Electromagnetic Compatibility Engineering. Henry W. Ott Henry Ott Consultants

Size: px
Start display at page:

Download "Electromagnetic Compatibility Engineering. Henry W. Ott Henry Ott Consultants"

Transcription

1

2

3 Electromagnetic Compatibility Engineering Henry W. Ott Henry Ott Consultants

4

5 Electromagnetic Compatibility Engineering

6

7 Electromagnetic Compatibility Engineering Henry W. Ott Henry Ott Consultants

8 Copyright r 2009 by John Wiley & Sons, Inc. All rights reserved. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Daitvers, MA 01923, (978) , fax (978) , or on the web at Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) , fax (201) , or online at Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable fur your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) , outside the United States at (317) or fax (317) Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at Library of Congress Cataloging-in-Publication Data: Ott, Henry W., Electromagnetic compatibility engineering / Henry W. Ott. Rev. ed. p. cm. Earlier ed. published under title: Noise reduction techniques in electronic systems, Includes bibliographical references and index. ISBN Electronic circuits Noise. 2. Electromagnetic compatibility. I. Ott, Henry W., Noise reduction techniques in electronic systems. II. Title. TK O u24 dc Printed in the United States of America

9 To my parents, the late Henry and Virginia Ott. The values they instilled in me as a child have served me well throughout my life.

10 Everything should be made as simple as possible, but no simpler. Albert Einstein,

11 CONTENTS Preface xxiii PART 1 EMC THEORY 1 1. Electromagnetic Compatibility Introduction Noise and Interference Designing for Electromagnetic Compatibility Engineering Documentation and EMC United States EMC Regulations FCC Regulations FCC Part 15, Subpart B Emissions Administrative Procedures Susceptibility Medical Equipment Telecom Automotive Canadian EMC Requirements European Union s EMC Requirements Emission Requirements Harmonics and Flicker Immunity Requirements Directives and Standards International Harmonization Military Standards 27 vii

12 viii CONTENTS 1.10 Avionics The Regulatory Process Typical Noise Path Methods of Noise Coupling Conductively Coupled Noise Common Impedance Coupling Electric and Magnetic Field Coupling Miscellaneous Noise Sources Galvanic Action Electrolytic Action Triboelectric Effect Conductor Motion Use of Network Theory 36 Summary 38 Problems 39 References 41 Further Reading Cabling Capacitive Coupling Effect of Shield on Capacitive Coupling Inductive Coupling Mutual Inductance Calculations Effect of Shield on Magnetic Coupling Magnetic Coupling Between Shield and Inner Conductor Magnetic Coupling Open Wire to Shielded Conductor Shielding to Prevent Magnetic Radiation Shielding a Receptor Against Magnetic Fields Common Impedance Shield Coupling Experimental Data Example of Selective Shielding Shield Transfer Impedance Coaxial Cable Versus Twisted Pair 75

13 CONTENTS ix 2.13 Braided Shields Spiral Shields Shield Terminations Pigtails Grounding of Cable Shields Ribbon Cables Electrically Long Cables 96 Summary 96 Problems 98 References 103 Further Reading Grounding AC Power Distribution and Safety Grounds Service Entrance Branch Circuits Noise Control Earth Grounds Isolated Grounds Separately Derived Systems Grounding Myths Signal Grounds Single-Point Ground Systems Multipoint Ground Systems Common Impedance Coupling Hybrid Grounds Chassis Grounds Equipment/System Grounding Isolated Systems Clustered Systems Distributed Systems Ground Loops Low-Frequency Analysis of Common-Mode Choke High-Frequency Analysis of Common-Mode Choke Single Ground Reference for a Circuit 154

