruyama Derivation of TEC and estimation of instrumental biases from GEONET

More information

Implementation of Prototype Satellite-Based Augmentation System (SBAS)

Implementation of Prototype Satellite-Based Augmentation System (SBAS) International Global Navigation Satellite Systems Society IGNSS Symposium 2006 Holiday Inn Surfers Paradise, Australia 17 21 July 2006 Implementation of Prototype Satellite-Based Augmentation System (SBAS)

More information

Methodology and Case Studies of Signal-in-Space Error Calculation

Methodology and Case Studies of Signal-in-Space Error Calculation Methodology and Case Studies of Signal-in-Space Error Calculation Top-down Meets Bottom-up Grace Xingxin Gao *, Haochen Tang *, Juan Blanch *, Jiyun Lee +, Todd Walter * and Per Enge * * Stanford University,

More information

Ionospheric delay corrections for single-frequency GPS receivers over Europe using tomographic mapping

Ionospheric delay corrections for single-frequency GPS receivers over Europe using tomographic mapping DOI.7/s29-8-7-y ORIGINAL ARTICLE Ionospheric delay corrections for single-frequency GPS receivers over Europe using tomographic mapping Damien J. Allain Æ Cathryn N. Mitchell Received: July 28 / Accepted:

More information

Modeling and Simulation of GNSS with NS2

Modeling and Simulation of GNSS with NS2 Modeling and Simulation of GSS with S Tiziano Inzerilli, Daniele Lo Forti, Vincenzo Suraci 3 University of Rome La Sapienza, D.I.S inzerilli@dis.uniroma.it, danyloforti@tiscali.it, vincenzo.suraci@dis.uniroma.it

More information

GBAS safety assessment guidance. related to anomalous ionospheric conditions

GBAS safety assessment guidance. related to anomalous ionospheric conditions INTERNATIONAL CIVIL AVIATION ORGANIZATION ASIA AND PACIFIC OFFICE GBAS safety assessment guidance Edition 1.0 September 2016 Adopted by APANPIRG/27 Intentionally left blank Edition 1.0 September 2016 2

More information

Monitoring the Auroral Oval with GPS and Applications to WAAS

Monitoring the Auroral Oval with GPS and Applications to WAAS Monitoring the Auroral Oval with GPS and Applications to WAAS Peter J. Stewart and Richard B. Langley Geodetic Research Laboratory Department of Geodesy and Geomatics Engineering University of New Brunswick

More information

Methods and other considerations to correct for higher-order ionospheric delay terms in GNSS

Methods and other considerations to correct for higher-order ionospheric delay terms in GNSS Methods and other considerations to correct for higher-order ionospheric delay terms in GNSS M. Hernández-Pajares(1), M.Fritsche(2), M.M. Hoque(3), N. Jakowski (3), J.M. Juan(1), S. Kedar(4), A. Krankowski(5),

More information

Monitoring the 3 Dimensional Ionospheric Electron Distribution based on GPS Measurements

Monitoring the 3 Dimensional Ionospheric Electron Distribution based on GPS Measurements Monitoring the 3 Dimensional Ionospheric Electron Distribution based on GPS Measurements Stefan Schlüter 1, Claudia Stolle 2, Norbert Jakowski 1, and Christoph Jacobi 2 1 DLR Institute of Communications

More information

Comparison of Ionosphere at Middle Latitude Zone during Solar Maximum and Solar Minimum

Comparison of Ionosphere at Middle Latitude Zone during Solar Maximum and Solar Minimum Comparison of Ionosphere at Middle Latitude Zone during Solar Maximum and Solar Minimum Tharapong Sukcharoen, Jingnong Weng, Teetat Charoenkalunyuta, and Falin Wu Abstract The impact of the satellite-based

More information

Trimble Business Center:

Trimble Business Center: Trimble Business Center: Modernized Approaches for GNSS Baseline Processing Trimble s industry-leading software includes a new dedicated processor for static baselines. The software features dynamic selection

More information

Positioning Performance Evaluation of Regional Ionospheric Corrections with Single Frequency GPS Receivers

Positioning Performance Evaluation of Regional Ionospheric Corrections with Single Frequency GPS Receivers International Global Navigation Satellite Systems Society IGNSS Symposium 2015 Outrigger Gold Coast, Qld Australia 14-16 July, 2015 Positioning Performance Evaluation of Regional Ionospheric Corrections

More information

Detecting Ionospheric TEC Perturbations Generated by Natural Hazards Using a Real-Time Network of GPS Receivers

Detecting Ionospheric TEC Perturbations Generated by Natural Hazards Using a Real-Time Network of GPS Receivers Detecting Ionospheric TEC Perturbations Generated by Natural Hazards Using a Real-Time Network of GPS Receivers Attila Komjathy, Yu-Ming Yang, and Anthony J. Mannucci Jet Propulsion Laboratory California

More information

Lecture 8: GIS Data Error & GPS Technology

Lecture 8: GIS Data Error & GPS Technology Lecture 8: GIS Data Error & GPS Technology A. Introduction We have spent the beginning of this class discussing some basic information regarding GIS technology. Now that you have a grasp of the basic terminology

