Design Calculation of Automatic Voltage Stabilizer Control System

Size: px
Start display at page:

Download "Design Calculation of Automatic Voltage Stabilizer Control System"

Transcription

1 olume Issue 0,, 0, ISSN: 0 Calculation of Automatic oltage Stabilizer Control System Hnin Hnin Aye Department of Electrical Power Engineering Technological University (Thanlyin), Myanmar Abstract: oltage fluctuation always occurs in electrical supply system. Due to voltage fluctuation, life of electrical equipment consumed electricity is shorted really. To solve this problem, automatic voltage stabilizer is needed for domestic and industries. Both single phase and three phases are available. In this journal intend to known that automatic voltage stabilizer plays efficient role in all type of load i.e. resistive, inductive and capacitive loads. This journal present control circuit for automatic voltage stabilizer provides voltage comparator, relays and servo controlled motor that compare instantaneous input and output voltage. Automatic voltage stabilizer consists of two unit; measuring unit and regulating unit. In this stabilizer, toroidal type variable auto transformer is used for regulating unit and electronic control circuit is used for sensing unit. Electromechanical or servo control system is used for measuring unit to sense the supply voltage. This electronic control circuit will operate within the fluctuation range from 0 to 0.The rating of this automatic voltage stabilizer is ka (single phase) and its frequency range is 0Hz. The output sensitivity is ±%. If input voltage is lower than 0 or higher than 0, the system will be automatic shutdown. The main purpose of this research is design calculation of control circuit. Keywords: voltage stabilizer; LM; sensing unit; relays; controller design. INTODUCTION Servo controlled voltage stabilizer is a useful and effective device used to maintain a constant power supply. oltage fluctuation is a common problem in Myanmar, which can cause damage in electronic devices used in home and in industries. To solve these appliances safe is to use voltage stabilizers. The automatic voltage stabilizers are widely used in industrial application to obtain the stability and good regulation for the sophisticated electrical and electronic equipments such as communication equipments and system, process controller, computer equipment etc[]. Servo controlled is a closed loop systems for electric motors. The motor used in servo control is usually DC motor used in servo is also possible. The servo system uses a sensor to sense motor position/speed. Servo control has a feedback circuit which changes the drive power going to motor according the control input signals and signal from sensors[]. There are various type of stabilizers available in market. Based on the change in main voltage, the automatic voltage stabilizers increase or decreases the power supply to rectify the deviation and brings the power supply to normal level. Automatic voltage stabilizer provides a continuous monitoring of output voltage by means of an electronic control circuit that compares the instantaneous output voltage with the set value. oltage regulation is required for two distinct purposes; undervoltage and overvoltage conditions. Line voltage regulation is the process of maintaining constant output voltage to industrial and domestic users despite a wide variation in input voltage. Undervoltage might result into brownout, distortion or permanent damage while overvoltage in the form of spikes and surges could cause distortion, burn out, meltdown, fire, electropulsing and permanent damage. The two distinct reasons of voltage regulation afore mentioned could be caused by abnormal forces of nature, atmosphere conditions, generator power surge, power grid defects, power distribution imbalance etc[]. With the wide spread use of switched mode power supplies, color television sets today have eliminated the need for a voltage stabilizer. But it is preferable to employ one even for them, to safeguard against momentary voltages over 0 and 0 on the mains.. SEO SYSTEM OLTAGE STABILIZE In this journal, automatic voltage stabilizer consists of regulating unit and measuring unit. Fig shown below are the block diagram and circuit diagram of the voltage stabilizer connected to an appliance or load. The stabilizers sizes generally with its rating, which is given in ka.. input Control system Error Amplifier Detecter sensing Output feedback Figure. Block diagram of servo controlled voltage stabilizer The regulating unit consists of toroidal type variable autotransformer. The purpose of the regulating unit is that of acting under the signal from the measuring unit in such a manner as to correct the output voltage of the stabilizer, as near as possible, a constant or predetermined value. Measuring unit includes control circuit. The function of the measuring unit is that of detection a change in the input or output voltage of automatic voltage stabilizer and producing a signal to operate the regulating unit.

2 olume Issue 0,, 0, ISSN: Output elay LY Input 0 ~ 0 0 M Output 0 () oltage sensing () Power supply for control circuitry () Power supply for d.c. motor Figure. Schematic diagram of automatic voltage stabilizer C 0. Q 0k 0k 0 k M goes ON motor runs in the other direction to lower voltage. After the preset time, opamp output swings positive and release the relay. The control system is automatically shut down when the voltage fluctuation is lower than 0 and higher than Q C C elay k 0 k k k 0k ZD C C C D Z D D D D Limit Switch ss D D D 0 cc, N00 00u NO C NC 0. C C C Z D v D N00 D 0k 0, u v Z D k k k 0, k k k k C C C 0 Q S00 D 0 ly k k C Figure. Overall Circuit Diagram of AS C ly 0k 0k D C 0.0 D C, k 0 0k k 0k Q S0 N D D Under voltage On/Off 0,, C Delay Indication Power Indication Overall circuit diagram of control circuit for AS is shown in fig:. Transformer steps down the AC source voltage to. Then, the transformer output is rectified by bridge rectifier. The rectifier output voltage is filtered by capacitor. In this circuit, LM is used as comparator and indicator. The noninverting input ( in ) the opamp is greater than the inverting input ( in ) the opamp is ONstate. At normal condition, positive voltage sensing only. If is adjusted so that when output AC voltage is 0, the opamp output is zero. Opamp () is used for overvoltage condition. It is connected as voltage comparator. When transistor Q base receives forward bias and Q goes ON motor runs in the direction to raise voltage. When transistor Q base is forward biased and Q. DESIGN CONSIDEATION Power supply system is an essential part of each electronic system from simplest to the most complex. Input voltage supply is 0 AC supply. Automatic voltage stabilizer control system is based on mainly control circuit. Out Input cc Input Out 0 Out Input EE, GND Input Out Figure. Diagram of Pin Function of LM In figure, LM is a pin IC consisting of four independent operational amplifiers (opamp) compensated in a single package. Opamp are high gain electronic voltage amplifier with differential input and usually, a singleended output. The output voltage is many times higher than the voltage difference between input terminals of an opamp. I I If Ib i f cc EE Figure. Summing amplifier of opamp Applying Kirchhoff s Current Law (KCL), I I =I I f b I I I f i i0 = f 0 0 The open loop gain, A = = 0= f id i i out. ESULTS AND DISCUSSION In this section the results obtained from the design calculation of stabilizer controller. There are three conditions by the unstable input supply.