14 x CONTENTS Summary 155 Problems 156 References 157 Further Reading Balancing and Filtering Balancing Common-Mode Rejection Ratio Cable Balance System Balance Balanced Loads Filtering Common-Mode Filters Parasitic Effects in Filters Power Supply Decoupling Low-Frequency Analog Circuit Decoupling Amplifier Decoupling Driving Capacitive Loads System Bandwidth Modulation and Coding 190 Summary 190 Problems 191 References 192 Further Reading Passive Components Capacitors Electrolytic Capacitors Film Capacitors Mica and Ceramic Capacitors Feed-Through Capacitors Paralleling Capacitors Inductors Transformers Resistors Noise in Resistors 207

15 CONTENTS xi 5.5 Conductors Inductance of Round Conductors Inductance of Rectangular Conductors Resistance of Round Conductors Resistance of Rectangular Conductors Transmission Lines Characteristic Impedance Propagation Constant High-Frequency Loss Relationship Among C, L and e r Final Thoughts Ferrites 225 Summary 233 Problems 234 References 237 Further Reading Shielding Near Fields and Far Fields Characteristic and Wave Impedances Shielding Effectiveness Absorption Loss Reflection Loss Reflection Loss to Plane Waves Reflection Loss in the Near Field Electric Field Reflection Loss Magnetic Field Reflection Loss General Equations for Reflection Loss Multiple Reflections in Thin Shields Composite Absorption and Reflection Loss Plane Waves Electric Fields Magnetic Fields Summary of Shielding Equations Shielding with Magnetic Materials Experimental Data 265

16 xii CONTENTS 6.10 Apertures Multiple Apertures Seams Transfer Impedance Waveguide Below Cutoff Conductive Gaskets Joints of Dissimilar Metals Mounting of Conductive Gaskets The IDEAL Shield Conductive Windows Transparent Conductive Coatings Wire Mesh Screens Mounting of Windows Conductive Coatings Conductive Paints Flame/Arc Spray Vacuum Metalizing Electroless Plating Metal Foil Linings Filled Plastic Internal Shields Cavity Resonance Grounding of Shields 296 Summary 296 Problems 297 References 299 Further Reading Contact Protection Glow Discharges Metal-Vapor or Arc Discharges AC Versus DC Circuits Contact Material Contact Rating Loads with High Inrush Currents 307

17 CONTENTS xiii 7.7 Inductive Loads Contact Protection Fundamentals Transient Suppression for Inductive Loads Contact Protection Networks for Inductive Loads C Network R C Network R C D Network Inductive Loads Controlled by a Transistor Switch Resistive Load Contact Protection Contact Protection Selection Guide Examples 324 Summary 325 Problems 326 References 327 Further Reading Intrinsic Noise Sources Thermal Noise Characteristics of Thermal Noise Equivalent Noise Bandwidth Shot Noise Contact Noise Popcorn Noise Addition of Noise Voltages Measuring Random Noise 341 Summary 342 Problems 343 References 345 Further Reading Active Device Noise Noise Factor Measurement of Noise Factor 349

18 xiv CONTENTS Single-Frequency Method Noise Diode Method Calculating S/N Ratio and Input Noise Voltage from Noise Factor Noise Voltage and Current Model Measurment of V n and I n Calculating Noise Factor and S/N Ratio from V n I n Optimum Source Resistance Noise Factor of Cascaded Stages Noise Temperature Bipolar Transistor Noise Transistor Noise Factor V n I n for Transistors Field-Effect Transistor Noise FET Noise Factor V n I n Representation of FET Noise Noise in Operational Amplifiers Methods of Specifying Op-Amp Noise Op-Amp Noise Factor 375 Summary 375 Problems 376 References 377 Further Reading Digital Circuit Grounding Frequency Versus Time Domain Analog Versus Digital Circuits Digital Logic Noise Internal Noise Sources Digital Circuit Ground Noise Minimizing Inductance Mutual Inductance Practical Digital Circuit Ground Systems Loop Area 390

