LRC Mobile Radio Networks Link Level: the Radio Channel

Size: px
Start display at page:

Download "LRC Mobile Radio Networks Link Level: the Radio Channel"

Transcription

1 LRC Mobile Radio Networks Link Level: the Radio Channel Roberto Verdone Office Hours: Monday 4 6 pm (upon prior agreement via ) Slides are provided as supporting tool, they are not a textbook! A.Y Credits: 6

2 Outline 1. Fundamentals of Radio Propagation / 1 2. Radio Channel Characterisation 3. Large Scale phenomena 4. Small Scale phenomena a) Wideband characterisation b) Narrowband characterisation 5. The Narrowband Mobile Radio Channel 6. Link Performance in the Presence of Fading 7. Area Coverage Probability 8. Exercises 9. Fundamentals of Radio Propagation / 2 The scope of this lecture block is to introduce the basics of radio channel characterisation that will be useful to follow the link level analysis performed in this course.

3 1. Fundamentals of Radio Propagation / 1

4 Fundamentals of Radio Propagation / 1 peak transmit power d peak receive power T Pt radio space Pr R transmit antenna system receive antenna system gain G t efficiency η ta gain G r efficiency η ra radio or propagation channel

5 Fundamentals of Radio Propagation / 1 Radio à Waves

6 Fundamentals of Radio Propagation / 1 Radio à Waves Radio Communication is* the transmission, emission, reception of signs, signals, writings, images, sounds or information of whatever nature, making use of electromagnetic waves x λ E y H d z * MIN. SV. EC DIP. COM. IT. Piano Naz. di ripartiz. delle frequenze Glossario

7 Fundamentals of Radio Propagation / 1 Radio à Waves Faraday Maxwell Hertz Lodge Guglielmo Marconi: 1895 first wideband reception at Villa Griffone (Pontecchio Marconi) 1897 first ship-to-shore communications over a distance of 12 Kms 1901 first transoceanic transmission

8 Fundamentals of Radio Propagation / 1 Radio à Waves Phase speed in clear sky c = m/s = f λ Power density in free space p(d) = 0.5 E m 2 / 377 = Pt Gt η ta / 4 π d 2 W/m 2 Received power is Pr = p(d) Gr η ra / 4 π / λ 2 W Waves tend to interact with objects of size equal to or larger than λ Efficient antennas have size close to λ Antenna gains depend on directivity VLF LF MF HF VHF UHF SHF EHF f [ MHz ] 0,03 0, millimetre waves λ [ m ] Mobile Radio Networks

9 Fundamentals of Radio Propagation / 1 Radio à Waves 3 > f [ MHz ] λ [ m ] > 100 Ground Waves 3 < f [ MHz ] < < λ [ m ] < 100 Sky Waves 30 < f [ MHz ] 10 > λ [ m ] Space Waves Ground waves Sky waves Space waves Near-optical propagation VLF LF MF HF VHF UHF SHF EHF f [ MHz ] 0,03 0, millimetre waves λ [ m ] Mobile Radio Networks

10 Fundamentals of Radio Propagation / 1 Radio à Frequency Spectrum

11 Fundamentals of Radio Propagation / 1 Radio à Frequency Spectrum VLF LF MF HF VHF UHF SHF EHF f [ MHz ] 0,03 0, λ [ m ] Frequency band assignments to services are: 1) Requested by industry alliances, standardisation bodies 2) Negotiated within and recommended by ITU-R 3) Regulated on a Country basis by National Authorities 4) Released to operators / users based on National rules (context, etc.)

12 Fundamentals of Radio Propagation / 1 Radio à Frequency Spectrum ISM Bands: Licence - Exempt in Most Countries VLF LF MF HF VHF UHF SHF EHF f [ MHz ] 0,03 0, λ [ m ] MHz RFid MHz RFid MHz Proprietary Radios MHz Proprietary Radios, LoRa, GHz Proprietary Radios, Bluetooth, WiFi, Zigbee, GHz WiFi,

13 Fundamentals of Radio Propagation / 1 Radio à Unpredictable Channel

14 Fundamentals of Radio Propagation / 1 Radio à Unpredictable Channel d T Pt Pr R If radio space is uniform, isotropic, perfect dielectric, without obstacles, Pr = Pt Gt Gr η ta η ra / Aio Aio = ( 4 π d / λ ) 2 [Friis, 1945] Otherwise Aio replaced by Ai = c * d β * x where c is constant, x is r.v.

15 Fundamentals of Radio Propagation / 1 Radio à Unpredictable Channel Spatial Filtering d Pt Pr T R Pr = Pt Gt Gr η ta η ra / Ai Receiver Power [dbm] d -β β > 2 d -2 Transmission Range Receiver Sensitivity R R distance

16 Fundamentals of Radio Propagation / 1 Radio à Unpredictable Channel Spatial Filtering d Pt Pr T R β = 2 β > 2 R d R

17 Fundamentals of Radio Propagation / 1 Radio à Unpredictable Channel Channel Gain Fluctuations d T Pt Pr R Receiver Power outage events Receiver Sensitivity Outage Probability: probability that received power is less than receiver sensitivity time

18 Fundamentals of Radio Propagation / 1 Radio à Unpredictable Channel Channel Gain Fluctuations d T Pt Pr R d R d

19 Fundamentals of Radio Propagation / 1 Radio à Unpredictable Channel Device Location d T R R distance R d pdf 2d/R 2 random uniform distribution over circle time R distance

20 Fundamentals of Radio Propagation / 1 Radio à Unpredictable Channel d T Pt radio space Pr R Pr = k d -β ξ Reliability requires: Countermeasures to user mobility Countermeasures to channel fluctuations

21 2. Radio Channel Characterisation

22 Radio Channel Characterisation s t (t) s r (t) Real World Pt Fp(f) Pr Analysis measurements or computation Comprehension Synthesis Model deterministic or statistical We do not need models that describe carefully the real world! We need models that are useful for the sake of link performance analysis

23 Radio Channel Characterisation s t (t) s r (t) Pt Pr Fp(f) Assumptions on the radio channel: Linear Multiple sources generate received signal given by sum Far Field Planar waves at the receiver antenna (d >> λ) Time-Variant Fp(f) changes with time à Fp(f, t) Quasi-Static Fp(f, t) varies slowly with respect to channel propagation delays (WSSUS Wide Sense Stationary Uncorrelated Scattering)