3 olume Issue 0,, 0, ISSN: 0. Normal Condition The parameter of Opamp,. Overoltage Condition The parameter of Opamp, 0 out Figure. Circuit Diagram of Opamp of LMN I=A ZD 0 C D Opamp () is connected as a summing amplifier. Applying KCL, At pin and virtual ground concept. out = ( ) 0 is positive and represents the sample of output a.c voltage. is fixed negative voltage: it acts as reference voltage. Assume, =., =. Apply the KCL, =0 (Q In normal condition, out =0 ). =. If =0k, = The standard of =0k and = And then, I = =. = 0. ma 0k I = =. = 0. ma If AC output voltage is % change, =0..=. out = ( ) 0.. out = ( ) 0 0k =. 0 out 0 Assume motor pickup voltage = 0 =k The standard value of 0 =k In this research, =.k and =k are chosen. When falls below normal, inverting input becomes negative and opamp output swings positive and drives the motor in the direction to increase output voltage. If increase above normal, the process is reverse order. time delay is calculated by the equation, =.e =.k, C=F, =, c =. t. ln( ) t = 0.sec c t t 0 Figure. Circuit Diagram of Opamp of LMN From normal condition, node voltage =. Assume, the noninverting input (pin ) =.0 (fixed voltage) Assume, I=0.mA Noninverting input (pin0) is fed from voltage sensing supply through voltage divider,, Apply by KL, I I I =. =.k =I.. = =.k 0.m.. = 0.m =.k =.k =. The standard value of =k, =.k and =.k is adjusted so that at normal condition there is about. at pin 0. At normal condition, opamp output is negative because.0>. When output voltage increase to, Pin 0 voltage =.0 Since.0 >.0, opamp output goes positive and drives the relay. Assume I=A through voltage divider,,, 0. =.0 k Apply by KL, I I I 0 =.0 0 =.0 =.0 k.. = =. k

4 olume Issue 0,, 0, ISSN: 0 0. = =. k 0 =.0k =.0k The standard value of =k, =k, =.k and 0 =.k. In this circuit, =.k, and =0k is used for prevent short circuit. Assume, I=mA for LED lamp = =.k m The standard value of =.k. Underoltage Condition The parameter of Opamp, v ZD, 0. I..0 C D Figure. Circuit Diagram of Opamp of LMN In this circuit, =.k and =0k is used for prevent short circuit. Assume, I=mA for LED lamp = =. k m The standard value of =.k If a.c output voltage falls below 0, pin voltage falls below.0 and opamp output goes positive. When output voltage decreases to 0.,. pin voltage= 0. =.0 0 Since.0 <.0, opamp output goes positive and drives the relay. A variable resistor is used so that the user can adjust the voltages settings at the desired position. In this case, overvoltage setting 0 and undervoltage setting 0. time delay is calculated by the equation, =.e =.k, C=F, =, c =. t. ln( ) t = 0.sec Table. Summary of Detailed Data for Normal Condition Normal oltage c t t alues k 0 k k. k 0 k Undervoltage condition circuit is almost same as overvoltage condition except that opamp inputs are interchanged. eference voltage at noninverting input is.0 Assume, fixed voltage =.0 and I=A..0 = =.0 k =.0k =.0k Apply by KL, I I I 0 =.0 0 =.0k 0 =.0k Assume time delay voltage=. = I. 0 = =. k 0 =.0k =.k The standard value of =k, =k, =.k and 0 =.k. Table. Summary of Detailed Data for Overvoltage Condition Over oltage alues k k k. 0 k. k k. k. k 0. k. k.

5 olume Issue 0,, 0, ISSN: 0 Table. Summary Detailed for Undervoltage Condition Under oltage alues k k k. 0 k. k. k. k 0 k. If the supply voltage is lower than 0 and more than 0, the supply of the motor will be cut out. After that the relay will cut out the supply. So, automatic voltage stabilizer will not produce the power supply without being 0 stable voltage. If the input voltage of the stabilizer is lower than output voltage, the sensing circuit is unbalanced that and the opamp output is positive. The motor rotates clockwise direction as to increase the stabilizer output voltage to 0. If the input voltage of the stabilizer is higher than output voltage, the sensing circuit is unbalanced that and the opamp output is positive. The motor rotates anticlockwise direction as to decrease the stabilizer output voltage to 0.. CONCLUSION. In this circuit when the input voltage is lower than 0, the relay starts energized and the motor rotates the clockwise direction.. The input voltage is higher than 0, the motor rotates the anticlockwise direction.. The control circuit components are available in local market. So, the circuit component can be replaced easily when they are damaged. This automatic voltage stabilizer is very suitable and economical for all electrical equipments.. This automatic voltage stabilizer is very convenience and economic for domestics and industries. So, automatic voltage stabilizer having with these conditions will offer the stable output voltage or stable output voltage for all electrical equipments and will improve productivities and reduce downtime.. ACKNOWLEDGMENTS The author is deeply grateful to her dissertation superior and cosupervisor. The author also thanks to all teachers at Technological University (Thanlyin) and all who provided her with necessary assistance for this paper. The author wishes to express her guidance to all persons who helped directly or indirectly towards the successful completion of paper. Finally, the author wishes to express her special thanks to her parents for their support and encouragement to attain her destination without any trouble.. EFEENCES [] G NAEEN KUMA. DESIGN OF A LOW COST SEO CONTOLLED OLTAGE STABILIZE. International Journal of esearch in Engineering & Technology (IMPACT: IJET) ol., Issue, Mar 0,. [] Servo controlled voltage stabilizer introduction, amjadeeeseminars blogspot, st December 0. [] P. Eswaran, of fuzzy logic controller for customized servo voltage stabilizer, nd International Conference on Electronic and Communication Systems, February 0, pages 00. [] Instruction manual for servocontrolled stabilizer, Servel Electronics Private Limited. [] McGranaGhan M. F., Mueller D.. and Samotyi m. J. (), oltage Sag in Industrial Systems, IEEE Transactions on Industry Applications, ol., pp. 0. [] M. Htay and K. San Win, and Construction of an Automatic oltage egulator for Diesel Engine Type Standalone Synchrous Generator, PP. [] Instruction manual for servo voltage stabilizer with isolation transformer, Suvik electronic PT.LTD. [] A text book of power electronic P.S. Bhimra. Considering all the above on design of control system. Automatic voltage control system works between the voltage range of 0 and 0 efficiently. The control circuit is to drive the motor and adjust the stable output voltage. The output voltage accuracy is ± % and efficiency is above the %.