19 CONTENTS xv 10.6 Ground Plane Current Distribution and Impedance Reference Plane Current Distribution Ground Plane Impedance Ground Plane Voltage End Effects Digital Logic Current Flow Microstrip Line Stripline Digital Circuit Current Flow Summary 418 Summary 419 Problems 420 References 421 Further Reading 422 PART 2 EMC APPLICATIONS Digital Circuit Power Distribution Power Supply Decoupling Transient Power Supply Currents Transient Load Current Dynamic Internal Current Fourier Spectrum of the Transient Current Total Transient Current Decoupling Capacitors Effective Decoupling Strategies Multiple Decoupling Capacitors Multiple Capacitors of the Same Value Multiple Capacitors of Two Different Values Multiple Capacitors of Many Different Values Target Impedance Embedded PCB Capacitance Power Supply Isolation The Effect of Decoupling on Radiated Emissions Decoupling Capacitor Type and Value Decoupling Capacitor Placement and Mounting Bulk Decoupling Capacitors 459

20 xvi CONTENTS 11.9 Power Entry Filters 460 Summary 461 Problems 461 References 463 Further Reading Digital Circuit Radiation Differential-Mode Radiation Loop Area Loop Current Fourier Series Radiated Emission Envelope Controlling Differential-Mode Radiation Board Layout Canceling Loops Dithered Clocks Common-Mode Radiation Controlling Common-Mode Radiation Common-Mode Voltage Cable Filtering and Shielding Separate I/O Grounds Dealing With Common-Mode Radiation Issues 488 Summary 488 Problems 489 References 490 Further Reading Conducted Emissions Power Line Impedance Line Impedance Stabilization Network Switched-Mode Power Supplies Common-Mode Emissions Differential-Mode Emissions DC-to-DC Converters Rectifier Diode Noise 509

21 CONTENTS xvii 13.3 Power-Line Filters Common-Mode Filtering Differential-Mode Filtering Leakage Inductance Filter Mounting Power Supplies with Integral Power-Line Filters High-Frequency Noise Primary-to-Secondary Common-Mode Coupling Frequency Dithering Power Supply Instability Magnetic Field Emissions Variable Speed Motor Drives Harmonic Suppression Inductive Input Filters Active Power Factor Correction AC Line Reactors 539 Summary 541 Problems 542 References 544 Further Reading RF and Transient Immunity Performance Criteria RF Immunity The RF Environment Audio Rectification RFI Mitigation Techniques Transient Immunity Electrostatic Discharge Electrical Fast Transient Lightning Surge Transient Suppression Networks Signal Line Suppression Protection of High-Speed Signal Lines Power Line Transient Suppression Hybrid Protection Network 570

22 xviii CONTENTS 14.4 Power Line Disturbances Power Line Immunity Curve 573 Summary 575 Problems 576 References 578 Further Reading Electrostatic Discharge Static Generation Inductive Charging Energy Storage Human Body Model Static Discharge Decay Time ESD Protection in Equipment Design Preventing ESD Entry Metallic Enclosures Input/Output Cable Treatment Insulated Enclosures Keyboards and Control Panels Hardening Sensitive Circuits ESD Grounding Nongrounded Products Field-Induced Upset Inductive Coupling Capacitive Coupling Transient Hardened Software Design Detecting Errors in Program Flow Detecting Errors in Input/Output Detecting Errors in Memory Time Windows 617 Summary 617 Problems 619

23 CONTENTS xix References 620 Further Reading PCB Layout and Stackup General PCB Layout Considerations Partitioning Keep Out Zones Critical Signals System Clocks PCB-to-Chassis Ground Connection Return Path Discontinuities Slots in Ground/Power Planes Split Ground/Power Planes Changing Reference Planes Referencing the Top and Bottom of the Same Plane Connectors Ground Fill PCB Layer Stackup One- and Two-Layer Boards Multilayer Boards General PCB Design Procedure 653 Summary 655 Problems 657 References 658 Further Reading Mixed-Signal PCB Layout Split Ground Planes Microstrip Ground Plane Current Distribution Analog and Digital Ground Pins When Should Split Ground Planes Be Used? Mixed Signal ICs Multi-Board Systems High-Resolution A/D and D/A Converters Stripline 673