24 Radio Channel Characterisation 1. Narrowband: Carrier transmitted P r = P t G = P t F p (f, t) 2 Channel Impulse Response (CIR): F h(t, τ) F p (f, t) 2. Wideband: Impulse transmitted Power Delay Profile (PDP): P h (τ) = Int t [ h(t, τ) 2 ] PDP [W/s] P r = Int [ P h (τ) ] Delay (τ)

25 Radio Channel Characterisation On Wide Sense Stationarity s t (t) CIR Time (t) t 1 t 2 t 3 t 4 t 1 t 2 t 3 t 4 Tcoh (s) Delay (τ) Time (t)

26 Radio Channel Characterisation Time (t) On Wide Sense Stationarity CIR Delay (τ) t 1 t 2 t 3 t 4 Tcoh (s)

27 Radio Channel Characterisation The main phenomena characterising the mobile channel can be categorised as: 1. Large Scale if observed only changing significantly the Tx-Rx relation 2. Small Scale if observed with small changes of the Tx-Rx relation d R D << d (few λ) d R Large Scale Small Scale

28 3. Large Scale Phenomena

29 Large Scale: Shadowing Obstacles Tx Humans, vehicles, hills, trees, Rx Narrowband characterisation x

30 Large Scale Obstacles Tx Humans, vehicles, hills, trees, Rx Shadowing effect: isotropic attenuation is the product of several terms: Aim = A1 * A2 * * An Aim [db] = A1 [db] + A2 [db] + + An [db] If n is large, and central limit theorem assumptions hold, then Aim [db] is Gaussian distributed. Standard deviation from 4 to 12 depending on environment

31 Large Scale Shadowing is usually log-normally distributed, for both mobile/stationary applications Autocorrelation function is R(d) = R 0 exp [ - d/d 0 ] [Gudmunson s Model] d 0 = metres Large scale fluctuations Received power [dbm] Link Reciprocal High frequency coherence Low spatial coherence distance

32 4. Small Scale Phenomena

33 Small Scale: Fading Tx Rx Multiple Paths Narrowband characterisation Wideband characterisation Transmitted Energy time Received Energy delay

34 Small Scale: Wideband Characterisation Power Delay Profile: P h (τ) = Int t [ h(t, τ) 2 ] Mean Delay: PDP T m = Int τ [ τ P h (τ) ] / P r delay (Root Mean Square) Delay Spread: σ τ = [(( Int τ τ 2 P h (τ) ) / P r ) T m 2 ]

35 Small Scale: Wideband Characterisation To be compared to symbol time.

36 Small Scale: Wideband Characterisation Tx Rx τ σ τ = τ / 2 Fp(f, t) 2 fc notch frequency Math. derivation 1 / τ

37 Small Scale: Wideband Characterisation Tx Rx t τ σ τ = τ / 2 Fp(f, t) 2 fc Pr t time frequency

38 Small Scale: Wideband Characterisation Tx Rx τ σ τ = τ / 2 Fp(f, t) 2 fc Bc frequency 1 / τ

39 Small Scale: Wideband Characterisation Tx Rx τ σ τ = τ / 2 BLER [log], one path only BLER [log], two paths Bc 1 / τ or larger Error Floor SNR [db] Bc << 1 / τ SNR [db]

40 Small Scale: Wideband Characterisation Tx Rx τ σ τ = τ / 2 BLER [log], one path only BLER [log], two paths Bc 1 / τ or larger Error Floor SNR [db] Bc << 1 / τ SNR [db] Bc > 1 / τ (with rake receiver)

41 Small Scale: Wideband Characterisation τ / T << 1 Signal strength (random) attenuation τ / T ~ 1 or larger signal distortion τ represents delay spread of the channel impulse response

42 Small Scale: Narrowband (Mobile) Characterisation Tx Rx Speed v

43 Small Scale: Narrowband (Mobile) Characterisation d 0 = metres Large Scale fluctuations Received power [dbm] Small Scale fluctuations Rayleigh/Rice/ distributed envelope wavelengths (λ / 2 under typical urban conditions) distance

44 Small Scale: Narrowband (Mobile) Characterisation Received power [dbm] Small Scale fluctuations Non Link Reciprocal (for long ranges) Low frequency coherence Low spatial coherence distance

45 Small Scale: Narrowband (Mobile) Characterisation time = distance / speed s Pedestrian User Large Scale fluctuations Received power [dbm] s Small Scale fluctuations Speed: 1 m/s 2G, 3G, 4G frequency bands time

46 Small Scale: Narrowband (Mobile) Characterisation time = distance / speed 1-10 s Vehicular User (Urban) Large Scale fluctuations Received power [dbm] s Small Scale fluctuations Speed: 10 m/s 2G, 3G, 4G frequency bands time

47 Small Scale: Narrowband (Mobile) Characterisation time = distance / speed s High Speed Train Large Scale fluctuations Received power [dbm] s Small Scale fluctuations Speed: 80 m/s 2G, 3G, 4G frequency bands time

48 Small Scale: Doppler Effect Spectrum Transmitted Carrier fo Frequency Tx Rx Speed v Spectrum fo fo + Δf Doppler shift Frequency Received Carrier Δf is proportional to v/λ

49 Small Scale: Doppler Spectrum Spectrum Transmitted Carrier fo Frequency Tx Rx Speed v Spectrum fo - Δf fo fo + Δf Frequency Received Carrier Δf is proportional to v/λ

50 Small Scale: Doppler Spectrum Spectrum fo - Δf fo fo + Δf Frequency BLER [log], no Doppler BLER [log], with Doppler Bc v / λ Bc >> v / λ Error Floor SNR [db] SNR [db]

51 Small Scale: Narrowband (Stationary) Characterisation Do not use previous model for v tending to zero; the speed of obstacles has to be considered The Doppler spectrum might change (typically bell-shaped) The fluctuation rate depends on speed of scatterers The statistics of channel fluctuations might change

52 Small Scale: Narrowband Characterisation Channel fluctuations are fast or slow depending on the user speed. In any case, one has to define what Fast or Slow means with respect to the figures considered e.g. The quality of human oriented communications: it is known that human perception is not sensitive to fluctuations faster than a few Hertz, Hence, link quality has to be averaged over fast fluctuations where fast means with a frequency larger than a few Hertz (for instance, fading for pedestrian or vehicular speeds in the GSM frequency band)

53 Radio Channel Characterisation in a nutshell The main phenomena characterising the mobile channel can be categorised as: Large Scale Small Scale shadowing due to obstacles along the entire path fading due to multipath caused by reflections, diffractions, over objects in the vicinity of receiver (scatterers) Channel characterisation can be Narrowband Single carrier is transmitted: link budget is the issue flat or time selective fading (small scale) shadowing (large scale) Wideband Short pulse is transmitted: multipath delay is the issue frequency selective fading (small scale) We focus mainly on link budget related issues (i.e. narrowband characterisation)

54 Radio Channel Characterisation in a nutshell Frequency bands from 400 MHz to 4 GHz Fading Shadowing Coherence Time T coh ms 1 10 s Coherence Band B coh MHz MHz Coherence Space S coh m m

55 Inquiry Based Session Does 2G (Bc = 200 KHz, fc = 1800 MHz) suffer from frequency selective fading? Does WiFi (Bc = 22 MHz, fc = 2.4 GHz) suffer from frequency selective fading? Does 2G (Bc = 200 KHz, fc = 1800 MHz) suffer from time selective fading?

