Mobile Radio Wave propagation channel- Path loss Models

Size: px
Start display at page:

Download "Mobile Radio Wave propagation channel- Path loss Models"

Transcription

1 Mobile Radio Wave propagation channel- Path loss Models 3.1 Introduction The wireless Communication is one of the integral parts of society which has been a focal point for sharing information with different group of people scattered at various locations. After the advent of telephones, letters &telegrams have lost their meaning, in the same way, after mobile phone was invented it has totally revolutionized the way of communication by opening up new applications which are beyond comprehension and replaced the traditional land line phones. Today we cannot imagine communication in the world without mobiles phone. All mobile system technologies have made life easier. The history of the mobile telephony dates back to the 1920 s with the use of wireless radio by the Police Departments in the United States. In 1940 the first mobile telephony was invented and its capacity was along with it is limited and manoverability. In 1885 Guglielmo Marconi invented antenna and gave the first demonstration of wireless telegraphy words. It is a long radio wave transmission, and consumes high power (> 200Kw) and have a tall antennas which have line of sight communication. In 1920 Marconi discovered short radio waves. In the new communication system invented by Marconi, tall antennas are replaced by short antennas and line of sight concept is totally eradicated. This invention has made revolutionary changes in Mobile communications. From then onwards mobile communication is developing continuously and it became a large industry as of today [6]. A number of mechanisms are behind the electromagnetic wave propagation but they are attributed only to three basic mechanisms such as Reflection, Diffraction and Scattering. 18

2 3.1.1 Reflection when the electromagnetic waves falling on the object some of the signal power may be reflected back to its origin rather than signal is carried out by all the way is known as Reflection is as shown in figure 3.1 The transmitted radio wave nearly travels in one path to the receiving antenna, which means that there is no LOS between transmitting antenna to the receiving antenna. Thus, the signal received by the antenna is the total of all the signal components transmitted by the antenna meant for transmission. For example the surface of the Earth, buildings, and walls etc. causes the reflection of signals Diffraction When the Radio waves strikes on the surface and changes its direction. The Radio path between the transmitter and the receivers obstructed by the surface with sharp irregular edges As the wave bends around the obstacle, even though when LOS does not exist. In practice the height of the mobile antenna is lower than the base station antenna as there may be high rise buildings or hills in the region. Figure 3.1 Basic propagation mechanism of mobile communication (courtesy Google.com) 19

3 3.1.3 Scattering Scattering occurs when the medium through which the wave travels consists of objects with dimensions that are smaller compared to the wavelength, or the number of obstacles per unit volume is quite large. Ex Foliage, Street signs, Lamp posts Interference The signal at the point which is received by the antenna is generally weak because of interference from other signals. This is due to the same network or may be due to manmade barriers. Propagation models are mainly focused on predicting the average received signal strength at a given distance from the transmitter, as well as the predictability of the signal strength in close spatial proximity to a particular location [7] Fading Every wireless communication system consists of three major channel propagation impairments such as short-term fading, long term fading and the corruptive effect of cochannel interference. Fading is caused due to the climatic conditions, geographical topology and due to changes in environment. The motion of mobile station through different regions namely urban, suburban and rural areas also varies the receiver signal strength ultimately leading to fading. Fading of the signal between the transmitter and receiver causes due to two important factors. The propagation models are characterising the rapid fluctuations of the received signal strength over short distance at short period of time. In small scale fading the received signal power may vary three or four orders of magnitude (30 or 40 db). The local 20

4 average received signal will gradually decrease is predicted by large scale propagation models. The path loss depends up on antenna height, environment and distance. The predicted path loss will be constant for a given mobile distance. In practice the particular clutter (buildings, trees) the path loss models will be different by the large scatter evident in the measurement. If a mobile is driven around a base station (BS) at a constant speed, then the local mean signal level will typically appear. The process by which this distribution comes about is known as shadowing or slow fading and the variation occurs over distances compared to the widths of buildings and hills in region of the mobile usually tens or hundreds of meters. The standard deviation of the shadowing distribution is known as location variability is depends on Frequency, Antenna height and the environment. It is greatest at suburban areas and smallest for small areas 9.2 and 9.3 is 8dB. The application of a log-normal distribution for shadowing models can be justified as follows; if contribution to the signal attenuation along the propagation path is considered to act independently Multipath fading Multipath fading has a major bearing on cellular telecommunications. The important of multipath fading in cellular communications is expressed by two reasons. One is the mobile station or user is likely to be moving, and as a result the path lengths of all the signals being received are changing. The second is that many objects around may also be on the move. Automobiles and even people are likely to cause reflections that may have a significant effect on the received signal. The process by which this distribution comes about is known as shadowing or slow fading the variation occurs over distances comparable to the widths of buildings and hills in the region of mobile, usually tens or hundreds of meters. 21

5 3.2 Path loss The Radio wave propagation in free space depends on the frequency of the signal and obstacles in its path [8].These obstacles will change the strength of the signal. As the signal is obstructed the signal path is lost and changes its direction. This phenomenon is called path loss is technically stated as the ratio of transmitted power to the receive power. Suppose x(t) of power P t. is transmitted through a given channel and the received power Pr is the received signal power can be expressed as Pr Pt. Gt Gr / Lt L LLr (3.1) The Estimate of path loss is an important component in communication system design. In mobile communication this assumes greater significance in view of constantly changing environmental conditions [9]. It is the reduction in power density (attenuation) of electromagnetic waves as it propagates through space. In the view of wide geographical area, different types of terrain a single prediction technique may not be suitable (adequate) for all regions. To identify a suitable prediction technique field strength measurements needed to be conducted in different regions and a comparison of these with different prediction techniques has to be carried out Prediction methods To understand the various elements affecting radio signal, path loss is one able to predict the loss for a given path. To predict the coverage that may be achieved for a particular base stations, broadcast stations, etc. The field strength values are converted in to path loss relative to free space with respect to power with distance up to 30 Km for suburban. In general the path loss increases with distance and decreases with increase in 22