Chapter 9: Operational Amplifiers

Chapter 9: Operational Amplifiers Chapter 9: Operational Amplifiers The Operational Amplifier (or op-amp) is the ideal, simple amplifier. It is an integrated circuit (IC). An IC contains many discrete components (resistors, capacitors,

More information

UNIT I. Operational Amplifiers

UNIT I. Operational Amplifiers UNIT I Operational Amplifiers Operational Amplifier: The operational amplifier is a direct-coupled high gain amplifier. It is a versatile multi-terminal device that can be used to amplify dc as well as

More information

Chapter 9: Operational Amplifiers

Chapter 9: Operational Amplifiers Chapter 9: Operational Amplifiers The Operational Amplifier (or op-amp) is the ideal, simple amplifier. It is an integrated circuit (IC). An IC contains many discrete components (resistors, capacitors,

More information

Dimensions in inches (mm) .021 (0.527).035 (0.889) .016 (.406).020 (.508 ) .280 (7.112).330 (8.382) Figure 1. Typical application circuit.

Dimensions in inches (mm) .021 (0.527).035 (0.889) .016 (.406).020 (.508 ) .280 (7.112).330 (8.382) Figure 1. Typical application circuit. IL Linear Optocoupler Dimensions in inches (mm) FEATURES Couples AC and DC signals.% Servo Linearity Wide Bandwidth, > khz High Gain Stability, ±.%/C Low Input-Output Capacitance Low Power Consumption,

More information

LM675 Power Operational Amplifier

LM675 Power Operational Amplifier LM675 Power Operational Amplifier General Description The LM675 is a monolithic power operational amplifier featuring wide bandwidth and low input offset voltage, making it equally suitable for AC and

More information

LM675 Power Operational Amplifier

LM675 Power Operational Amplifier Power Operational Amplifier General Description The LM675 is a monolithic power operational amplifier featuring wide bandwidth and low input offset voltage, making it equally suitable for AC and DC applications.

More information

MAS.836 HOW TO BIAS AN OP-AMP

MAS.836 HOW TO BIAS AN OP-AMP MAS.836 HOW TO BIAS AN OP-AMP Op-Amp Circuits: Bias, in an electronic circuit, describes the steady state operating characteristics with no signal being applied. In an op-amp circuit, the operating characteristic

More information

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) 4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) The Metal Oxide Semitonductor Field Effect Transistor (MOSFET) has two modes of operation, the depletion mode, and the enhancement mode.

More information

VCC_BAR. Grounds. Power, either postive or negative REVIEW OF SYMBOLS

VCC_BAR. Grounds. Power, either postive or negative REVIEW OF SYMBOLS LECTUE 4. OPEATIONAL AMPLIFIES EIEW OF SYMBOLS CC_BA Power, either postive or negative Grounds. Operational amplifiers (op-amps) are active devices. This means you must connect them to a power supply in

More information

L02 Operational Amplifiers Applications 1

L02 Operational Amplifiers Applications 1 L02 Operational Amplifiers Applications 1 Chapter 9 Ideal Operational Amplifiers and Op-Amp Circuits Donald A. Neamen (2009). Microelectronics: Circuit Analysis and Design, 4th Edition, Mc-Graw-Hill Prepared

More information

Servo Controlled Automatic Voltage Stabilizer with Automatic High & Low Cut-Off Provision

Servo Controlled Automatic Voltage Stabilizer with Automatic High & Low Cut-Off Provision Servo Controlled Automatic Voltage Stabilizer with Automatic High & Low Cut-Off Provision Prof. Rutuja Bhat Warbhe, ME Shrivatsa Shandilya Gaurav Kumar Tripathi Ashish Kumar Rohit Abstract: This is a stabilizer

More information

Introduction to Op Amps By Russell Anderson, Burr-Brown Corp

Introduction to Op Amps By Russell Anderson, Burr-Brown Corp Introduction to Op Amps By ussell Anderson, BurrBrown Corp Introduction Analog design can be intimidating. If your engineering talents have been focused in digital, software or even scientific fields,

More information

CURRENT MODE PWM CONTROLLER LM3842A/3A/4A/5A

CURRENT MODE PWM CONTROLLER LM3842A/3A/4A/5A CURRENT MODE PWM CONTROLLER LMA/A/A/5A FEATURES SOP/ DIP PIN Configulation Automatic feed forward compensation Optimized for offline converter Double pulse suppression Current mode operation to 500 KHz

More information

Lecture #2 Operational Amplifiers

Lecture #2 Operational Amplifiers Spring 2015 Benha University Faculty of Engineering at Shoubra ECE-322 Electronic Circuits (B) Lecture #2 Operational Amplifiers Instructor: Dr. Ahmad El-Banna Agenda Introduction Op-Amps Input Modes and

More information

DLVP A OPERATOR S MANUAL

DLVP A OPERATOR S MANUAL DLVP-50-300-3000A OPERATOR S MANUAL DYNALOAD DIVISION 36 NEWBURGH RD. HACKETTSTOWN, NJ 07840 PHONE (908) 850-5088 FAX (908) 908-0679 TABLE OF CONTENTS INTRODUCTION...3 SPECIFICATIONS...5 MODE SELECTOR

More information

Operational Amplifiers

Operational Amplifiers Fundamentals of op-amp Operation modes Golden rules of op-amp Op-amp circuits Inverting & non-inverting amplifier Unity follower, integrator & differentiator Introduction An operational amplifier, or op-amp,

More information

Op Amp Booster Designs

Op Amp Booster Designs Op Amp Booster Designs Although modern integrated circuit operational amplifiers ease linear circuit design, IC processing limits amplifier output power. Many applications, however, require substantially

More information

Basic Operational Amplifier Circuits

Basic Operational Amplifier Circuits Basic Operational Amplifier Circuits Comparators A comparator is a specialized nonlinear op-amp circuit that compares two input voltages and produces an output state that indicates which one is greater.