24 xx CONTENTS Asymmetric Stripline Isolated Analog and Digital Ground Planes A/D and D/A Converter Support Circuitry Sampling Clocks Mixed-Signal Support Circuitry Vertical Isolation Mixed-Signal Power Distribution Power Distribution Decoupling The IPC Problem 684 Summary 685 Problems 686 References 687 Further Reading Precompliance EMC Measurements Test Environment Antennas Versus Probes Common-Mode Currents on Cables Test Procedure Cautions Near Field Measurements Test Procedure Cautions Seams and Apertures in Enclosures Noise Voltage Measurements Balanced Differential Probe DC to 1-GHz Probe Cautions Conducted Emission Testing Test Procedure Cautions Separating C-M from D-M Noise Spectrum Analyzers 707

25 CONTENTS xxi Detector Functions General Test Procedure EMC Crash Cart Mitigation Parts List One-Meter Radiated Emission Measurements Test Environment Limits for 1-m Testing Antennas for 1-m Testing Precompliance Immunity Testing Radiated Immunity Conducted Immunity Transient Immunity Precompliance Power Quality Tests Harmonics Flicker Margin Radiated Emission Margin Electrostatic Discharge Margin 727 Summary 728 Problems 729 References 730 Further Reading 731 APPENDIX 733 A. The Decibel 733 A.1 Properties of Logarithms 733 A.2 Using the Decibel for Other than Power Measurements 734 A.3 Power Loss or Negative Power Gain 736 A.4 Absolute Power Level 736 A.5 Summing Powers Expressed in Decibels 738 B. The Ten Best Ways to Maximize the Emission from Your Product 740 C. Multiple Reflections of Magnetic Fields in Thin Shields 743

26 xxii CONTENTS D. Dipoles for Dummies 746 D.1 Basic Dipoles for Dummies 746 D.2 Intermediate Dipoles for Dummies 751 D.3 Advanced Dipoles for Dummies 756 D.3.1 Impedance of a Dipole 756 D.3.2 Dipole Resonance 756 D.3.3 Receiving Dipole 759 D.3.4 Theory of Images 759 D.3.5 Dipole Arrays 761 D.3.6 Very High-Frequency Dipoles 763 Summary 763 Further Reading 764 E. Partial Inductance 765 E.1 Inductance 765 E.2 Loop Inductance 767 E.2.1 Inductance of a Rectangular Loop 768 E.3 Partial Inductance 770 E.3.1 Partial Self-Inductance 771 E.3.2 Partial Mutual Inductance 773 E.3.3 Net Partial-Inductance 776 E.3.4 Partial Inductance Applications 776 E.3.5 Transmission Line Example 778 E.4 Ground Plane Inductance Measurement Test Setup 780 E.5 Inductance Notation 785 Summary 788 References 788 Further Reading 789 F. Answers to Problems 790 Index 825

27 PREFACE Electromagnetic Compatibility Engineering started out being a third edition to my previous book Noise Reduction Techniques in Electronic Systems, but it turned out to be much more than that, hence, the title change. Nine of the original twelve chapters were completely rewritten. In addition, there are six new chapters, plus two new appendices, with over 600 pages of new and revised material (including 342 new figures). Most of the new material relates to the practical application of the theory of electromagnetic compatibility (EMC) engineering, and it is based on experience gained from my EMC consulting work, and teaching of EMC training seminars over the last 20 plus years. Some of the more difficult and frustrating problems faced by design engineers concerns electromagnetic compatibility and regulatory compliance issues. Most engineers are not well equipped to handle these problems because the subject is not normally taught in engineering schools. Solutions to EMC problems are often found by trial and error with little or no understanding of the theory involved. Such efforts are very time consuming, and the solutions are often unsatisfactory. This situation is unfortunate, because most of the principles involved are simple and can be explained by elementary physics. This book is intended to remedy that situation. This book is intended primarily for the practicing engineer who is involved in the design of electronic equipment or systems and is faced with EMC and regulatory compliance issues. It addresses the practical aspects of electromagnetic compatibility engineering, covering both emission and immunity. The concepts presented in this book are applicable to both analog and digital circuits operating from below audio frequencies up to the GHz range. Emphasis is on cost-effective EMC designs, with the amount and complexity of the mathematics kept to a minimum. The reader should obtain the knowledge necessary to design electronic equipment that is compatible with the electromagnetic environment and compliant with national and international EMC regulations. The book is written in such a way that it can easily be used as a textbook for teaching a senior level or continuing education course in electromagnetic compatibility. To this end, the book contains 251 problems for the student to work out, the answers to which are included in Appendix F. xxiii