6 antenna height. The path losses are high when areas are followed by suburban, rural areas [10] [11]. The prediction (or) assessment can be fairly accurate for the free space scenarios. But in real life terrestrial applications it is not easy because there are many factors which are to be taken into consideration and it is not always possible to gain accurate assessments of the effects they will have Characteristics of path loss In this section the following propagation path loss characteristics of line-of-sight (LOS) and non-line-of-sight (NLOS) systems are described, the free space equations, path loss models, and the empirical path loss formula [12] is highlighted Free Space Propagation Loss Equation The free space transmission loss or propagation loss equation for Omni directional transmit and receive unity gain (G=1) antennas separated by r meters. This equation, also known as Friis equation (Parsons and Gardiner, 1989), is given by For two antennas separated by r meters, having a transmit antenna gain G T given by And a receive antenna gain G R given by The propagation loss equation in free space is 23

7 The propagation path loss (L F ), expressed in db is obtained from equation 3.5. It is described as 10logGT 10 logg _ R 20 log( c / f / 4 r For unity gain, isotropic (that is, ideal Omni directional) transmit and receiving antennas and unobstructed LOS transmission, the basic transmission loss L B is described (Or) From this basic LOS transmission loss equation, conclude that the received power (relative to the transmitted power) decreases by 6dB for every doubling of distance and also for doubling of the radio frequency. 3.3 Path Loss Models Path loss is the major component in the analysis and design of the link budget of telecommunication systems. Path loss is commonly used in both wireless and signal communications [13]. 24

8 There so many factors like free space loss, Refraction Diffraction, Reflection, Aperture will affect the path loss. Propagation models are broadly classified in to three types 1. Empirical models 2. Semi-deterministic models 3. Deterministic models Empirical model An Empirical models are those based on observation and measurements alone. These models are mainly used to predict the path loss. An Empirical model based on extensive field measurements is used to predict the average path loss along the radio path. These models can be used to develop relationships for forecasting and explaining trends. These relationships and trends are not relevant. Mechanically Empirical models are set of equations which are derived from wide field measurements. These are simple and efficient to use the measurements were made with these models absolutely perfect for environments with the similar characteristics features. This path is from the base station antenna to the mobile antenna. Experimental path loss curves are generated by measuring the received signal strength (RF carrier) and subtracting it from the transmitted signal power. For example, if they have unity gain Omni directional antennas, then the transmit power PT. = +30 dbm, and at a given location the received carrier power P T =-105 dbm, then the path loss L P is The input parameters for the empirical models are usually qualitative and not very specific like urban area and suburban area. It is referred that the empirical models like Hata model Cost -231, Okummura and Hata are among very two popular empirical propagation models. There are many empirical prediction models like, Cost 231 Hata 25

9 model, Okummura Hata model, Sakagami-Kobo model, Cost 231 Wolfish-Ikegami model. Here smaller means sub urban areas and the larger means urban areas. When h e is the CPE, (Customer Premises Equipment) antenna height above the ground. Observation of (7) to (9) reveals that the path loss exponent of the predictions made by the COST- 231,2.1GHz band, the model predictions are based on the measurements from three different environments namely urban, suburban and the rural. Table 3.1Antenna parameters Parameters Range Frequency MHz Distance 1-10m Base Station antenna height m Link distance 1-20Km Okummura Hata Model In 1968 Okummura carried out large measurements of base station to mobile signal attenuation and developed a set of curves giving median attenuation relative to free space path loss. This is fully an empirical prediction method which is entirely based upon an extensive series of measurements made in and around Tokyo city between 200MHz and 2GHz. So in 1980, Hata model developed a closed form of expressions for Okumura s data is known as Okummura-Hata model. It is an empirical model in the frequency range of 150MHz to 1920MHz & distances from 1 to 100 Km. It can be extended to 3GHz with distance of 1Km. It can be used for base station antenna heights ranging from 30m to 1000m. 26

10 .The method aims dividing the prediction area into a series of clutter and gradient categories, namely open, suburban and urban. These are summarised as follows. Open area It is the area having open space and no tall tree or buildings should be in path, and a plot of land should be cleared at least m e.g. farm land, rice fields, open fields. Suburban area It is the area having Village or highway scattered with trees and houses, there is a possibility of some obstacles near the mobile tower however it should not be very congested. Urban area It is the area to construct the city or large town with huge buildings and houses with two or more storeys, larger villages with close houses and tall, thickly grown trees. Okummura takes urban areas as a reference and applies correction factors for conversion in to the other classifications. This is a sensible choice as such areas avoid the larger variability present in suburban areas. The Okummura Hata model is one of the empirical model used to calculate the Path Loss [14] from the 150MHz to 1500MHz. It is used to identify the heights of the antenna at base station and the mobile. These are important factors to calculate the Path Loss. Masahuru Hata created empirical models that provide good fit to the measurement taken by Okummura for the transmitter receiver separation is distance(d) and it is more than 1Km and the expression is developed by Hata is called Okummura-Hata is shown by Equation (3.11). Hata presented the area propagation laws as a standard formula and supplied correction equations to other applications. Hata model is based on Okumura s field test results to 27

11 predicts various equations for path loss with different types of clutters. The limitations of the Hata Model test results include its frequency s(150mhz to 1.8GHz), the distance from BTS(50m to20km), and the height of base station antenna (30m to 200m) and the height of mobile antenna(1m to 10m). Mathematically, the path loss of Hata model is expressed for different environments such as the urban, suburban and open area. Hata model produces good results for the hilly rural terrains because the geographic details of this environment are not specified. Okumura s model assumes that the path loss between the TX and Rx in the terrestrial propagation environment can be expressed as The path loss for urban, suburban and rural clutters is expressed as Where a (hm) is a correction factor. For small to medium sized cities, this factor is given by a (hm)=(1.1log(f)-0.7)hm-(1.56log(f))-0.8 (3.13) The a (hm) value for the larger city, the frequency will be nearly or greater than 1.8GHz, a(hm)=12.78hm db (3.14) The a(hm) value for the frequency will be nearly or greater than 2.1GHz, 28