More information

transformer primary voltage load current ambient temperature.

transformer primary voltage load current ambient temperature. INTODUCTION In the previous lesson it was shown how the use of a smoothing capacitor in a d.c. power supply can produce a relatively steady d.c. output voltage for any particular load conditions. The output

More information

B25A20FAC SERIES BRUSHLESS SERVO AMPLIFIERS Model: B25A20FAC 120VAC Single Supply Operation

B25A20FAC SERIES BRUSHLESS SERVO AMPLIFIERS Model: B25A20FAC 120VAC Single Supply Operation B25A20FAC Series B25A20FAC SERIES BRUSHLESS SERVO AMPLIFIERS Model: B25A20FAC 120VAC Single Supply Operation FEATURES: All connections on front of amplifier Surface-mount technology Small size, low cost,

More information

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820 a FEATURES True Single Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single Supply Capability from + V to + V Dual Supply Capability from. V to 8 V Excellent Load

More information

Gechstudentszone.wordpress.com

Gechstudentszone.wordpress.com 8.1 Operational Amplifier (Op-Amp) UNIT 8: Operational Amplifier An operational amplifier ("op-amp") is a DC-coupled high-gain electronic voltage amplifier with a differential input and, usually, a single-ended

More information

Micropower, Single-Supply, Rail-to-Rail, Precision Instrumentation Amplifiers MAX4194 MAX4197

Micropower, Single-Supply, Rail-to-Rail, Precision Instrumentation Amplifiers MAX4194 MAX4197 General Description The is a variable-gain precision instrumentation amplifier that combines Rail-to-Rail single-supply operation, outstanding precision specifications, and a high gain bandwidth. This

More information

INTEGRATED CIRCUITS. AN179 Circuit description of the NE Dec

INTEGRATED CIRCUITS. AN179 Circuit description of the NE Dec TEGRATED CIRCUITS AN79 99 Dec AN79 DESCPTION The NE564 contains the functional blocks shown in Figure. In addition to the normal PLL functions of phase comparator, CO, amplifier and low-pass filter, the

More information

LM125 Precision Dual Tracking Regulator

LM125 Precision Dual Tracking Regulator LM125 Precision Dual Tracking Regulator INTRODUCTION The LM125 is a precision, dual, tracking, monolithic voltage regulator. It provides separate positive and negative regulated outputs, thus simplifying

More information

Linear Optocoupler, High Gain Stability, Wide Bandwidth

Linear Optocoupler, High Gain Stability, Wide Bandwidth Linear Optocoupler, High Gain Stability, Wide Bandwidth i9 DESCRIPTION The linear optocoupler consists of an AlGaAs IRLED irradiating an isolated feedback and an output PIN photodiode in a bifurcated arrangement.

More information

3 Circuit Theory. 3.2 Balanced Gain Stage (BGS) Input to the amplifier is balanced. The shield is isolated

3 Circuit Theory. 3.2 Balanced Gain Stage (BGS) Input to the amplifier is balanced. The shield is isolated Rev. D CE Series Power Amplifier Service Manual 3 Circuit Theory 3.0 Overview This section of the manual explains the general operation of the CE power amplifier. Topics covered include Front End Operation,

More information

General Purpose Operational Amplifiers

General Purpose Operational Amplifiers General Purpose Operational Amplifiers OUTLINE Lecture 0, 0/7/05 Corrected 0/9/05 Op-Amp from -Port Blocks Op-Amp Model and its Idealization Negative Feedback for Stability Components around Op-Amp define

More information

Operational amplifiers

Operational amplifiers Operational amplifiers Bởi: Sy Hien Dinh INTRODUCTION Having learned the basic laws and theorems for circuit analysis, we are now ready to study an active circuit element of paramount importance: the operational

More information

Describe the basic DC characteristics of an op amp. Sketch a diagram of the op amp DC test circuit. Input Offset Voltage. Input Offset Current

Describe the basic DC characteristics of an op amp. Sketch a diagram of the op amp DC test circuit. Input Offset Voltage. Input Offset Current Testing Op Amps Chapter 3 Goals Understand the requirements for testing Op Amp DC parameters. Objectives Describe the basic DC characteristics of an op amp. Select a test methodology for evaluating voltage

More information

Op-amp characteristics Operational amplifiers have several very important characteristics that make them so useful:

Op-amp characteristics Operational amplifiers have several very important characteristics that make them so useful: Operational Amplifiers A. Stolp, 4/22/01 rev, 2/6/12 An operational amplifier is basically a complete high-gain voltage amplifier in a small package. Op-amps were originally developed to perform mathematical

More information

EE LINEAR INTEGRATED CIRCUITS & APPLICATIONS

EE LINEAR INTEGRATED CIRCUITS & APPLICATIONS UNITII CHARACTERISTICS OF OPAMP 1. What is an opamp? List its functions. The opamp is a multi terminal device, which internally is quite complex. It is a direct coupled high gain amplifier consisting of

More information

Operational Amplifier as A Black Box

Operational Amplifier as A Black Box Chapter 8 Operational Amplifier as A Black Box 8. General Considerations 8.2 Op-Amp-Based Circuits 8.3 Nonlinear Functions 8.4 Op-Amp Nonidealities 8.5 Design Examples Chapter Outline CH8 Operational Amplifier

More information

300MHz, Low-Power, High-Output-Current, Differential Line Driver

300MHz, Low-Power, High-Output-Current, Differential Line Driver 9-; Rev ; /9 EVALUATION KIT AVAILABLE 3MHz, Low-Power, General Description The differential line driver offers high-speed performance while consuming only mw of power. Its amplifier has fully symmetrical