56 5. The Narrowband Mobile Radio Channel

57 The Narrowband Mobile Radio Channel Received power [dbm] Prm(d) x distance Pr(x) = Prm(d) m 2 (x) r 2 (x) = Pra(x) r 2 (x) Pr(x) short term average power (over few carrier cycles) Pra(x) = Prm(d) m 2 (x) long term average power (over fading: few wavelenghts) Prm(d) median power (distance dependent component)

58 The Narrowband Mobile Radio Channel Pr(x) = Prm(d) m 2 (x) r 2 (x) Model Assumptions Shadowing: m 2 (x) is assumed to be log-normal distributed: Pra(x) [dbm] = Prm(d) [dbm] + s(x) [db] s(x) is Gaussian, zero mean, std dev. σ Fading: r(x) is assumed to be Rayleigh distributed (worst case), i.e. f(x) = r 2 (x) is negative exponentially distributed: pdf(f) = [1 / X] exp (- f / X) u(f) X = E[r(x) 2 ] =1 u(f) step function Median Power: Prm(d) = k d -β

59 6. Link Performance with Fading

60 Link Performance with Fading BLER [log] SNR [db] Human oriented applications: BLERa = Long term average BLER BLERa [log] BLERa = E [BLER(SNR)] = g(snra) Machine type applications: P out = Link Level Outage Probability P out = Prob [ BLER > BLER* ] = Prob [ SNR < SNR* ] = 1 exp(-snr*/snra) (Rayleigh) Pout [log] SNRa [db] SNRa [db]

61 7. Area Coverage Probability

62 Area Coverage Probability BLERa [log] R pdf(d) 2d/R 2 d R d SNRa [db] P cova = E d [P cov (d)] = Int_0^R [ P cov (d) 2d / R 2 ] P cov (d) = Prob [ BLERa(d) < BLERa* ] = Prob [ SNRa(d) > SNRa* ] = Prob [ Pra(d) > Pra* ] Pra(d) [dbm] = Prm(d) [dbm] + s P cov (d) = Prob [ s > (Pra* - Prm(d) [db]) ] = 0.5 erfc[(pra* - Prm(d) [db]) / σ 2 ] Math. derivation à P cov (R) = f (R, a) a = M sh [db] / σ M sh = Prm(R) / Pra*

63 Area Coverage Probability: compl. error function (erfc) erfc(x) = 2 π e t 2 dt x x E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-04

64 Area Coverage Probability: compl. error function (erfc) x erfc(x) = 2 π e t 2 dt x E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-17

65 Area Coverage Probability a = M sh [db] / σ 1 Coverage probability at cell border P cov a

66 Area Coverage Probability a = M sh [db] / σ 1 Average coverage probability P cova a β = 2 β = 3 β = 4

67 Area Coverage Probability 1 β = 3, k = 0.01, P * ra = 101 dbm σ = 6 σ = 9 σ = 12 Average coverage probability Cell radius [km]

68 Area Coverage Probability 1 β = 4, k = 0.01, P * ra = 101 dbm σ = 6 σ = 9 σ = 12 Average coverage probability Cell radius [km]

69 8. Exercises

70 Exercise LRC#1 Assume that the median received power at a distance of one meter is -10 dbm. The propagation exponent is equal to 4. Compute the probability that the long term average power is less than -93 dbm at a distance of 100 m, with standard deviation of shadowing equal to 6. Exercise LRC#2 Assume that the long term average power in a link is equal to -67 dbm. Under Rayleigh fading conditions, what is the probability of having short term average power less than -80 dbm?

71 Exercise LRC#3 Determine the maximum radius of a GSM cell (frequency band: 1800 MHz) assuming standard deviation of shadowing equal to 6, isotropic loss at 1 m set as 40 db and propagation exponent equal to 3. Transmitted power is 10 W, transmit and receive antenna gains are 10 db and 0 db respectively. Neglect losses due to antenna connections. The receiver sensitivity is -101 dbm. The requirement on average coverage probability is 90%. Exercise LRC#4 For the same set of parameters as above, draw a diagram showing the maximum cell radius as a function of the propagation exponent, from 3 to 4.

72 9. Fundamentals of Radio Propagation / 2

73 Fundamentals of Radio Propagation / 2 Radio à Frequency Spectrum VLF LF MF HF VHF UHF SHF EHF f [ MHz ] 0,03 0, λ [ m ] Spectrum usage f [ MHz ] More than 90% is actually unutilised!

74 Fundamentals of Radio Propagation / 2 Radio à Frequency Spectrum Ultra Wide Band Spectrum usage [Ross, 60s] f [MHz] Cognitive Radio Spectrum usage [Mitola, 1991] f [MHz]

75 Waves

76 Radio Networks Link Level: the Radio Channel The End Portonuovo

RRC Vehicular Communications Part II Radio Channel Characterisation

RRC Vehicular Communications Part II Radio Channel Characterisation RRC Vehicular Communications Part II Radio Channel Characterisation Roberto Verdone Slides are provided as supporting tool, they are not a textbook! Outline 1. Fundamentals of Radio Propagation 2. Large

More information

LRC Radio Networks Link Level: the Radio Channel

LRC Radio Networks Link Level: the Radio Channel LRC Radio Networks Link Level: the Radio Channel Roberto Verdone Slides are provided as supporting tool, they are not a textbook! Outline 1. Fundamentals of Radio Propagation / 1 2. Radio Channel Characterisation

More information

Chapter 3. Mobile Radio Propagation

Chapter 3. Mobile Radio Propagation Chapter 3 Mobile Radio Propagation Based on the slides of Dr. Dharma P. Agrawal, University of Cincinnati and Dr. Andrea Goldsmith, Stanford University Propagation Mechanisms Outline Radio Propagation

More information

The Radio Channel. COS 463: Wireless Networks Lecture 14 Kyle Jamieson. [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P.