12 a (hm)=12.854hm-20.02db (3.15) Though Hata model does not have any one of the path specific corrections which is available in Okummura model and the predictions of the Hata model compare very closely with the original Okummura model. The above propagation models are plotted together with experimental results to see which one estimates the path loss more accurately. Where, PL=Path Loss, d=distance. MS antenna correction factor PLfs=Path loss for free space PLbm=Path loss for basic medium Gb=Gain at base station Gm=Gain at main station COST 231 MODELS The practical use of cellular plan was extended by Cost 231.The Cost -231 models is used widely for calculating the wireless mobile systems. This model is used only in particular band width from 500MHz to 2.1GHz (2000MHz) because this is the frequency of the mobile. The below given equation gives the Path Loss in db s [3.10] and the equation is 29

13 Where, Ncost= ( log10 (hb))/10 (3.18) The cm value in the above equation will be 0(zero) for the smaller cities and the cm value will be 3dB for larger cities [15]. When h e is the CPE (Customer Premises Equipment) antenna height above the ground. To evaluate the applicability of the model for the COST GHz band, the model predictions are based on the measurements from three environments namely urban, suburban and the rural. Chapter Summary This chapter clearly described preoperational characteristics, Shadowing, different types of fading s, and their mitigation techniques also represented. Different empirical models like Hata model, Cost 231 model and ECC 33 model have discussed. 30

Review of Path Loss models in different environments

Review of Path Loss models in different environments Review of Path Loss models in different environments Mandeep Kaur 1, Deepak Sharma 2 1 Computer Scinece, Kurukshetra Institute of Technology and Management, Kurukshetra 2 H.O.D. of CSE Deptt. Abstract

More information

PROPAGATION MODELING 4C4

PROPAGATION MODELING 4C4 PROPAGATION MODELING ledoyle@tcd.ie 4C4 http://ledoyle.wordpress.com/temp/ Classification Band Initials Frequency Range Characteristics Extremely low ELF < 300 Hz Infra low ILF 300 Hz - 3 khz Ground wave

More information

The Radio Channel. COS 463: Wireless Networks Lecture 14 Kyle Jamieson. [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P.

The Radio Channel. COS 463: Wireless Networks Lecture 14 Kyle Jamieson. [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P. The Radio Channel COS 463: Wireless Networks Lecture 14 Kyle Jamieson [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P. Steenkiste] Motivation The radio channel is what limits most radio

More information

Revision of Lecture One

Revision of Lecture One Revision of Lecture One System blocks and basic concepts Multiple access, MIMO, space-time Transceiver Wireless Channel Signal/System: Bandpass (Passband) Baseband Baseband complex envelope Linear system:

More information

Revision of Lecture One

Revision of Lecture One Revision of Lecture One System block Transceiver Wireless Channel Signal / System: Bandpass (Passband) Baseband Baseband complex envelope Linear system: complex (baseband) channel impulse response Channel:

More information

Simulation of Outdoor Radio Channel

Simulation of Outdoor Radio Channel Simulation of Outdoor Radio Channel Peter Brída, Ján Dúha Department of Telecommunication, University of Žilina Univerzitná 815/1, 010 6 Žilina Email: brida@fel.utc.sk, duha@fel.utc.sk Abstract Wireless

More information

Mobile Hata Model and Walkfisch Ikegami

Mobile Hata Model and Walkfisch Ikegami Calculate Path Loss in Transmitter in Global System Mobile By Using Hata Model and Ikegami Essam Ayiad Ashebany 1, Silaiman Khalifa Yakhlef 2 and A. R. Zerek 3 1 Post grade Student, Libyan Academy of Graduate

More information

Evaluation of Power Budget and Cell Coverage Range in Cellular GSM System

Evaluation of Power Budget and Cell Coverage Range in Cellular GSM System Evaluation of Power Budget and Cell Coverage Range in Cellular GSM System Dr. S. A. Mawjoud samialmawjoud_2005@yahoo.com Abstract The paper deals with study of affecting parameters on the communication

More information

UNIK4230: Mobile Communications Spring 2013

UNIK4230: Mobile Communications Spring 2013 UNIK4230: Mobile Communications Spring 2013 Abul Kaosher abul.kaosher@nsn.com Mobile: 99 27 10 19 1 UNIK4230: Mobile Communications Propagation characteristis of wireless channel Date: 07.02.2013 2 UNIK4230:

More information

Mobile Communications

Mobile Communications Mobile Communications Part IV- Propagation Characteristics Professor Z Ghassemlooy School of Computing, Engineering and Information Sciences University of Northumbria U.K. http://soe.unn.ac.uk/ocr Contents

More information

CHAPTER 2 WIRELESS CHANNEL

CHAPTER 2 WIRELESS CHANNEL CHAPTER 2 WIRELESS CHANNEL 2.1 INTRODUCTION In mobile radio channel there is certain fundamental limitation on the performance of wireless communication system. There are many obstructions between transmitter

More information

Near-Earth Propagation Models

Near-Earth Propagation Models CHAPTER 7 Near-Earth Propagation Models 7.1 INTRODUCTION Many applications require RF or microwave propagation from point to point very near the earth s surface and in the presence of various impairments.