28 xxiv PREFACE The book is divided into two parts: Part 1, EMC Theory and includes Chapters 1 to 10. Part 2, EMC Applications, includes Chapters 11 to 18. In addition, the book contains six appendices with supplemental information. The organization of the material is as follows. Chapter 1 is an introduction to electromagnetic compatibility and covers national and international EMC regulations, including the European Union, FCC, and U.S. Military. Chapter 2 covers both electric and magnetic field cable coupling and crosstalk, as well as cable shielding and grounding. Chapter 3 covers safety, power, signal, and hardware/systems grounding. Chapter 4 discusses balancing and filtering as well as differential amplifiers, and low-frequency analog circuit decoupling. Chapter 5 is on passive components and covers the nonideal characteristics of components that affect their performance. In addition to resistors, capacitors, and inductors ferrite beads, conductors and transmission lines are also included. Chapter 6 is a detailed analysis of the shielding effectiveness of metallic sheets as well as conductive coatings on plastic, and the effect of apertures on the shielding effectiveness. Chapter 7 covers contact protection for relays and switches. Chapters 8 and 9 discuss internal noise sources in components and active devices. Chapter 8 covers intrinsic noise sources, such as thermal and shot noise. Chapter 9 covers noise sources in active devices. Chapters 10, 11, and 12 cover electromagnetic compatibility issues associated with digital circuits. Chapter 10 examines digital circuit grounding, including ground plane impedance and a discussion on how digital logic currents flow. Chapter 11 is on digital circuit power distribution and decoupling, and Chapter 12 covers digital circuit radiation mechanisms, both common mode and differential mode. Chapter 13 covers conducted emissions on alternating current (ac) and direct current (dc) power lines, as well as EMC issues associated with switching power supplies and variable-speed motor drives. Chapter 14 covers radio frequency(rf) and transient immunity, as well as a discussion of the electromagnetic environment. Chapter 15 covers electrostatic discharge protection in the design of electronic products. It focuses on the importance of a three-prong approach, which includes mechanical, electrical, and software design. Chapter 16 covers printed circuit board layout and stackup, a subject not often discussed. Chapter 17 addresses the difficult problem of partitioning, grounding, and layout of mixed-signal printed circuit boards. The final chapter (Chapter 18) is on precompliance EMC measurements, that is, measurements that can be performed in the product development laboratory, using simple and inexpensive test equipment, which relate to the EMC performance of the product. At the end of each chapter, there is a summary of the most important points discussed as well as many problems for the reader to work out. For those desiring additional information on the subjects covered, each chapter has an extensive reference, and further reading section.