The Radio Channel. COS 463: Wireless Networks Lecture 14 Kyle Jamieson. [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P. The Radio Channel COS 463: Wireless Networks Lecture 14 Kyle Jamieson [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P. Steenkiste] Motivation The radio channel is what limits most radio

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2003 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2004 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2005 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

Revision of Lecture One

Revision of Lecture One Revision of Lecture One System block Transceiver Wireless Channel Signal / System: Bandpass (Passband) Baseband Baseband complex envelope Linear system: complex (baseband) channel impulse response Channel:

More information

Mobile Radio Propagation Channel Models

Mobile Radio Propagation Channel Models Wireless Information Transmission System Lab. Mobile Radio Propagation Channel Models Institute of Communications Engineering National Sun Yat-sen University Table of Contents Introduction Propagation

More information

UWB Channel Modeling

UWB Channel Modeling Channel Modeling ETIN10 Lecture no: 9 UWB Channel Modeling Fredrik Tufvesson & Johan Kåredal, Department of Electrical and Information Technology fredrik.tufvesson@eit.lth.se 2011-02-21 Fredrik Tufvesson

More information

Revision of Lecture One

Revision of Lecture One Revision of Lecture One System blocks and basic concepts Multiple access, MIMO, space-time Transceiver Wireless Channel Signal/System: Bandpass (Passband) Baseband Baseband complex envelope Linear system:

More information

PROPAGATION MODELING 4C4

PROPAGATION MODELING 4C4 PROPAGATION MODELING ledoyle@tcd.ie 4C4 http://ledoyle.wordpress.com/temp/ Classification Band Initials Frequency Range Characteristics Extremely low ELF < 300 Hz Infra low ILF 300 Hz - 3 khz Ground wave

More information

Wideband Channel Characterization. Spring 2017 ELE 492 FUNDAMENTALS OF WIRELESS COMMUNICATIONS 1

Wideband Channel Characterization. Spring 2017 ELE 492 FUNDAMENTALS OF WIRELESS COMMUNICATIONS 1 Wideband Channel Characterization Spring 2017 ELE 492 FUNDAMENTALS OF WIRELESS COMMUNICATIONS 1 Wideband Systems - ISI Previous chapter considered CW (carrier-only) or narrow-band signals which do NOT

More information

Channel Modeling ETI 085

Channel Modeling ETI 085 Channel Modeling ETI 085 Overview Lecture no: 9 What is Ultra-Wideband (UWB)? Why do we need UWB channel models? UWB Channel Modeling UWB channel modeling Standardized UWB channel models Fredrik Tufvesson

More information

Antenna & Propagation. Basic Radio Wave Propagation

Antenna & Propagation. Basic Radio Wave Propagation For updated version, please click on http://ocw.ump.edu.my Antenna & Propagation Basic Radio Wave Propagation by Nor Hadzfizah Binti Mohd Radi Faculty of Electric & Electronics Engineering hadzfizah@ump.edu.my

More information

EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss

EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss Introduction Small-scale fading is used to describe the rapid fluctuation of the amplitude of a radio

More information

EITN85, FREDRIK TUFVESSON, JOHAN KÅREDAL ELECTRICAL AND INFORMATION TECHNOLOGY. Why do we need UWB channel models?

EITN85, FREDRIK TUFVESSON, JOHAN KÅREDAL ELECTRICAL AND INFORMATION TECHNOLOGY. Why do we need UWB channel models? Wireless Communication Channels Lecture 9:UWB Channel Modeling EITN85, FREDRIK TUFVESSON, JOHAN KÅREDAL ELECTRICAL AND INFORMATION TECHNOLOGY Overview What is Ultra-Wideband (UWB)? Why do we need UWB channel

More information

Narrow- and wideband channels

Narrow- and wideband channels RADIO SYSTEMS ETIN15 Lecture no: 3 Narrow- and wideband channels Ove Edfors, Department of Electrical and Information technology Ove.Edfors@eit.lth.se 2012-03-19 Ove Edfors - ETIN15 1 Contents Short review

More information

Wireless Communication Fundamentals Feb. 8, 2005

Wireless Communication Fundamentals Feb. 8, 2005 Wireless Communication Fundamentals Feb. 8, 005 Dr. Chengzhi Li 1 Suggested Reading Chapter Wireless Communications by T. S. Rappaport, 001 (version ) Rayleigh Fading Channels in Mobile Digital Communication

More information

Unit 3 - Wireless Propagation and Cellular Concepts

Unit 3 - Wireless Propagation and Cellular Concepts X Courses» Introduction to Wireless and Cellular Communications Unit 3 - Wireless Propagation and Cellular Concepts Course outline How to access the portal Assignment 2. Overview of Cellular Evolution

More information

EC 551 Telecommunication System Engineering. Mohamed Khedr

EC 551 Telecommunication System Engineering. Mohamed Khedr EC 551 Telecommunication System Engineering Mohamed Khedr http://webmail.aast.edu/~khedr 1 Mohamed Khedr., 2008 Syllabus Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week

More information

WIRELESS COMMUNICATION TECHNOLOGIES (16:332:546) LECTURE 5 SMALL SCALE FADING

WIRELESS COMMUNICATION TECHNOLOGIES (16:332:546) LECTURE 5 SMALL SCALE FADING WIRELESS COMMUNICATION TECHNOLOGIES (16:332:546) LECTURE 5 SMALL SCALE FADING Instructor: Dr. Narayan Mandayam Slides: SabarishVivek Sarathy A QUICK RECAP Why is there poor signal reception in urban clutters?