More information

Antennas & Propagation. CSG 250 Fall 2007 Rajmohan Rajaraman

Antennas & Propagation. CSG 250 Fall 2007 Rajmohan Rajaraman Antennas & Propagation CSG 250 Fall 2007 Rajmohan Rajaraman Introduction An antenna is an electrical conductor or system of conductors o Transmission - radiates electromagnetic energy into space o Reception

More information

Session2 Antennas and Propagation

Session2 Antennas and Propagation Wireless Communication Presented by Dr. Mahmoud Daneshvar Session2 Antennas and Propagation 1. Introduction Types of Anttenas Free space Propagation 2. Propagation modes 3. Transmission Problems 4. Fading

More information

Channel Modelling ETIM10. Propagation mechanisms

Channel Modelling ETIM10. Propagation mechanisms Channel Modelling ETIM10 Lecture no: 2 Propagation mechanisms Ghassan Dahman \ Fredrik Tufvesson Department of Electrical and Information Technology Lund University, Sweden 2012-01-20 Fredrik Tufvesson

More information

Information on the Evaluation of VHF and UHF Terrestrial Cross-Border Frequency Coordination Requests

Information on the Evaluation of VHF and UHF Terrestrial Cross-Border Frequency Coordination Requests Issue 1 May 2013 Spectrum Management and Telecommunications Technical Bulletin Information on the Evaluation of VHF and UHF Terrestrial Cross-Border Frequency Coordination Requests Aussi disponible en

More information

Radio propagation modeling on 433 MHz

Radio propagation modeling on 433 MHz Ákos Milánkovich 1, Károly Lendvai 1, Sándor Imre 1, Sándor Szabó 1 1 Budapest University of Technology and Economics, Műegyetem rkp. 3-9. 1111 Budapest, Hungary {milankovich, lendvai, szabos, imre}@hit.bme.hu

More information

UHF Radio Frequency Propagation Model for Akure Metropolis

UHF Radio Frequency Propagation Model for Akure Metropolis Abstract Research Journal of Engineering Sciences ISSN 2278 9472 UHF Radio Frequency Propagation Model for Akure Metropolis Famoriji J.O. and Olasoji Y.O. Federal University of Technology, Akure, Nigeria

More information

Characterization of Mobile Radio Propagation Channel using Empirically based Pathloss Model for Suburban Environments in Nigeria

Characterization of Mobile Radio Propagation Channel using Empirically based Pathloss Model for Suburban Environments in Nigeria Characterization of Mobile Radio Propagation Channel using Empirically based Pathloss Model for Suburban Environments in Nigeria Ifeagwu E.N. 1 Department of Electronic and Computer Engineering, Nnamdi

More information

ELEG 5693 Wireless Communications Propagation and Noise Part I

ELEG 5693 Wireless Communications Propagation and Noise Part I Department of Electrical Engineering University of Arkansas ELEG 5693 Wireless Communications ropagation and Noise art I Dr. Jingxian Wu wuj@uark.edu OULINE 2 Wireless channel ath loss Shadowing Small

More information

Path-loss and Shadowing (Large-scale Fading) PROF. MICHAEL TSAI 2015/03/27

Path-loss and Shadowing (Large-scale Fading) PROF. MICHAEL TSAI 2015/03/27 Path-loss and Shadowing (Large-scale Fading) PROF. MICHAEL TSAI 2015/03/27 Multipath 2 3 4 5 Friis Formula TX Antenna RX Antenna = 4 EIRP= Power spatial density 1 4 6 Antenna Aperture = 4 Antenna Aperture=Effective

More information

Propagation Modelling White Paper

Propagation Modelling White Paper Propagation Modelling White Paper Propagation Modelling White Paper Abstract: One of the key determinants of a radio link s received signal strength, whether wanted or interfering, is how the radio waves

More information

5.9 GHz V2X Modem Performance Challenges with Vehicle Integration

5.9 GHz V2X Modem Performance Challenges with Vehicle Integration 5.9 GHz V2X Modem Performance Challenges with Vehicle Integration October 15th, 2014 Background V2V DSRC Why do the research? Based on 802.11p MAC PHY ad-hoc network topology at 5.9 GHz. Effective Isotropic

More information

[db] Path loss free space Valid only in Far Field. Far Field Region d>df. df=2d 2 /λ

[db] Path loss free space Valid only in Far Field. Far Field Region d>df. df=2d 2 /λ Fundamentals of Propagation and Basic Equations. Outdoor Propagation Indoor Propagation Models to compute PL and Preceived in Outdoor and Indoor Communications. Examples of real situations. Gustavo Fano

More information

Chapter 3. Mobile Radio Propagation

Chapter 3. Mobile Radio Propagation Chapter 3 Mobile Radio Propagation Based on the slides of Dr. Dharma P. Agrawal, University of Cincinnati and Dr. Andrea Goldsmith, Stanford University Propagation Mechanisms Outline Radio Propagation

More information

(Refer Slide Time: 00:01:31 min)

(Refer Slide Time: 00:01:31 min) Wireless Communications Dr. Ranjan Bose Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture No. # 12 Mobile Radio Propagation (Continued) We will start today s lecture with

More information

2 AND 5 GHZ REAL WORLD PROPAGATION FINDING PATHS THAT WORK KE2N

2 AND 5 GHZ REAL WORLD PROPAGATION FINDING PATHS THAT WORK KE2N 2 AND 5 GHZ REAL WORLD PROPAGATION FINDING PATHS THAT WORK KE2N PATH MODELING BEYOND TOPOGRAPHY: TREES AND BUILDINGS RADIO MOBILE: When prediction over small distances are required to be accurate it is

More information

Antennas and Propagation

Antennas and Propagation CMPE 477 Wireless and Mobile Networks Lecture 3: Antennas and Propagation Antennas Propagation Modes Line of Sight Transmission Fading in the Mobile Environment Introduction An antenna is an electrical

More information

Antenna & Propagation. Basic Radio Wave Propagation

Antenna & Propagation. Basic Radio Wave Propagation For updated version, please click on http://ocw.ump.edu.my Antenna & Propagation Basic Radio Wave Propagation by Nor Hadzfizah Binti Mohd Radi Faculty of Electric & Electronics Engineering hadzfizah@ump.edu.my

More information

Empirical Path Loss Models

Empirical Path Loss Models Empirical Path Loss Models 1 Free space and direct plus reflected path loss 2 Hata model 3 Lee model 4 Other models 5 Examples Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 1

More information

Neural Network Approach to Model the Propagation Path Loss for Great Tripoli Area at 900, 1800, and 2100 MHz Bands *