29 PREFACE xxv Supplemental information is provided in six appendices. Appendix A is on the decibel. Appendix B covers the 10 best ways to maximize the emission from your product. Appendix C derives the equations for multiple reflections of magnetic fields in thin shields. Appendix D, Dipoles for Dummies, is a simple, insightful, and intuitive discussion of how a dipole antenna works. If a product picks up or radiates electromagnetic energy, then it is an antenna, therefore, an understanding of some basic antenna theory would be helpful for all engineers, especially EMC engineers. Appendix E explains the important, and not well understood, theory of partial inductance, and Appendix F provides answers to the problems contained at the end of each chapter. I would like to express my gratitude and appreciation to all those who took the time to comment on Noise Reduction Techniques in Electronic Systems and to all those who encouraged me to write Electromagnetic Compatibility Engineering. In particular, I would especially like to thank John Celli, Bob German, Dr. Clayton Paul, Mark Steffka, and Jim Brown for their insightful review of major portions of the manuscript, as well as for their encouragement and the many fruitful discussions we had on the subject of EMC. Electromagnetic Compatibility Engineering is a better book because of them. Portions of the manuscript were also used for an electromagnetic compatibility class taught by Mark Steffka at the University of Michigan Dearborn, during the 2007 and 2008 semesters. My heartfelt thanks go out to the students in those two classes for the large number of comments and suggestions that I received (many of which have been incorporated into this book), in particular their suggestions for additional problems to be included in the book. I would also like to express my appreciation to James Styles who, Mark Steffka and I both agreed, submitted the most useful comments. Finally, I would like to thank all my colleagues who took the time to review various portions of this manuscript and make useful comments and suggestions. Additional technical information, updated information on EMC regulations, as well as an errata sheet for this book are on the Henry Ott Consultants website at Livingston, New Jersey January 2009 HENRY W. OTT

30

Electromagnetic Compatibility Engineering

Electromagnetic Compatibility Engineering Electromagnetic Compatibility Engineering Electromagnetic Compatibility Engineering Henry W. Ott Henry Ott Consultants Copyright r 2009 by John Wiley & Sons, Inc. All rights reserved. Published by John

More information

Introduction to Electromagnetic Compatibility

Introduction to Electromagnetic Compatibility Introduction to Electromagnetic Compatibility Second Edition CLAYTON R. PAUL Department of Electrical and Computer Engineering, School of Engineering, Mercer University, Macon, Georgia and Emeritus Professor

More information

THE FIELDS OF ELECTRONICS

THE FIELDS OF ELECTRONICS THE FIELDS OF ELECTRONICS THE FIELDS OF ELECTRONICS Understanding Electronics Using Basic Physics Ralph Morrison A Wiley-Interscience Publication JOHN WILEY & SONS, INC. This book is printed on acid-free

More information

Chapter 16 PCB Layout and Stackup

Chapter 16 PCB Layout and Stackup Chapter 16 PCB Layout and Stackup Electromagnetic Compatibility Engineering by Henry W. Ott Foreword The PCB represents the physical implementation of the schematic. The proper design and layout of a printed

More information

PRACTICAL RF SYSTEM DESIGN

PRACTICAL RF SYSTEM DESIGN PRACTICAL RF SYSTEM DESIGN WILLIAM F. EGAN, Ph.D. Lecturer in Electrical Engineering Santa Clara University The Institute of Electrical and Electronics Engineers, Inc., New York A JOHN WILEY & SONS, INC.,

More information

AUTOMOTIVE ELECTROMAGNETIC COMPATIBILITY (EMC)

AUTOMOTIVE ELECTROMAGNETIC COMPATIBILITY (EMC) AUTOMOTIVE ELECTROMAGNETIC COMPATIBILITY (EMC) AUTOMOTIVE ELECTROMAGNETIC COMPATIBILITY (EMC) Terence Rybak Mark Steffka KLUWER ACADEMIC PUBLISHERS NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW ebook ISBN:

More information

Fundamentals of Global Positioning System Receivers

Fundamentals of Global Positioning System Receivers Fundamentals of Global Positioning System Receivers A Software Approach SECOND EDITION JAMES BAO-YEN TSUI A JOHN WILEY & SONS, INC., PUBLICATION Fundamentals of Global Positioning System Receivers Fundamentals