More information

Section 1 Wireless Transmission

Section 1 Wireless Transmission Part : Wireless Communication! section : Wireless Transmission! Section : Digital modulation! Section : Multiplexing/Medium Access Control (MAC) Section Wireless Transmission Intro. to Wireless Transmission

More information

Vehicle Networks. Wireless communication basics. Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl

Vehicle Networks. Wireless communication basics. Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl Vehicle Networks Wireless communication basics Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl Outline Wireless Signal Propagation Electro-magnetic waves Signal impairments Attenuation Distortion

More information

Radio channel modeling: from GSM to LTE

Radio channel modeling: from GSM to LTE Radio channel modeling: from GSM to LTE and beyond Alain Sibille Telecom ParisTech Comelec / RFM Outline Introduction: why do we need channel models? Basics Narrow band channels Wideband channels MIMO

More information

Channel Modelling ETIM10. Channel models

Channel Modelling ETIM10. Channel models Channel Modelling ETIM10 Lecture no: 6 Channel models Fredrik Tufvesson Department of Electrical and Information Technology Lund University, Sweden Fredrik.Tufvesson@eit.lth.se 2012-02-03 Fredrik Tufvesson

More information

Muhammad Ali Jinnah University, Islamabad Campus, Pakistan. Fading Channel. Base Station

Muhammad Ali Jinnah University, Islamabad Campus, Pakistan. Fading Channel. Base Station Fading Lecturer: Assoc. Prof. Dr. Noor M Khan Department of Electronic Engineering, Muhammad Ali Jinnah University, Islamabad Campus, Islamabad, PAKISTAN Ph: +9 (51) 111-878787, Ext. 19 (Office), 186 (ARWiC

More information

Written Exam Channel Modeling for Wireless Communications - ETIN10

Written Exam Channel Modeling for Wireless Communications - ETIN10 Written Exam Channel Modeling for Wireless Communications - ETIN10 Department of Electrical and Information Technology Lund University 2017-03-13 2.00 PM - 7.00 PM A minimum of 30 out of 60 points are

More information

Narrow- and wideband channels

Narrow- and wideband channels RADIO SYSTEMS ETIN15 Lecture no: 3 Narrow- and wideband channels Ove Edfors, Department of Electrical and Information technology Ove.Edfors@eit.lth.se 27 March 2017 1 Contents Short review NARROW-BAND

More information

Lecture 7/8: UWB Channel. Kommunikations

Lecture 7/8: UWB Channel. Kommunikations Lecture 7/8: UWB Channel Kommunikations Technik UWB Propagation Channel Radio Propagation Channel Model is important for Link level simulation (bit error ratios, block error ratios) Coverage evaluation

More information

Part 4. Communications over Wireless Channels

Part 4. Communications over Wireless Channels Part 4. Communications over Wireless Channels p. 1 Wireless Channels Performance of a wireless communication system is basically limited by the wireless channel wired channel: stationary and predicable

More information

Wireless Sensor Networks 4th Lecture

Wireless Sensor Networks 4th Lecture Wireless Sensor Networks 4th Lecture 07.11.2006 Christian Schindelhauer schindel@informatik.uni-freiburg.de 1 Amplitude Representation Amplitude representation of a sinus curve s(t) = A sin(2π f t + ϕ)

More information

Unit 5 - Week 4 - Multipath Fading Environment

Unit 5 - Week 4 - Multipath Fading Environment 2/29/207 Introduction to ireless and Cellular Communications - - Unit 5 - eek 4 - Multipath Fading Environment X Courses Unit 5 - eek 4 - Multipath Fading Environment Course outline How to access the portal

More information

King Fahd University of Petroleum & Minerals Computer Engineering Dept

King Fahd University of Petroleum & Minerals Computer Engineering Dept King Fahd University of Petroleum & Minerals Computer Engineering Dept COE 543 Mobile and Wireless Networks Term 0 Dr. Ashraf S. Hasan Mahmoud Rm -148-3 Ext. 174 Email: ashraf@ccse.kfupm.edu.sa 4//003

More information

Channel Models. Spring 2017 ELE 492 FUNDAMENTALS OF WIRELESS COMMUNICATIONS 1

Channel Models. Spring 2017 ELE 492 FUNDAMENTALS OF WIRELESS COMMUNICATIONS 1 Channel Models Spring 2017 ELE 492 FUNDAMENTALS OF WIRELESS COMMUNICATIONS 1 Narrowband Channel Models Statistical Approach: Impulse response modeling: A narrowband channel can be represented by an impulse

More information

MSIT 413: Wireless Technologies Week 3

MSIT 413: Wireless Technologies Week 3 MSIT 413: Wireless Technologies Week 3 Michael L. Honig Department of EECS Northwestern University January 2016 Why Study Radio Propagation? To determine coverage Can we use the same channels? Must determine

More information

EITN85, FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY

EITN85, FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY Wireless Communication Channels Lecture 6: Channel Models EITN85, FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY Content Modelling methods Okumura-Hata path loss model COST 231 model Indoor models

More information

Radio Propagation Fundamentals

Radio Propagation Fundamentals Radio Propagation Fundamentals Concept of Electromagnetic Wave Propagation Mechanisms Modes of Propagation Propagation Models Path Profiles Link Budget Fading Channels Electromagnetic (EM) Waves EM Wave

More information

Wireless Physical Layer Concepts: Part II

Wireless Physical Layer Concepts: Part II Wireless Physical Layer Concepts: Part II Raj Jain Professor of CSE Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at:

More information

Project = An Adventure : Wireless Networks. Lecture 4: More Physical Layer. What is an Antenna? Outline. Page 1

Project = An Adventure : Wireless Networks. Lecture 4: More Physical Layer. What is an Antenna? Outline. Page 1 Project = An Adventure 18-759: Wireless Networks Checkpoint 2 Checkpoint 1 Lecture 4: More Physical Layer You are here Done! Peter Steenkiste Departments of Computer Science and Electrical and Computer

More information

RECOMMENDATION ITU-R P The prediction of the time and the spatial profile for broadband land mobile services using UHF and SHF bands

RECOMMENDATION ITU-R P The prediction of the time and the spatial profile for broadband land mobile services using UHF and SHF bands Rec. ITU-R P.1816 1 RECOMMENDATION ITU-R P.1816 The prediction of the time and the spatial profile for broadband land mobile services using UHF and SHF bands (Question ITU-R 211/3) (2007) Scope The purpose

More information

Lecture 1 Wireless Channel Models

Lecture 1 Wireless Channel Models MIMO Communication Systems Lecture 1 Wireless Channel Models Prof. Chun-Hung Liu Dept. of Electrical and Computer Engineering National Chiao Tung University Spring 2017 2017/3/2 Lecture 1: Wireless Channel

More information

Multi-Path Fading Channel

Multi-Path Fading Channel Instructor: Prof. Dr. Noor M. Khan Department of Electronic Engineering, Muhammad Ali Jinnah University, Islamabad Campus, Islamabad, PAKISTAN Ph: +9 (51) 111-878787, Ext. 19 (Office), 186 (Lab) Fax: +9