More information

High Current, High Power OPERATIONAL AMPLIFIER

High Current, High Power OPERATIONAL AMPLIFIER High Current, High Power OPERATIONAL AMPLIFIER FEATURES HIGH OUTPUT CURRENT: A WIDE POWER SUPPLY VOLTAGE: ±V to ±5V USER-SET CURRENT LIMIT SLEW RATE: V/µs FET INPUT: I B = pa max CLASS A/B OUTPUT STAGE

More information

10MHz to 500MHz VCO Buffer Amplifiers with Differential Outputs

10MHz to 500MHz VCO Buffer Amplifiers with Differential Outputs 19-4797; Rev 0; 2/99 EVALUATION KIT MANUAL FOLLOWS DATA SHEET 10MHz to 500MHz VCO Buffer Amplifiers General Description The / are flexible, low-cost, highreverse-isolation buffer amplifiers for applications

More information

Analog Circuits. Operational Amplifiers (Opamps) DC Power Supplies Oscillators

Analog Circuits. Operational Amplifiers (Opamps) DC Power Supplies Oscillators Analog Circuits Operational Amplifiers (Opamps) DC Power Supplies Oscillators Operational Amplifiers Highgain differential amplifier, using voltage feedback, providing stabilized voltage gain Symbol of

More information

You will be asked to make the following statement and provide your signature on the top of your solutions.

You will be asked to make the following statement and provide your signature on the top of your solutions. 1 EE 435 Name Exam 1 Spring 216 Instructions: The points allocated to each problem are as indicated. Note that the first and last problem are weighted more heavily than the rest of the problems. On those

More information

OUTPUT UP TO 300mA C2 TOP VIEW FAULT- DETECT OUTPUT. Maxim Integrated Products 1

OUTPUT UP TO 300mA C2 TOP VIEW FAULT- DETECT OUTPUT. Maxim Integrated Products 1 19-1422; Rev 2; 1/1 Low-Dropout, 3mA General Description The MAX886 low-noise, low-dropout linear regulator operates from a 2.5 to 6.5 input and is guaranteed to deliver 3mA. Typical output noise for this

More information

LM125 Precision Dual Tracking Regulator

LM125 Precision Dual Tracking Regulator LM125 Precision Dual Tracking Regulator INTRODUCTION The LM125 is a precision dual tracking monolithic voltage regulator It provides separate positive and negative regulated outputs thus simplifying dual

More information

Dimensions in inches (mm) .268 (6.81).255 (6.48) .390 (9.91).379 (9.63) .045 (1.14).030 (.76) 4 Typ. Figure 1. Typical application circuit.

Dimensions in inches (mm) .268 (6.81).255 (6.48) .390 (9.91).379 (9.63) .045 (1.14).030 (.76) 4 Typ. Figure 1. Typical application circuit. LINEAR OPTOCOUPLER FEATURES Couples AC and DC signals.% Servo Linearity Wide Bandwidth, > KHz High Gain Stability, ±.%/C Low Input-Output Capacitance Low Power Consumption, < mw Isolation Test Voltage,

More information

Learn about the use, operation and limitations of thyristors, particularly triacs, in power control

Learn about the use, operation and limitations of thyristors, particularly triacs, in power control Exotic Triacs: The Gate to Power Control Learn about the use, operation and limitations of thyristors, particularly triacs, in power control D. Mohan Kumar Modern power control systems use electronic devices

More information

Analog Electronic Circuits Code: EE-305-F

Analog Electronic Circuits Code: EE-305-F Analog Electronic Circuits Code: EE-305-F 1 INTRODUCTION Usually Called Op Amps Section -C Operational Amplifier An amplifier is a device that accepts a varying input signal and produces a similar output

More information

HIGH POWER DUAL OPERATIONAL AMPLIFIER

HIGH POWER DUAL OPERATIONAL AMPLIFIER MILPRF8 CERTIFIED M.S.KENNEDY CORP. HIGH POWER DUAL OPERATIONAL AMPLIFIER 707 Dey Road Liverpool, N.Y. 088 () 7067 FEATURES: Space Efficient Dual Power Amplifier Low Cost High oltage Operation: 0 Low Quiescent

More information

Circuit produces an amplified negative version of v IN = R R R

Circuit produces an amplified negative version of v IN = R R R Inerting Amplifier Circuit produces an amplified negatie ersion of i = i, = 2 0 = 2 OUT OUT = 2 Example: Calculate OUT / and I for = 0.5V Solution: A V OUT 2 = = = 0 kω = 0 kω i 05. V = = = kω 05. ma

More information

Chapter 10: Operational Amplifiers

Chapter 10: Operational Amplifiers Chapter 10: Operational Amplifiers Differential Amplifier Differential amplifier has two identical transistors with two inputs and two outputs. 2 Differential Amplifier Differential amplifier has two identical

More information

NJM3777 DUAL STEPPER MOTOR DRIVER NJM3777E3(SOP24)

NJM3777 DUAL STEPPER MOTOR DRIVER NJM3777E3(SOP24) DUAL STEPPER MOTOR DRIER GENERAL DESCRIPTION The NJM3777 is a switch-mode (chopper), constant-current driver with two channels: one for each winding of a two-phase stepper motor. The NJM3777 is equipped

More information

AT7576 2A Step Down Voltage Regulator with Operational Amplifier

AT7576 2A Step Down Voltage Regulator with Operational Amplifier FEATURES DESCRIPTION Output oltage Range, 1.23 to 37 ±3% Guaranteed 2A Output Current Wide Input oltage Range, 40 52KHz Fixed Frequency Oscillator TTL Shutdown capability, Low Power Standby Mode High Efficiency

More information

Micrel, Inc Fortune Drive San Jose, CA USA tel + 1 (408) fax + 1 (408)

Micrel, Inc Fortune Drive San Jose, CA USA tel + 1 (408) fax + 1 (408) Application Note 34 Fan Health Monitoring and the MIC502 by Applications Staff Part I: Speed Control and Locked-Rotor Detection Introduction This section presents a fan monitoring circuit that can be used