Neural Network Approach to Model the Propagation Path Loss for Great Tripoli Area at 900, 1800, and 2100 MHz Bands * Neural Network Approach to Model the Propagation Path Loss for Great Tripoli Area at 9, 1, and 2 MHz Bands * Dr. Tammam A. Benmus Eng. Rabie Abboud Eng. Mustafa Kh. Shater EEE Dept. Faculty of Eng. Radio

More information

Site-Specific Validation of ITU Indoor Path Loss Model at 2.4 GHz

Site-Specific Validation of ITU Indoor Path Loss Model at 2.4 GHz Site-Specific Validation of ITU Indoor Path Loss Model at 2.4 GHz Theofilos Chrysikos (1), Giannis Georgopoulos (1) and Stavros Kotsopoulos (1) (1) Wireless Telecommunications Laboratory Department of

More information

Mobile Radio Propagation Channel Models

Mobile Radio Propagation Channel Models Wireless Information Transmission System Lab. Mobile Radio Propagation Channel Models Institute of Communications Engineering National Sun Yat-sen University Table of Contents Introduction Propagation

More information

EITN85, FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY

EITN85, FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY Wireless Communication Channels Lecture 6: Channel Models EITN85, FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY Content Modelling methods Okumura-Hata path loss model COST 231 model Indoor models

More information

Application of classical two-ray and other models for coverage predictions of rural mobile communications over various zones of India

Application of classical two-ray and other models for coverage predictions of rural mobile communications over various zones of India Indian Journal of Radio & Space Physics Vol. 36, October 2007, pp. 423-429 Application of classical two-ray and other models for coverage predictions of rural mobile communications over various zones of

More information

Applying ITU-R P.1411 Estimation for Urban N Network Planning

Applying ITU-R P.1411 Estimation for Urban N Network Planning Progress In Electromagnetics Research Letters, Vol. 54, 55 59, 2015 Applying ITU-R P.1411 Estimation for Urban 802.11N Network Planning Thiagarajah Siva Priya, Shamini Pillay Narayanasamy Pillay *, Vasudhevan

More information

Radio Propagation Fundamentals

Radio Propagation Fundamentals Radio Propagation Fundamentals Concept of Electromagnetic Wave Propagation Mechanisms Modes of Propagation Propagation Models Path Profiles Link Budget Fading Channels Electromagnetic (EM) Waves EM Wave

More information

Propagation Loss Determination in Cluster Based Gsm Base Stations in Lagos Environs

Propagation Loss Determination in Cluster Based Gsm Base Stations in Lagos Environs International Transaction of Electrical and Computer Engineers System, 2014, Vol. 2, No. 1, 28-33 Available online at http://pubs.sciepub.com/iteces/2/1/5 Science and Education Publishing DOI:10.12691/iteces-2-1-5

More information

Channel models and antennas

Channel models and antennas RADIO SYSTEMS ETIN15 Lecture no: 4 Channel models and antennas Anders J Johansson, Department of Electrical and Information Technology anders.j.johansson@eit.lth.se 29 March 2017 1 Contents Why do we need

More information

Wireless Communication System

Wireless Communication System Wireless Communication System Generic Block Diagram An t PC An r Source Tx Rx Destination P t G t L p G r P r Source a source of information to be transmitted Destination a destination of the transmitted

More information

Performance Evaluation of Mobile Wireless Communication Channel Gangeshwar Singh 1 Vaseem Khan 2

Performance Evaluation of Mobile Wireless Communication Channel Gangeshwar Singh 1 Vaseem Khan 2 IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 11, 2015 ISSN (online): 2321-0613 Performance Evaluation of Mobile Wireless Communication Channel Gangeshwar Singh 1 Vaseem

More information

Analysing Radio Wave Propagation Model for Indoor Wireless Communication

Analysing Radio Wave Propagation Model for Indoor Wireless Communication Analysing Radio Wave Propagation Model for Indoor Wireless Communication Phyo Thu Zar Tun, Aye Su Hlaing Abstract for several wireless communication technologies, many propagation models have been presented

More information

Channel models and antennas

Channel models and antennas RADIO SYSTEMS ETIN15 Lecture no: 4 Channel models and antennas Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se 2012-03-21 Ove Edfors - ETIN15 1 Contents Why do we

More information

Link Budget Calculation

Link Budget Calculation Link Budget Calculation Training materials for wireless trainers This 60 minute talk is about estimating wireless link performance by using link budget calculations. It also introduces the Radio Mobile

More information

Performance Evaluation of Mobile Wireless Communication Channel in Hilly Area Gangeshwar Singh 1 Kalyan Krishna Awasthi 2 Vaseem Khan 3

Performance Evaluation of Mobile Wireless Communication Channel in Hilly Area Gangeshwar Singh 1 Kalyan Krishna Awasthi 2 Vaseem Khan 3 IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 11, 2015 ISSN (online): 2321-0613 Performance Evaluation of Mobile Wireless Communication Channel in Area Gangeshwar Singh

More information

Antennas and Propagation. Chapter 5

Antennas and Propagation. Chapter 5 Antennas and Propagation Chapter 5 Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

Antennas and Propagation. Chapter 5

Antennas and Propagation. Chapter 5 Antennas and Propagation Chapter 5 Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

Contents. ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications. Transmission Media and Spectrum.