More information

ADVANCED POWER ELECTRONICS CONVERTERS

ADVANCED POWER ELECTRONICS CONVERTERS ADVANCED POWER ELECTRONICS CONVERTERS IEEE Press 445 Hoes Lane Piscataway, NJ 08854 IEEE Press Editorial Board Tariq Samad, Editor in Chief George W. Arnold Mary Lanzerotti Linda Shafer Dmitry Goldgof

More information

ELECTROMAGNETIC SHIELDING HANDBOOK FOR WIRED AND WIRELESS EMC APPLICATIONS

ELECTROMAGNETIC SHIELDING HANDBOOK FOR WIRED AND WIRELESS EMC APPLICATIONS ELECTROMAGNETIC SHIELDING HANDBOOK FOR WIRED AND WIRELESS EMC APPLICATIONS by Anatoly Tsaliovich Kluwer Academic Publishers Boston / London / Dordrecht Contents Foreword Preface xiii xvii 1. INTRODUCTION

More information

HIGH INTEGRITY DIE CASTING PROCESSES

HIGH INTEGRITY DIE CASTING PROCESSES HIGH INTEGRITY DIE CASTING PROCESSES EDWARD J. VINARCIK JOHN WILEY & SONS, INC. HIGH INTEGRITY DIE CASTING PROCESSES HIGH INTEGRITY DIE CASTING PROCESSES EDWARD J. VINARCIK JOHN WILEY & SONS, INC. This

More information

RADIO-FREQUENCY AND MICROWAVE COMMUNICATION CIRCUITS

RADIO-FREQUENCY AND MICROWAVE COMMUNICATION CIRCUITS RADIO-FREQUENCY AND MICROWAVE COMMUNICATION CIRCUITS RADIO-FREQUENCY AND MICROWAVE COMMUNICATION CIRCUITS Analysis and Design Second Edition Devendra K. Misra University of Wisconsin Milwaukee A JOHN WILEY

More information

Freescale Semiconductor, I

Freescale Semiconductor, I Order this document by /D Noise Reduction Techniques for Microcontroller-Based Systems By Imad Kobeissi Introduction With today s advancements in semiconductor technology and the push toward faster microcontroller

More information

RF AND MICROWAVE ENGINEERING

RF AND MICROWAVE ENGINEERING RF AND MICROWAVE ENGINEERING FUNDAMENTALS OF WIRELESS COMMUNICATIONS Frank Gustrau Dortmund University of Applied Sciences and Arts, Germany WILEY A John Wiley & Sons, Ltd., Publication Preface List of

More information

Pulse-Width Modulated DC-DC Power Converters Second Edition

Pulse-Width Modulated DC-DC Power Converters Second Edition Pulse-Width Modulated DC-DC Power Converters Second Edition Marian K. Kazimierczuk Pulse-Width Modulated DC DC Power Converters Pulse-Width Modulated DC DC Power Converters Second Edition MARIAN K. KAZIMIERCZUK

More information

Contents. 1 Introduction. 2 System-Level Electrostatic Discharge (ESD) and Electrical Fast Transient. 3 Electromagnetic Interference

Contents. 1 Introduction. 2 System-Level Electrostatic Discharge (ESD) and Electrical Fast Transient. 3 Electromagnetic Interference Issue 3, October 2002 Electromagnetic Compatibility and Electrical Safety Contents Telcordia GR-1089 - Documentation Information Generic Requirements Notice Of Disclaimer................. iii Contents.......................................