More information

Channel models and antennas

Channel models and antennas RADIO SYSTEMS ETIN15 Lecture no: 4 Channel models and antennas Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se 2012-03-21 Ove Edfors - ETIN15 1 Contents Why do we

More information

UNIK4230: Mobile Communications Spring 2013

UNIK4230: Mobile Communications Spring 2013 UNIK4230: Mobile Communications Spring 2013 Abul Kaosher abul.kaosher@nsn.com Mobile: 99 27 10 19 1 UNIK4230: Mobile Communications Propagation characteristis of wireless channel Date: 07.02.2013 2 UNIK4230:

More information

Channel models and antennas

Channel models and antennas RADIO SYSTEMS ETIN15 Lecture no: 4 Channel models and antennas Anders J Johansson, Department of Electrical and Information Technology anders.j.johansson@eit.lth.se 29 March 2017 1 Contents Why do we need

More information

Mobile Communications: Technology and QoS

Mobile Communications: Technology and QoS Mobile Communications: Technology and QoS Course Overview! Marc Kuhn, Yahia Hassan kuhn@nari.ee.ethz.ch / hassan@nari.ee.ethz.ch Institut für Kommunikationstechnik (IKT) Wireless Communications Group ETH

More information

Mobile Radio Propagation: Small-Scale Fading and Multi-path

Mobile Radio Propagation: Small-Scale Fading and Multi-path Mobile Radio Propagation: Small-Scale Fading and Multi-path 1 EE/TE 4365, UT Dallas 2 Small-scale Fading Small-scale fading, or simply fading describes the rapid fluctuation of the amplitude of a radio

More information

Wireless Communication System

Wireless Communication System Wireless Communication System Generic Block Diagram An t PC An r Source Tx Rx Destination P t G t L p G r P r Source a source of information to be transmitted Destination a destination of the transmitted

More information

Digital Communications over Fading Channel s

Digital Communications over Fading Channel s over Fading Channel s Instructor: Prof. Dr. Noor M Khan Department of Electronic Engineering, Muhammad Ali Jinnah University, Islamabad Campus, Islamabad, PAKISTAN Ph: +9 (51) 111-878787, Ext. 19 (Office),

More information

Channel. Muhammad Ali Jinnah University, Islamabad Campus, Pakistan. Multi-Path Fading. Dr. Noor M Khan EE, MAJU

Channel. Muhammad Ali Jinnah University, Islamabad Campus, Pakistan. Multi-Path Fading. Dr. Noor M Khan EE, MAJU Instructor: Prof. Dr. Noor M. Khan Department of Electronic Engineering, Muhammad Ali Jinnah University, Islamabad Campus, Islamabad, PAKISTAN Ph: +9 (51) 111-878787, Ext. 19 (Office), 186 (Lab) Fax: +9

More information

UNIT Derive the fundamental equation for free space propagation?

UNIT Derive the fundamental equation for free space propagation? UNIT 8 1. Derive the fundamental equation for free space propagation? Fundamental Equation for Free Space Propagation Consider the transmitter power (P t ) radiated uniformly in all the directions (isotropic),

More information

Wireless Channel Propagation Model Small-scale Fading

Wireless Channel Propagation Model Small-scale Fading Wireless Channel Propagation Model Small-scale Fading Basic Questions T x What will happen if the transmitter - changes transmit power? - changes frequency? - operates at higher speed? Transmit power,

More information

Mobile Communications

Mobile Communications Mobile Communications Part IV- Propagation Characteristics Professor Z Ghassemlooy School of Computing, Engineering and Information Sciences University of Northumbria U.K. http://soe.unn.ac.uk/ocr Contents

More information

Empirical Path Loss Models

Empirical Path Loss Models Empirical Path Loss Models 1 Free space and direct plus reflected path loss 2 Hata model 3 Lee model 4 Other models 5 Examples Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 1

More information

UNIT- 7. Frequencies above 30Mhz tend to travel in straight lines they are limited in their propagation by the curvature of the earth.

UNIT- 7. Frequencies above 30Mhz tend to travel in straight lines they are limited in their propagation by the curvature of the earth. UNIT- 7 Radio wave propagation and propagation models EM waves below 2Mhz tend to travel as ground waves, These wave tend to follow the curvature of the earth and lose strength rapidly as they travel away

More information

TEMPUS PROJECT JEP Wideband Analysis of the Propagation Channel in Mobile Broadband System

TEMPUS PROJECT JEP Wideband Analysis of the Propagation Channel in Mobile Broadband System Department of Electrical Engineering and Computer Science TEMPUS PROJECT JEP 743-94 Wideband Analysis of the Propagation Channel in Mobile Broadband System Krzysztof Jacek Kurek Final report Supervisor:

More information

The Mobile Radio Propagation Channel Second Edition

The Mobile Radio Propagation Channel Second Edition The Mobile Radio Propagation Channel Second Edition J. D. Parsons, DSc (Engl FREng, FlEE Emeritus Professor of Electrical Engineering University of Liverpool, UK JOHN WILEY & SONS LTD Chichester New York

More information

Elements of Communication System Channel Fig: 1: Block Diagram of Communication System Terminology in Communication System

Elements of Communication System Channel Fig: 1: Block Diagram of Communication System Terminology in Communication System Content:- Fundamentals of Communication Engineering : Elements of a Communication System, Need of modulation, electromagnetic spectrum and typical applications, Unit V (Communication terminologies in communication

More information

Small-Scale Fading I PROF. MICHAEL TSAI 2011/10/27

Small-Scale Fading I PROF. MICHAEL TSAI 2011/10/27 Small-Scale Fading I PROF. MICHAEL TSAI 011/10/7 Multipath Propagation RX just sums up all Multi Path Component (MPC). Multipath Channel Impulse Response An example of the time-varying discrete-time impulse

More information

Session2 Antennas and Propagation

Session2 Antennas and Propagation Wireless Communication Presented by Dr. Mahmoud Daneshvar Session2 Antennas and Propagation 1. Introduction Types of Anttenas Free space Propagation 2. Propagation modes 3. Transmission Problems 4. Fading

More information

MSIT 413: Wireless Technologies Week 3

MSIT 413: Wireless Technologies Week 3 MSIT 413: Wireless Technologies Week 3 Michael L. Honig Department of EECS Northwestern University October 2017 Why Study Radio Propagation? To determine coverage Can we use the same channels? Must determine