Contents. ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications. Transmission Media and Spectrum. 2 ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications Sirindhorn International Institute of Technology Thammasat University Prepared by Steven Gordon on 3 August 2015

More information

ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications

ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications Sirindhorn International Institute of Technology Thammasat University Prepared by Steven Gordon on 3 August 2015

More information

Investigation of radio waves propagation models in Nigerian rural and sub-urban areas

Investigation of radio waves propagation models in Nigerian rural and sub-urban areas AMERICAN JOURNAL OF SCIENTIFIC AND INDUSTRIAL RESEARCH 2010, Science Huβ, http://www.scihub.org/ajsir ISSN: 2153-649X doi:10.5251/ajsir.2010.1.2.227.232 Investigation of radio waves propagation models

More information

Lecture - 06 Large Scale Propagation Models Path Loss

Lecture - 06 Large Scale Propagation Models Path Loss Fundamentals of MIMO Wireless Communication Prof. Suvra Sekhar Das Department of Electronics and Communication Engineering Indian Institute of Technology, Kharagpur Lecture - 06 Large Scale Propagation

More information

RECOMMENDATION ITU-R P ATTENUATION IN VEGETATION. (Question ITU-R 202/3)

RECOMMENDATION ITU-R P ATTENUATION IN VEGETATION. (Question ITU-R 202/3) Rec. ITU-R P.833-2 1 RECOMMENDATION ITU-R P.833-2 ATTENUATION IN VEGETATION (Question ITU-R 2/3) Rec. ITU-R P.833-2 (1992-1994-1999) The ITU Radiocommunication Assembly considering a) that attenuation

More information

Australian Journal of Basic and Applied Sciences

Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Australian Journal of Basic and Applied Sciences Journal home page: www.ajbasweb.com Computation and Verification of Propagation Loss Models based on Electric Field Data in Mobile Cellular

More information

Channel Modelling ETIM10. Channel models

Channel Modelling ETIM10. Channel models Channel Modelling ETIM10 Lecture no: 6 Channel models Fredrik Tufvesson Department of Electrical and Information Technology Lund University, Sweden Fredrik.Tufvesson@eit.lth.se 2012-02-03 Fredrik Tufvesson

More information

Antennas and Propagation

Antennas and Propagation Antennas and Propagation Chapter 5 Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

Annex 5. Determination of the interference field strength in the Land Mobile Service

Annex 5. Determination of the interference field strength in the Land Mobile Service Annex 5 Determination of the interference field strength in the Land Mobile Service Annex 5, page 2 of 18 1 General 1.1 This calculation method is based on Recommendation ITU-R P.1546, taking into account

More information

Project = An Adventure : Wireless Networks. Lecture 4: More Physical Layer. What is an Antenna? Outline. Page 1

Project = An Adventure : Wireless Networks. Lecture 4: More Physical Layer. What is an Antenna? Outline. Page 1 Project = An Adventure 18-759: Wireless Networks Checkpoint 2 Checkpoint 1 Lecture 4: More Physical Layer You are here Done! Peter Steenkiste Departments of Computer Science and Electrical and Computer

More information

Chapter 15: Radio-Wave Propagation

Chapter 15: Radio-Wave Propagation Chapter 15: Radio-Wave Propagation MULTIPLE CHOICE 1. Radio waves were first predicted mathematically by: a. Armstrong c. Maxwell b. Hertz d. Marconi 2. Radio waves were first demonstrated experimentally

More information

Radio Propagation In Outdoor Sub-Urban Environment:Effect On Gsm Signal Strength

Radio Propagation In Outdoor Sub-Urban Environment:Effect On Gsm Signal Strength The International Journal Of Engineering And Science (IJES) Volume 3 Issue 9 Pages 73-79 2014 ISSN (e): 2319 1813 ISSN (p): 2319 1805 Radio Propagation In Outdoor Sub-Urban Environment:Effect On Gsm Signal

More information

Abstract. Propagation tests for land-mobile radio service

Abstract. Propagation tests for land-mobile radio service Abstract Propagation tests for land-mobile radio service VHF (200MHz) and UHF (453, 922, 1310, 1430, 1920MHz) Various situations of irregular terrain/environmental clutter The results analyzed statistically

More information

Introduction. TV Coverage and Interference, February 06, 2004.

Introduction. TV Coverage and Interference, February 06, 2004. A New Prediction Model for M/H Mobile DTV Service Prepared for OMVC June 28, 2011 Charles Cooper, du Treil, Lundin & Rackley, Inc. Victor Tawil, National Association of Broadcasters Introduction The Open

More information

EITN85, FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY

EITN85, FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY Wireless Communication Channels Lecture 2: Propagation mechanisms EITN85, FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY Contents Free space loss Propagation mechanisms Transmission Reflection

More information

LECTURE 3. Radio Propagation

LECTURE 3. Radio Propagation LECTURE 3 Radio Propagation 2 Simplified model of a digital communication system Source Source Encoder Channel Encoder Modulator Radio Channel Destination Source Decoder Channel Decoder Demod -ulator Components

More information

Investigation of WI-Fi indoor signals under LOS and NLOS conditions

Investigation of WI-Fi indoor signals under LOS and NLOS conditions Investigation of WI-Fi indoor signals under LOS and NLOS conditions S. Japertas, E. Orzekauskas Department of Telecommunications, Kaunas University of Technology, Studentu str. 50, LT-51368 Kaunas, Lithuania

More information

Review of Selected Wireless System Path loss Prediction Models and its Adaptation to Indoor Propagation Environments

Review of Selected Wireless System Path loss Prediction Models and its Adaptation to Indoor Propagation Environments , March 15-17, 2017, Hong Kong Review of Selected Wireless System Path loss Prediction Models and its Adaptation to Indoor Propagation Environments O.O. Oni and F.E. Idachaba, Members, IAENG Abstract The

More information

LMS4000 & NCL MHz Radio Propagation

LMS4000 & NCL MHz Radio Propagation LMS4000 & NCL1900 900-MHz Radio Propagation This application note is an update to the previous LMS3000/LMS3100 900 MHz Radio Propagation note. It provides general guidelines to estimate CCU3000 & NCL1900

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2003 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2004 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF) : 3.134 ISSN (Print) : 2348-6406 ISSN (Online): 2348-4470 International Journal of Advance Engineering and Research Development COMPARATIVE ANALYSIS OF THREE

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2005 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

MSIT 413: Wireless Technologies Week 3

MSIT 413: Wireless Technologies Week 3 MSIT 413: Wireless Technologies Week 3 Michael L. Honig Department of EECS Northwestern University January 2016 Why Study Radio Propagation? To determine coverage Can we use the same channels? Must determine