More information

Basic Information of Operational Amplifiers

Basic Information of Operational Amplifiers EC1254 Linear Integrated Circuits Unit I: Part - II Basic Information of Operational Amplifiers Mr. V. VAITHIANATHAN, M.Tech (PhD) Assistant Professor, ECE Department Objectives of this presentation To

More information

GB4550 & GB4550A Monolithic Video Buffer/Clamp

GB4550 & GB4550A Monolithic Video Buffer/Clamp GB55 & GB55A Monolithic Video Buffer/Clamp DATA SHEET FEATURES adjustable clamp level from 5.5 V to 5.5 V at ±1 V supplies. ultra low differential gain (.2% typ.) and differential phase (.3 typ.) wideband

More information

MAXREFDES121# Isolated 24V to 3.3V 33W Power Supply

MAXREFDES121# Isolated 24V to 3.3V 33W Power Supply System Board 6309 MAXREFDES121# Isolated 24V to 3.3V 33W Power Supply Maxim s power-supply experts have designed and built a series of isolated, industrial power-supply reference designs. Each of these

More information

CHAPTER 3. Instrumentation Amplifier (IA) Background. 3.1 Introduction. 3.2 Instrumentation Amplifier Architecture and Configurations

CHAPTER 3. Instrumentation Amplifier (IA) Background. 3.1 Introduction. 3.2 Instrumentation Amplifier Architecture and Configurations CHAPTER 3 Instrumentation Amplifier (IA) Background 3.1 Introduction The IAs are key circuits in many sensor readout systems where, there is a need to amplify small differential signals in the presence

More information

Module 2. Measurement Systems. Version 2 EE IIT, Kharagpur 1

Module 2. Measurement Systems. Version 2 EE IIT, Kharagpur 1 Module Measurement Systems Version EE IIT, Kharagpur 1 Lesson 9 Signal Conditioning Circuits Version EE IIT, Kharagpur Instructional Objective The reader, after going through the lesson would be able to:

More information

Circuit Breaker Based Feeder Pillar

Circuit Breaker Based Feeder Pillar IJIRST International Journal for Innovative Research in Science & Technology Volume Issue 09 February 06 ISSN (online): 349-600 Circuit Breaker Based Feeder Pillar Neha A. Ninave Nikita M. Nimbulkar Minal

More information

LM2907/LM2917 Frequency to Voltage Converter

LM2907/LM2917 Frequency to Voltage Converter LM2907/LM2917 Frequency to Voltage Converter General Description The LM2907, LM2917 series are monolithic frequency to voltage converters with a high gain op amp/comparator designed to operate a relay,

More information

Boundary Mode Offline LED Driver Using MP4000. Application Note

Boundary Mode Offline LED Driver Using MP4000. Application Note The Future of Analog IC Technology AN046 Boundary Mode Offline LED Driver Using MP4000 Boundary Mode Offline LED Driver Using MP4000 Application Note Prepared by Zheng Luo March 25, 2011 AN046 Rev. 1.0

More information

PAiA 4780 Twelve Stage Analog Sequencer Design Analysis Originally published 1974

PAiA 4780 Twelve Stage Analog Sequencer Design Analysis Originally published 1974 PAiA 4780 Twelve Stage Analog Sequencer Design Analysis Originally published 1974 DESIGN ANALYSIS: CLOCK As is shown in the block diagram of the sequencer (fig. 1) and the schematic (fig. 2), the clock

More information

I1 19u 5V R11 1MEG IDC Q7 Q2N3904 Q2N3904. Figure 3.1 A scaled down 741 op amp used in this lab

I1 19u 5V R11 1MEG IDC Q7 Q2N3904 Q2N3904. Figure 3.1 A scaled down 741 op amp used in this lab Lab 3: 74 Op amp Purpose: The purpose of this laboratory is to become familiar with a two stage operational amplifier (op amp). Students will analyze the circuit manually and compare the results with SPICE.

More information

LM W Audio Power Amplifier

LM W Audio Power Amplifier LM388 1 5W Audio Power Amplifier General Description The LM388 is an audio amplifier designed for use in medium power consumer applications The gain is internally set to 20 to keep external part count

More information

HIGH LOW Astable multivibrators HIGH LOW 1:1

HIGH LOW Astable multivibrators HIGH LOW 1:1 1. Multivibrators A multivibrator circuit oscillates between a HIGH state and a LOW state producing a continuous output. Astable multivibrators generally have an even 50% duty cycle, that is that 50% of

More information

Floating Output DC-DC Converter Using Single Winding Reactor and Its Applications

Floating Output DC-DC Converter Using Single Winding Reactor and Its Applications 1 / 5 SANYO DENKI Technical Report No.6 Nov. 1998 General Theses Floating Output DC-DC Converter Using Single Winding Reactor and Its Applications Hirohisa Yamazaki 1. Introduction Networking based on

More information

Chapter 6: Operational Amplifier (Op Amp)

Chapter 6: Operational Amplifier (Op Amp) Chapter 6: Operational Amplifier (Op Amp) 6.1 What is an Op Amp? 6.2 Ideal Op Amp 6.3 Nodal Analysis of Circuits with Op Amps 6.4 Configurations of Op Amp 6.5 Cascaded Op Amp 6.6 Op Amp Circuits & Linear

More information

OPERATIONAL AMPLIFIER & VOLTAGE REFERENCE KL103/A TECHNICAL DATA DESCRIPTION. PIN CONNECTIONS (top view) OPERATIONAL AMPLIFIER

OPERATIONAL AMPLIFIER & VOLTAGE REFERENCE KL103/A TECHNICAL DATA DESCRIPTION. PIN CONNECTIONS (top view) OPERATIONAL AMPLIFIER TECHNICAL DATA OPERATIONAL AMPLIFIER & OLTAGE REFERENCE KL13/A OPERATIONAL AMPLIFIER LOW INPUT OFFSET OLTAGE :. typ. LOW SUPPLY CURRENT : 3 A/op. (@ cc = ) MEDIUM BANDWIDTH (unity gain) :.9MHz LARGE OUTPUT