More information

Mobile Radio Wave propagation channel- Path loss Models

Mobile Radio Wave propagation channel- Path loss Models Mobile Radio Wave propagation channel- Path loss Models 3.1 Introduction The wireless Communication is one of the integral parts of society which has been a focal point for sharing information with different

More information

Wireless Communication: Concepts, Techniques, and Models. Hongwei Zhang

Wireless Communication: Concepts, Techniques, and Models. Hongwei Zhang Wireless Communication: Concepts, Techniques, and Models Hongwei Zhang http://www.cs.wayne.edu/~hzhang Outline Digital communication over radio channels Channel capacity MIMO: diversity and parallel channels

More information

Path-loss and Shadowing (Large-scale Fading) PROF. MICHAEL TSAI 2015/03/27

Path-loss and Shadowing (Large-scale Fading) PROF. MICHAEL TSAI 2015/03/27 Path-loss and Shadowing (Large-scale Fading) PROF. MICHAEL TSAI 2015/03/27 Multipath 2 3 4 5 Friis Formula TX Antenna RX Antenna = 4 EIRP= Power spatial density 1 4 6 Antenna Aperture = 4 Antenna Aperture=Effective

More information

ANALOGUE TRANSMISSION OVER FADING CHANNELS

ANALOGUE TRANSMISSION OVER FADING CHANNELS J.P. Linnartz EECS 290i handouts Spring 1993 ANALOGUE TRANSMISSION OVER FADING CHANNELS Amplitude modulation Various methods exist to transmit a baseband message m(t) using an RF carrier signal c(t) =

More information

E-716-A Mobile Communications Systems. Lecture #2 Basic Concepts of Wireless Transmission (p1) Instructor: Dr. Ahmad El-Banna

E-716-A Mobile Communications Systems. Lecture #2 Basic Concepts of Wireless Transmission (p1) Instructor: Dr. Ahmad El-Banna October 2014 Ahmad El-Banna Integrated Technical Education Cluster At AlAmeeria E-716-A Mobile Communications Systems Lecture #2 Basic Concepts of Wireless Transmission (p1) Instructor: Dr. Ahmad El-Banna

More information

WIRELESS COMMUNICATIONS PRELIMINARIES

WIRELESS COMMUNICATIONS PRELIMINARIES WIRELESS COMMUNICATIONS Preliminaries Radio Environment Modulation Performance PRELIMINARIES db s and dbm s Frequency/Time Relationship Bandwidth, Symbol Rate, and Bit Rate 1 DECIBELS Relative signal strengths

More information

Wireless Networked Systems. Lec #1b: PHY Basics

Wireless Networked Systems. Lec #1b: PHY Basics Wireless Networked Systems CS 795/895 - Spring 2013 Lec #1b: PHY Basics Tamer Nadeem Dept. of Computer Science Wireless Communication Page 2 Spring 2013 CS 795/895 - Wireless Networked Systems Radio Signal

More information

Antennas & Propagation. CSG 250 Fall 2007 Rajmohan Rajaraman

Antennas & Propagation. CSG 250 Fall 2007 Rajmohan Rajaraman Antennas & Propagation CSG 250 Fall 2007 Rajmohan Rajaraman Introduction An antenna is an electrical conductor or system of conductors o Transmission - radiates electromagnetic energy into space o Reception

More information

CHAPTER 2 WIRELESS CHANNEL

CHAPTER 2 WIRELESS CHANNEL CHAPTER 2 WIRELESS CHANNEL 2.1 INTRODUCTION In mobile radio channel there is certain fundamental limitation on the performance of wireless communication system. There are many obstructions between transmitter

More information

LECTURE 3. Radio Propagation

LECTURE 3. Radio Propagation LECTURE 3 Radio Propagation 2 Simplified model of a digital communication system Source Source Encoder Channel Encoder Modulator Radio Channel Destination Source Decoder Channel Decoder Demod -ulator Components

More information

Contents. ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications. Transmission Media and Spectrum.

Contents. ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications. Transmission Media and Spectrum. 2 ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications Sirindhorn International Institute of Technology Thammasat University Prepared by Steven Gordon on 3 August 2015

More information

ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications

ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications Sirindhorn International Institute of Technology Thammasat University Prepared by Steven Gordon on 3 August 2015

More information

Implementation of a MIMO Transceiver Using GNU Radio

Implementation of a MIMO Transceiver Using GNU Radio ECE 4901 Fall 2015 Implementation of a MIMO Transceiver Using GNU Radio Ethan Aebli (EE) Michael Williams (EE) Erica Wisniewski (CMPE/EE) The MITRE Corporation 202 Burlington Rd Bedford, MA 01730 Department

More information

CHAPTER 6 THE WIRELESS CHANNEL

CHAPTER 6 THE WIRELESS CHANNEL CHAPTER 6 THE WIRELESS CHANNEL These slides are made available to faculty in PowerPoint form. Slides can be freely added, modified, and deleted to suit student needs. They represent substantial work on

More information

Mobile Radio Propagation Channel Models

Mobile Radio Propagation Channel Models Wireless Information Transmission System Lab. Mobile Radio Propagation Channel Models Institute of Communications Engineering National Sun Yat-sen University Table of Contents Introduction Propagation

More information

Unit 7 - Week 6 - Wide Sense Stationary Uncorrelated Scattering (WSSUS) Channel Model

Unit 7 - Week 6 - Wide Sense Stationary Uncorrelated Scattering (WSSUS) Channel Model X Courses» Introduction to Wireless and Cellular Communications Announcements Course Forum Progress Mentor Unit 7 - Week 6 - Wide Sense Stationary Uncorrelated Scattering (WSSUS) Channel Model Course outline

More information

Channel Modelling ETIM10. Propagation mechanisms

Channel Modelling ETIM10. Propagation mechanisms Channel Modelling ETIM10 Lecture no: 2 Propagation mechanisms Ghassan Dahman \ Fredrik Tufvesson Department of Electrical and Information Technology Lund University, Sweden 2012-01-20 Fredrik Tufvesson

More information

Ad hoc and Sensor Networks Chapter 4: Physical layer. Holger Karl

Ad hoc and Sensor Networks Chapter 4: Physical layer. Holger Karl Ad hoc and Sensor Networks Chapter 4: Physical layer Holger Karl Goals of this chapter Get an understanding of the peculiarities of wireless communication Wireless channel as abstraction of these properties

More information

Antennas and Propagation

Antennas and Propagation Mobile Networks Module D-1 Antennas and Propagation 1. Introduction 2. Propagation modes 3. Line-of-sight transmission 4. Fading Slides adapted from Stallings, Wireless Communications & Networks, Second

More information

Exam 3 is two weeks from today. Today s is the final lecture that will be included on the exam.