More information

RADIO COVERAGE ANALYSIS FOR MOBILE COMMUNICATION NETWORKS USING ICS TELECOM

RADIO COVERAGE ANALYSIS FOR MOBILE COMMUNICATION NETWORKS USING ICS TELECOM U.P.B. Sci. Bull., Series C, Vol. 78, Iss. 2, 2016 ISSN 2286-3540 RADIO COVERAGE ANALYSIS FOR MOBILE COMMUNICATION NETWORKS USING ICS TELECOM Florin ALMĂJANU 1, Cosmina-Valentina NĂSTASE 2, Alexandru MARŢIAN

More information

RECOMMENDATION ITU-R P The prediction of the time and the spatial profile for broadband land mobile services using UHF and SHF bands

RECOMMENDATION ITU-R P The prediction of the time and the spatial profile for broadband land mobile services using UHF and SHF bands Rec. ITU-R P.1816 1 RECOMMENDATION ITU-R P.1816 The prediction of the time and the spatial profile for broadband land mobile services using UHF and SHF bands (Question ITU-R 211/3) (2007) Scope The purpose

More information

Radio Propagation Characteristics in the Large City and LTE protection from STL interference

Radio Propagation Characteristics in the Large City and LTE protection from STL interference ICACT Transactions on Advanced Communications Technology (TACT) Vol. 3, Issue 6, November 2014 542 Radio Propagation Characteristics in the Large City and LTE protection from STL interference YoungKeun

More information

Study of Factors which affect the Calculation of Co- Channel Interference in a Radio Link

Study of Factors which affect the Calculation of Co- Channel Interference in a Radio Link International Journal of Electronic and Electrical Engineering. ISSN 0974-2174 Volume 8, Number 2 (2015), pp. 103-111 International Research Publication House http://www.irphouse.com Study of Factors which

More information

Antennas and Propagation

Antennas and Propagation Mobile Networks Module D-1 Antennas and Propagation 1. Introduction 2. Propagation modes 3. Line-of-sight transmission 4. Fading Slides adapted from Stallings, Wireless Communications & Networks, Second

More information

ECE6604 PERSONAL & MOBILE COMMUNICATIONS

ECE6604 PERSONAL & MOBILE COMMUNICATIONS ECE6604 PERSONAL & MOBILE COMMUNICATIONS GORDON L. STÜBER School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta, Georgia, 30332-0250 Ph: (404) 894-2923 Fax: (404) 894-7883

More information

EEG 816: Radiowave Propagation 2009

EEG 816: Radiowave Propagation 2009 Student Matriculation No: Name: EEG 816: Radiowave Propagation 2009 Dr A Ogunsola This exam consists of 5 problems. The total number of pages is 5, including the cover page. You have 2.5 hours to solve

More information

Multipath fading effects on short range indoor RF links. White paper

Multipath fading effects on short range indoor RF links. White paper ALCIOM 5, Parvis Robert Schuman 92370 CHAVILLE - FRANCE Tel/Fax : 01 47 09 30 51 contact@alciom.com www.alciom.com Project : Multipath fading effects on short range indoor RF links DOCUMENT : REFERENCE

More information

LARGE SCALE MILLIMETER WAVE CHANNEL MODELING FOR 5G

LARGE SCALE MILLIMETER WAVE CHANNEL MODELING FOR 5G LARGE SCALE MILLIMETER WAVE CHANNEL MODELING FOR 5G 1 ARCADE NSHIMIYIMANA, 2 DEEPAK AGRAWAL, 3 WASIM ARIF 1, 2,3 Electronics and Communication Engineering, Department of NIT Silchar. National Institute

More information

URUGUAY has adopted in 2011 the ISDB-Tb digital television. Studying Digital Terrestrial TV coverage

URUGUAY has adopted in 2011 the ISDB-Tb digital television. Studying Digital Terrestrial TV coverage IEEE INTERNATIONAL SYMPOSIUM ON BROADBAND MULTIMEDIA SYSTEMS AND BROADCASTING 2014 1 Studying Digital Terrestrial TV coverage Pablo Flores Guridi, Member, IEEE, Andrés Gómez Caram, Agustín Labandera, Gonzalo

More information

Basic Propagation Theory

Basic Propagation Theory S-7.333 POSTGRADUATE COURSE IN RADIO COMMUNICATIONS, AUTUMN 4 1 Basic Propagation Theory Fabio Belloni S-88 Signal Processing Laboratory, HUT fbelloni@hut.fi Abstract In this paper we provide an introduction

More information

A Consideration of Propagation Loss Models for GSM during Harmattan in N djamena (Chad)

A Consideration of Propagation Loss Models for GSM during Harmattan in N djamena (Chad) 43 A Consideration of Propagation Loss Models for GSM during Harmattan in N djamena (Chad) D.D. DAJAB AND NALDONGAR PARFAIT * Department of Electrical and Computer Engineering, AHMADU BELLO University,

More information

Path loss Determination Using Hata Model and Effect of Path loss in OFDM

Path loss Determination Using Hata Model and Effect of Path loss in OFDM Path loss Determination Using Hata Model and Effect of Path loss in OFDM Tony Thomas 1, Vivek M V Post-Graduate Scholar, Department of Electronics and Communication, FISAT, Ernakulam, India 1 Asst. Professor,

More information

Mobile and Wireless Networks Course Instructor: Dr. Safdar Ali

Mobile and Wireless Networks Course Instructor: Dr. Safdar Ali Mobile and Wireless Networks Course Instructor: Dr. Safdar Ali BOOKS Text Book: William Stallings, Wireless Communications and Networks, Pearson Hall, 2002. BOOKS Reference Books: Sumit Kasera, Nishit

More information

CHAPTER 6 THE WIRELESS CHANNEL

CHAPTER 6 THE WIRELESS CHANNEL CHAPTER 6 THE WIRELESS CHANNEL These slides are made available to faculty in PowerPoint form. Slides can be freely added, modified, and deleted to suit student needs. They represent substantial work on