More information

Precision Micropower Single Supply Operational Amplifier OP777

Precision Micropower Single Supply Operational Amplifier OP777 a FEATURES Low Offset Voltage: 1 V Max Low Input Bias Current: 1 na Max Single-Supply Operation: 2.7 V to 3 V Dual-Supply Operation: 1.35 V to 15 V Low Supply Current: 27 A/Amp Unity Gain Stable No Phase

More information

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820 a FEATURES True Single Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single Supply Capability from V to V Dual Supply Capability from. V to 8 V Excellent Load Drive

More information

20 AMP, 200 VOLT MOSFET SMART POWER 3-PHASE

20 AMP, 200 VOLT MOSFET SMART POWER 3-PHASE MILPRF854 CERTIFIED SMART POWER PHASE M.S.KENNEDY CORP. MOTOR DRIE HYBRID 4 4707 Dey Road Liverpool, N.Y. 088 (5) 7075 FEATURES: 00, 0 Amp Capability Ultra Low Thermal Resistance Junction to Case 0. C/W

More information

Designing Linear Amplifiers Using the IL300 Optocoupler

Designing Linear Amplifiers Using the IL300 Optocoupler VISHAY SEMICONDUCTORS www.vishay.com Optocouplers Application Note Designing Linear Amplifiers Using the IL Optocoupler By Deniz Görk and Achim M. Kruck INTRODUCTION This application note presents isolation

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Spring 2008 Sean Lynch Lambros Samouris Tom Groshans History of Op Amps Non Named for their originally intended functions: performing mathematical operations and amplification Addition

More information

Mitigation of voltage sag by using AC-AC PWM converter Shalini Bajpai Jabalpur Engineering College, M.P., India

Mitigation of voltage sag by using AC-AC PWM converter Shalini Bajpai Jabalpur Engineering College, M.P., India Mitigation of voltage sag by using AC-AC PWM converter Shalini Bajpai Jabalpur Engineering College, M.P., India Abstract: The objective of this research is to develop a novel voltage control scheme that

More information

ESMT Preliminary EMP8731

ESMT Preliminary EMP8731 High-PSRR, Low-Noise, 300mA CMOS Linear Regulator with 3 Types of Output Select General Description The EMP8731 features ultra-high power supply rejection ratio, low output voltage noise, low dropout voltage,

More information

INTEGRATED CIRCUITS. AN1221 Switched-mode drives for DC motors. Author: Lester J. Hadley, Jr.

INTEGRATED CIRCUITS. AN1221 Switched-mode drives for DC motors. Author: Lester J. Hadley, Jr. INTEGRATED CIRCUITS Author: Lester J. Hadley, Jr. 1988 Dec Author: Lester J. Hadley, Jr. ABSTRACT The purpose of this paper is to demonstrate the use of integrated switched-mode controllers, generally

More information

M-Power 2A Series of Multi-chip Power Devices

M-Power 2A Series of Multi-chip Power Devices Series of Multi-chip Power Devices Takayuki Shimatoh Noriho Terasawa Hiroyuki Ota 1. Introduction Fuji Electric has developed highly efficient and low-noise proprietary multi-oscillated current resonant

More information

Summer 2015 Examination

Summer 2015 Examination Summer 2015 Examination Subject Code: 17445 Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

More information

Integrated circuits: linear voltage regulator

Integrated circuits: linear voltage regulator Integrated circuits: linear voltage regulator Linear voltage regulator Circuits and electronic systems to work properly must be fed with a determined power in dc. The power supply has to provide to the

More information

Page ENSC387 - Introduction to Electro-Mechanical Sensors and Actuators: Simon Fraser University Engineering Science

Page ENSC387 - Introduction to Electro-Mechanical Sensors and Actuators: Simon Fraser University Engineering Science Motor Driver and Feedback Control: The feedback control system of a dc motor typically consists of a microcontroller, which provides drive commands (rotation and direction) to the driver. The driver is

More information

Infrared Communications Lab

Infrared Communications Lab Infrared Communications Lab This lab assignment assumes that the student knows about: Ohm s Law oltage, Current and Resistance Operational Amplifiers (See Appendix I) The first part of the lab is to develop

More information

Orister Corporation. LDO Thesis

Orister Corporation. LDO Thesis Orister Corporation LDO Thesis AGENDA What is a Linear egulator LDO ntroductions LDO S Terms and Definitions LDO S LAYOUT What s a Linear egulator A linear regulator operates by using a voltage-controlled

More information

Operation and Maintenance Manual

Operation and Maintenance Manual WeiKedz 0-30V 2mA-3A Adjustable DC Regulated Power Supply DIY Kit Operation and Maintenance Manual The WeiKedz Adjustable DC Regulated Power Supply provides continuously variable output voltage between

More information

Speed Control Of Transformer Cooler Control By Using PWM

Speed Control Of Transformer Cooler Control By Using PWM Speed Control Of Transformer Cooler Control By Using PWM Bhushan Rakhonde 1, Santosh V. Shinde 2, Swapnil R. Unhone 3 1 (assistant professor,department Electrical Egg.(E&P), Des s Coet / S.G.B.A.University,

More information

3.0A, 150kHz, Step-Down Switching Regulator

3.0A, 150kHz, Step-Down Switching Regulator FEATURES 3.3, 5.0, 12, and Adjustable Output version Adjustable Output oltage range, 1.2 to 37 ±4% Max. Over Line and Load conditions Guaranteed Output Current of 3A Available in TO-263, TO-220 Packages

More information

S100A40AC SERIES BRUSHLESS SERVO AMPLIFIERS Model: S100A40AC

S100A40AC SERIES BRUSHLESS SERVO AMPLIFIERS Model: S100A40AC S100A-AC Series S100A40AC SERIES BRUSHLESS SERVO AMPLIFIERS Model: S100A40AC FEATURES: Surface-mount technology Small size, low cost, ease of use Optical isolation, see block diagram Sinusoidal drive and

More information

Shunt Active Power Filter based on SRF theory and Hysteresis Band Current Controller under different Load conditions

Shunt Active Power Filter based on SRF theory and Hysteresis Band Current Controller under different Load conditions IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, PP 20-26 www.iosrjournals.org Shunt Active Power Filter based on SRF theory and Hysteresis Band Current