Exam 3 is two weeks from today. Today s is the final lecture that will be included on the exam. ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2010 Lecture 19 Today: (1) Diversity Exam 3 is two weeks from today. Today s is the final lecture that will be included on the exam.

More information

Antennas and Propagation

Antennas and Propagation CMPE 477 Wireless and Mobile Networks Lecture 3: Antennas and Propagation Antennas Propagation Modes Line of Sight Transmission Fading in the Mobile Environment Introduction An antenna is an electrical

More information

TTN Vehicular Communications Part II Transmission Techniques for Noise Limited Systems

TTN Vehicular Communications Part II Transmission Techniques for Noise Limited Systems N Vehicular Communications Part II ransmission echniques for Noise Limited Systems oberto Verdone Slides are provided as supporting tool, they are not a textbook! Outline 1. Fundamentals of Digital Communications

More information

Text Book. References. Andrea Goldsmith, Wireless Communications, Cambridge University Press Wireless Communications

Text Book. References. Andrea Goldsmith, Wireless Communications, Cambridge University Press Wireless Communications Ammar Abu-Hudrouss Islamic University Gaza ١ Course Syllabus Text Boo Andrea Goldsmith,, Cambridge University Press 005. References 1. Rappaport, : Principles and Practice, Prentice Hall nd Ed. D. N. C.

More information

Antennas and Propagation. Chapter 5

Antennas and Propagation. Chapter 5 Antennas and Propagation Chapter 5 Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

Antennas and Propagation. Chapter 5

Antennas and Propagation. Chapter 5 Antennas and Propagation Chapter 5 Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

CALIFORNIA STATE UNIVERSITY, NORTHRIDGE FADING CHANNEL CHARACTERIZATION AND MODELING

CALIFORNIA STATE UNIVERSITY, NORTHRIDGE FADING CHANNEL CHARACTERIZATION AND MODELING CALIFORNIA STATE UNIVERSITY, NORTHRIDGE FADING CHANNEL CHARACTERIZATION AND MODELING A graduate project submitted in partial fulfillment of the requirements For the degree of Master of Science in Electrical

More information

Chapter 5 Small-Scale Fading and Multipath. School of Information Science and Engineering, SDU

Chapter 5 Small-Scale Fading and Multipath. School of Information Science and Engineering, SDU Chapter 5 Small-Scale Fading and Multipath School of Information Science and Engineering, SDU Outline Small-Scale Multipath Propagation Impulse Response Model of a Multipath Channel Small-Scale Multipath

More information

Outline / Wireless Networks and Applications Lecture 5: Physical Layer Signal Propagation and Modulation

Outline / Wireless Networks and Applications Lecture 5: Physical Layer Signal Propagation and Modulation Outline 18-452/18-750 Wireless Networks and Applications Lecture 5: Physical Layer Signal Propagation and Modulation Peter Steenkiste Carnegie Mellon University Spring Semester 2017 http://www.cs.cmu.edu/~prs/wirelesss17/

More information

Testing c2k Mobile Stations Using a Digitally Generated Faded Signal

Testing c2k Mobile Stations Using a Digitally Generated Faded Signal Testing c2k Mobile Stations Using a Digitally Generated Faded Signal Agenda Overview of Presentation Fading Overview Mitigation Test Methods Agenda Fading Presentation Fading Overview Mitigation Test Methods

More information

Chapter 3. System Theory and Technologies. 3.1 Physical Layer. ... How to transport digital symbols...?

Chapter 3. System Theory and Technologies. 3.1 Physical Layer. ... How to transport digital symbols...? Chapter 3 System Theory and Technologies 1 r... How to transport digital symbols...? 3.1.1 Introduction 3.1. Symbols, Bits and Baud 3.1.3 Wired Physical Layers 3.1.4 Radio based physical layer electromagnetic

More information

1.1 Introduction to the book

1.1 Introduction to the book 1 Introduction 1.1 Introduction to the book Recent advances in wireless communication systems have increased the throughput over wireless channels and networks. At the same time, the reliability of wireless

More information

Experimental Evaluation Scheme of UWB Antenna Performance

Experimental Evaluation Scheme of UWB Antenna Performance Tokyo Tech. Experimental Evaluation Scheme of UWB Antenna Performance Sathaporn PROMWONG Wataru HACHITANI Jun-ichi TAKADA TAKADA-Laboratory Mobile Communication Research Group Graduate School of Science

More information

Chapter 2 Channel Equalization

Chapter 2 Channel Equalization Chapter 2 Channel Equalization 2.1 Introduction In wireless communication systems signal experiences distortion due to fading [17]. As signal propagates, it follows multiple paths between transmitter and

More information

Unit 4 - Cellular System Design, Capacity, Handoff, and Outage

Unit 4 - Cellular System Design, Capacity, Handoff, and Outage Unit 4 - Cellular System Design, Capacity, Handoff, and Outage Course outline How to access the portal Assignment. Overview of Cellular Evolution and Wireless Technologies Wireless Propagation and Cellular

More information

Chapter 1 Introduction

Chapter 1 Introduction Wireless Information Transmission System Lab. Chapter 1 Introduction National Sun Yat-sen University Table of Contents Elements of a Digital Communication System Communication Channels and Their Wire-line

More information

Chapter 2: Wireless Transmission. Mobile Communications. Spread spectrum. Multiplexing. Modulation. Frequencies. Antenna. Signals

Chapter 2: Wireless Transmission. Mobile Communications. Spread spectrum. Multiplexing. Modulation. Frequencies. Antenna. Signals Mobile Communications Chapter 2: Wireless Transmission Frequencies Multiplexing Signals Spread spectrum Antenna Modulation Signal propagation Cellular systems Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/

More information

Point to point Radiocommunication

Point to point Radiocommunication Point to point Radiocommunication SMS4DC training seminar 7 November 1 December 006 1 Technical overview Content SMS4DC Software link calculation Exercise 1 Point-to-point Radiocommunication Link A Radio

More information

Introduction to wireless systems

Introduction to wireless systems Introduction to wireless systems Wireless Systems a.a. 2014/2015 Un. of Rome La Sapienza Chiara Petrioli Department of Computer Science University of Rome Sapienza Italy Background- Wireless Systems What

More information