More information

Point to point Radiocommunication

Point to point Radiocommunication Point to point Radiocommunication SMS4DC training seminar 7 November 1 December 006 1 Technical overview Content SMS4DC Software link calculation Exercise 1 Point-to-point Radiocommunication Link A Radio

More information

Analysis of Propagation Models for WiMAX at 3.5 GHz

Analysis of Propagation Models for WiMAX at 3.5 GHz MEE 09:59 Analysis of Propagation Models for WiMAX at 3.5 GHz By Mohammad Shahajahan and A. Q. M. Abdulla Hes-Shafi This thesis is presented as part of Degree of Master of Science in Electrical Engineering

More information

Investigation of Measured Received Power from FM Broadcasting Radios-A Case of Tanzania

Investigation of Measured Received Power from FM Broadcasting Radios-A Case of Tanzania Investigation of Measured Received Power from FM Broadcasting Radios-A Case of Tanzania Jan Kaaya Anael Sam Nelson Mandela African Institution of Science and Technology (NM-AIST), School of Computational

More information

Transactions on the Built Environment vol 34, 1998 WIT Press, ISSN

Transactions on the Built Environment vol 34, 1998 WIT Press,   ISSN Experimental validation of propagation models for radiocommunications applications in industrial environments M. V. Castro, A. Seoane P., F. P. Fontan, J. Pereda Dpt. of Communications Technologies. University

More information

SPECTRUM SHARING AND COMPATIBILITY BETWEEN THE INTERNATIONAL MOBILE TELECOMMUNICATION- ADVANCED AND DIGITAL BROADCASTING IN THE DIGITAL DIVIDEND BAND

SPECTRUM SHARING AND COMPATIBILITY BETWEEN THE INTERNATIONAL MOBILE TELECOMMUNICATION- ADVANCED AND DIGITAL BROADCASTING IN THE DIGITAL DIVIDEND BAND SPECTRUM SHARING AND COMPATIBILITY BETWEEN THE INTERNATIONAL MOBILE TELECOMMUNICATION- ADVANCED AND DIGITAL BROADCASTING IN THE DIGITAL DIVIDEND BAND MOHAMMED B. MAJED 1,2,*, THAREK A. RAHMAN 1 1 Wireless

More information

Intro to Radio Propagation,Antennas and Link Budget

Intro to Radio Propagation,Antennas and Link Budget Intro to Radio Propagation,Antennas and Link Budget Training materials for wireless trainers Marco Zennaro and Ermanno Pietrosemoli T/ICT4D Laboratory ICTP Behavior of radio waves There are a few simple

More information

REVISITING RADIO PROPAGATION PREDICTIONS FOR A PROPOSED CELLULAR SYSTEM IN BERHAMPUR CITY

REVISITING RADIO PROPAGATION PREDICTIONS FOR A PROPOSED CELLULAR SYSTEM IN BERHAMPUR CITY REVISITING RADIO PROPAGATION PREDICTIONS FOR A PROPOSED CELLULAR SYSTEM IN BERHAMPUR CITY Rowdra Ghatak, T.S.Ravi Kanth* and Subrat K.Dash* National Institute of Science and Technology Palur Hills, Berhampur,

More information

Path loss Prediction Models for Wireless Communication Channels and its Comparative Analysis

Path loss Prediction Models for Wireless Communication Channels and its Comparative Analysis International Journal of Engineering, Management & Sciences (IJEMS) ISSN-2348 3733, Volume-2, Issue-3, March 2015 Path loss Prediction Models for Wireless Communication Channels and its Comparative Analysis

More information

λ iso d 4 π watt (1) + L db (2)

λ iso d 4 π watt (1) + L db (2) 1 Path-loss Model for Broadcasting Applications and Outdoor Communication Systems in the VHF and UHF Bands Constantino Pérez-Vega, Member IEEE, and José M. Zamanillo Communications Engineering Department

More information

RRC Vehicular Communications Part II Radio Channel Characterisation

RRC Vehicular Communications Part II Radio Channel Characterisation RRC Vehicular Communications Part II Radio Channel Characterisation Roberto Verdone Slides are provided as supporting tool, they are not a textbook! Outline 1. Fundamentals of Radio Propagation 2. Large

More information

Modelling of WCDMA Base Station Signal in Multipath Environment

Modelling of WCDMA Base Station Signal in Multipath Environment Volume 3, Issue 3, March 4 ISSN 39-4847 Modelling of WCDMA Base Station Signal in Multipath Environment Ch Usha Kumari, G Sasi Bhushana Rao Department of Electronics and Communication Engineering, G Narayanamma

More information

MODELLING OF GPS SIGNAL LARGE SCALE PROPAGATION CHARACTERISTICS IN URBAN AREAS FOR PRECISE NAVIGATION

MODELLING OF GPS SIGNAL LARGE SCALE PROPAGATION CHARACTERISTICS IN URBAN AREAS FOR PRECISE NAVIGATION Int. J. Elec&Electr.Eng&Telcomm. 2012 G Sateesh Kumar et al., 2012 Research Paper ISSN 2319 2518 www.ijeetc.com Vol. 1, No. 1, October 2012 2012 IJEETC. All Rights Reserve MODELLING OF GPS SIGNAL LARGE

More information

Application Note 37. Emulating RF Channel Characteristics

Application Note 37. Emulating RF Channel Characteristics Application Note 37 Emulating RF Channel Characteristics Wireless communication is one of the most demanding applications for the telecommunications equipment designer. Typical signals at the receiver

More information

5 GHz Radio Channel Modeling for WLANs

5 GHz Radio Channel Modeling for WLANs 5 GHz Radio Channel Modeling for WLANs S-72.333 Postgraduate Course in Radio Communications Jarkko Unkeri jarkko.unkeri@hut.fi 54029P 1 Outline Introduction IEEE 802.11a OFDM PHY Large-scale propagation

More information