More information

Study of small scale plasma irregularities. Đorđe Stevanović

Study of small scale plasma irregularities. Đorđe Stevanović Study of small scale plasma irregularities in the ionosphere Đorđe Stevanović Overview 1. Global Navigation Satellite Systems 2. Space weather 3. Ionosphere and its effects 4. Case study a. Instruments

More information

Detection of Abnormal Ionospheric Activity from the EPN and Impact on Kinematic GPS positioning

Detection of Abnormal Ionospheric Activity from the EPN and Impact on Kinematic GPS positioning Detection of Abnormal Ionospheric Activity from the EPN and Impact on Kinematic GPS positioning N. Bergeot, C. Bruyninx, E. Pottiaux, S. Pireaux, P. Defraigne, J. Legrand Royal Observatory of Belgium Introduction

More information

A Tropospheric Delay Model for the user of the Wide Area Augmentation System

A Tropospheric Delay Model for the user of the Wide Area Augmentation System A Tropospheric Delay Model for the user of the Wide Area Augmentation System J. Paul Collins and Richard B. Langley 1st October 1996 +641&7%6+1 OBJECTIVES Develop and test a tropospheric propagation delay

More information

GNSS IONOSPHERIC SCINTILLATION STUDIES IN SINGAPORE DHIMAS SENTANU MURTI SCHOOL OF ELECTRICAL AND ELECTRONIC ENGINEERING

GNSS IONOSPHERIC SCINTILLATION STUDIES IN SINGAPORE DHIMAS SENTANU MURTI SCHOOL OF ELECTRICAL AND ELECTRONIC ENGINEERING GNSS IONOSPHERIC SCINTILLATION STUDIES IN SINGAPORE DHIMAS SENTANU MURTI SCHOOL OF ELECTRICAL AND ELECTRONIC ENGINEERING 2015 GNSS IONOSPHERIC SCINTILLATION STUDIES IN SINGAPORE DHIMAS SENTANU MURTI SCHOOL

More information

A Survey on SQM for Sat-Nav Systems

A Survey on SQM for Sat-Nav Systems A Survey on SQM for Sat-Nav Systems Sudarshan Bharadwaj DS Department of ECE, Cambridge Institute of Technology, Bangalore Abstract: Reduction of multipath effects on the satellite signals can be accomplished

More information

Sources of Error in Satellite Navigation Positioning

Sources of Error in Satellite Navigation Positioning http://www.transnav.eu the International Journal on Marine Navigation and Safety of Sea Transportation Volume 11 Number 3 September 2017 DOI: 10.12716/1001.11.03.04 Sources of Error in Satellite Navigation

More information

Plasma effects on transionospheric propagation of radio waves II

Plasma effects on transionospheric propagation of radio waves II Plasma effects on transionospheric propagation of radio waves II R. Leitinger General remarks Reminder on (transionospheric) wave propagation Reminder of propagation effects GPS as a data source Some electron

More information

GPS Error and Biases

GPS Error and Biases Component-I(A) - Personal Details Role Name Affiliation Principal Investigator Prof.MasoodAhsanSiddiqui Department of Geography, JamiaMilliaIslamia, New Delhi Paper Coordinator, if any Dr. Mahaveer Punia

More information

IONOSPHERIC ERROR MODELING FOR HIGH INTEGRITY CARRIER PHASE POSITIONING JASON WILLIAM NEALE

IONOSPHERIC ERROR MODELING FOR HIGH INTEGRITY CARRIER PHASE POSITIONING JASON WILLIAM NEALE IONOSPHERIC ERROR MODELING FOR HIGH INTEGRITY CARRIER PHASE POSITIONING BY JASON WILLIAM NEALE Submitted in partial fulfillment of the requirements for the degree of Master of Science in Aerospace and

More information

Wide-Area, Carrier-Phase Ambiguity Resolution Using a Tomographic Model of the Ionosphere

Wide-Area, Carrier-Phase Ambiguity Resolution Using a Tomographic Model of the Ionosphere Wide-Area, Carrier-Phase Ambiguity Resolution Using a Tomographic Model of the Ionosphere OSCAR L. COLOMBO NASA Goddard Spaceflight Center, Greenbelt, Maryland MANUEL HERNANDEZ-PAJARES, J. MIGUEL JUAN,

More information

Validation of Multiple Hypothesis RAIM Algorithm Using Dual-frequency GNSS Signals

Validation of Multiple Hypothesis RAIM Algorithm Using Dual-frequency GNSS Signals Validation of Multiple Hypothesis RAIM Algorithm Using Dual-frequency GNSS Signals Alexandru Ene, Juan Blanch, Todd Walter, J. David Powell Stanford University, Stanford CA, USA BIOGRAPHY Alexandru Ene

More information

Global Navigation Satellite Systems II

Global Navigation Satellite Systems II Global Navigation Satellite Systems II AERO4701 Space Engineering 3 Week 4 Last Week Examined the problem of satellite coverage and constellation design Looked at the GPS satellite constellation Overview

More information