More information

Lecture 11. Operational Amplifier (opamp)

Lecture 11. Operational Amplifier (opamp) Lecture 11 Operational Amplifier (opamp) Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/teaching/de1_ee/ E-mail: p.cheung@imperial.ac.uk

More information

Fast IC Power Transistor with Thermal Protection

Fast IC Power Transistor with Thermal Protection Fast IC Power Transistor with Thermal Protection Introduction Overload protection is perhaps most necessary in power circuitry. This is shown by recent trends in power transistor technology. Safe-area,

More information

DC Motor Speed Control using PID Controllers

DC Motor Speed Control using PID Controllers "EE 616 Electronic System Design Course Project, EE Dept, IIT Bombay, November 2009" DC Motor Speed Control using PID Controllers Nikunj A. Bhagat (08307908) nbhagat@ee.iitb.ac.in, Mahesh Bhaganagare (CEP)

More information

Low Cost, General Purpose High Speed JFET Amplifier AD825

Low Cost, General Purpose High Speed JFET Amplifier AD825 a FEATURES High Speed 41 MHz, 3 db Bandwidth 125 V/ s Slew Rate 8 ns Settling Time Input Bias Current of 2 pa and Noise Current of 1 fa/ Hz Input Voltage Noise of 12 nv/ Hz Fully Specified Power Supplies:

More information

Ultra High-PSRR, Low-Noise, 300mA CMOS Linear Regulator. Applications. g g g g g g. Features

Ultra High-PSRR, Low-Noise, 300mA CMOS Linear Regulator. Applications. g g g g g g. Features Ultra High-PSRR, Low-Noise, 300mA CMOS Linear Regulator General Description Applications The features ultra-high power supply rejection ratio, low output voltage noise, low dropout voltage, low quiescent

More information

Integrated Circuit: Classification:

Integrated Circuit: Classification: Integrated Circuit: It is a miniature, low cost electronic circuit consisting of active and passive components that are irreparably joined together on a single crystal chip of silicon. Classification:

More information

Design of a Low Cost Automatic Servo Controlled Stabilizer with Quick Response to Voltage Variations

Design of a Low Cost Automatic Servo Controlled Stabilizer with Quick Response to Voltage Variations Design of a Low Cost Automatic Servo Controlled Stabilizer with Quick Response to Voltage Variations Miss. Yogita M. Ramteke 1, Dr. Hari Kumar Naidu 2 P.G. Student, Department of Electrical Engineering,

More information

AMS2115 FAST TRANSIENT RESPONSE LDO CONTROLLER

AMS2115 FAST TRANSIENT RESPONSE LDO CONTROLLER FAST TRANSIENT RESPONSE LDO CONTROLLER General Description The AMS5 is a single IC controller that drives an external N Channel MOSFET as a source follower to produce a fast transient response, low dropout

More information

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2)

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2) EE 368 Electronics Lab Experiment 10 Operational Amplifier Applications (2) 1 Experiment 10 Operational Amplifier Applications (2) Objectives To gain experience with Operational Amplifier (Op-Amp). To

More information

A Novel Continuous-Time Common-Mode Feedback for Low-Voltage Switched-OPAMP

A Novel Continuous-Time Common-Mode Feedback for Low-Voltage Switched-OPAMP 10.4 A Novel Continuous-Time Common-Mode Feedback for Low-oltage Switched-OPAMP M. Ali-Bakhshian Electrical Engineering Dept. Sharif University of Tech. Azadi Ave., Tehran, IRAN alibakhshian@ee.sharif.edu

More information

TDA Power Factor Controller. IC for High Power Factor and Active Harmonic Filtering

TDA Power Factor Controller. IC for High Power Factor and Active Harmonic Filtering Power Factor Controller IC for High Power Factor and Active Harmonic Filtering TDA 4817 Advance Information Bipolar IC Features IC for sinusoidal line-current consumption Power factor approaching 1 Controls

More information

High Input Voltage, Low Quiescent Current, Low-Dropout Linear Regulator. Applications

High Input Voltage, Low Quiescent Current, Low-Dropout Linear Regulator. Applications High Input Voltage, Low Quiescent Current, Low-Dropout Linear Regulator General Description The is a high voltage, low quiescent current, low dropout regulator with 150mA output driving capacity. The,

More information

LM4765 OvertureAudio Power Amplifier Series Dual 30W Audio Power Amplifier with Mute and Standby Modes

LM4765 OvertureAudio Power Amplifier Series Dual 30W Audio Power Amplifier with Mute and Standby Modes LM4765 Overture Audio Power Amplifier Series Dual 30W Audio Power Amplifier with Mute and Standby Modes General Description The LM4765 is a stereo audio amplifier capable of delivering typically 30W per

More information

1.0V Micropower, SOT23, Operational Amplifier

1.0V Micropower, SOT23, Operational Amplifier 19-3; Rev ; 1/ 1.V Micropower, SOT3, Operational Amplifier General Description The micropower, operational amplifier is optimized for ultra-low supply voltage operation. The amplifier consumes only 9µA

More information

Design of a Microcontroller-Based Push-Pull Inverter with Automatic Voltage Regulator

Design of a Microcontroller-Based Push-Pull Inverter with Automatic Voltage Regulator ISSN 2278 0211 (Online) Design of a Microcontroller-Based Push-Pull Inverter with Automatic Voltage Regulator Ogunseye Abiodun Alani Assistant Lecturer, Department of Electrical/Electronics & Computer

More information

6500V/µs, Wideband, High-Output-Current, Single- Ended-to-Differential Line Drivers with Enable

6500V/µs, Wideband, High-Output-Current, Single- Ended-to-Differential Line Drivers with Enable 99 Rev ; /99 EVALUATION KIT AVAILABLE 65V/µs, Wideband, High-Output-Current, Single- General Description The // single-ended-todifferential line drivers are designed for high-speed communications. Using

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Table of contents 1. Design 1.1. The Differential Amplifier 1.2. Level Shifter 1.3. Power Amplifier 2. Characteristics 3. The Opamp without NFB 4. Linear Amplifiers 4.1. The Non-Inverting

More information