More information

ELEC Course Objectives/Proficiencies

ELEC Course Objectives/Proficiencies Lecture 1 -- to identify (and list examples of) intentional and unintentional receivers -- to list three (broad) ways of reducing/eliminating interference -- to explain the differences between conducted/radiated

More information

EMC Design Guidelines C4ISR EQUIPMENT & SYSTEMS

EMC Design Guidelines C4ISR EQUIPMENT & SYSTEMS EMC Design Guidelines C4ISR EQUIPMENT & SYSTEMS 1.1. SHIELDING Enclosed structure (equipment box or chassis in outside RF environment) should provide at least 100 db of RF shielding at 1 MHz, 40 db at

More information

AIRCRAFT CONTROL AND SIMULATION

AIRCRAFT CONTROL AND SIMULATION AIRCRAFT CONTROL AND SIMULATION AIRCRAFT CONTROL AND SIMULATION Third Edition Dynamics, Controls Design, and Autonomous Systems BRIAN L. STEVENS FRANK L. LEWIS ERIC N. JOHNSON Cover image: Space Shuttle

More information

Chapter 12 Digital Circuit Radiation. Electromagnetic Compatibility Engineering. by Henry W. Ott

Chapter 12 Digital Circuit Radiation. Electromagnetic Compatibility Engineering. by Henry W. Ott Chapter 12 Digital Circuit Radiation Electromagnetic Compatibility Engineering by Henry W. Ott Forward Emission control should be treated as a design problem from the start, it should receive the necessary

More information

RF AND MICROWAVE ENGINEERING

RF AND MICROWAVE ENGINEERING RF AND MICROWAVE ENGINEERING RF AND MICROWAVE ENGINEERING FUNDAMENTALS OF WIRELESS COMMUNICATIONS Frank Gustrau Dortmund University of Applied Sciences and Arts, Germany A John Wiley & Sons, Ltd., Publication

More information

PRINCIPLES OF RADAR. By Members of the Staff of the Radar School Massachusetts Institute of Technology. Third Edition by J.

PRINCIPLES OF RADAR. By Members of the Staff of the Radar School Massachusetts Institute of Technology. Third Edition by J. PRINCIPLES OF RADAR By Members of the Staff of the Radar School Massachusetts Institute of Technology Third Edition by J. Francis Reintjes ASSISTANT PBOFESSOR OF COMMUNICATIONS MASSACHUSETTS INSTITUTE

More information

AP7301 ELECTROMAGNETIC INTERFERENCE AND COMPATIBILITY L T P C COURSE OBJECTIVES:

AP7301 ELECTROMAGNETIC INTERFERENCE AND COMPATIBILITY L T P C COURSE OBJECTIVES: AP7301 ELECTROMAGNETIC INTERFERENCE AND COMPATIBILITY L T P C 3 0 0 3 COURSE OBJECTIVES: To understand the basics of EMI To study EMI Sources To understand EMI problems To understand Solution methods in

More information

Designing Your EMI Filter

Designing Your EMI Filter The Engineer s Guide to Designing Your EMI Filter TABLE OF CONTENTS Introduction Filter Classifications Why Do We Need EMI Filters Filter Configurations 2 2 3 3 How to Determine Which Configuration to

More information

Corrosion Inspection and Monitoring

Corrosion Inspection and Monitoring Corrosion Inspection and Monitoring WILEY SERIES IN CORROSION R.Winston Revie, Series Editor Corrosion Inspection and Monitoring Pierre R. Roberge Corrosion Inspection and Monitoring Pierre R. Roberge

More information

10 Safety earthing/grounding does not help EMC at RF

10 Safety earthing/grounding does not help EMC at RF 1of 6 series Webinar #3 of 3, August 28, 2013 Grounding, Immunity, Overviews of Emissions and Immunity, and Crosstalk Contents of Webinar #3 Topics 1 through 9 were covered by the previous two webinars

More information

Contents. 1. Essential Electronics 1. Preface Acknowledgements

Contents. 1. Essential Electronics 1. Preface Acknowledgements Contents Preface Acknowledgements ix xi 1. Essential Electronics 1 1.1: Current 2 1.2: Voltage 5 1.3: Power 6 1.4: Signals and Averages 7 1.4.1: Mean Average 7 1.4.2: Rectified Average 8 1.4.3: RMS Average

More information

Top Ten EMC Problems

Top Ten EMC Problems Top Ten EMC Problems presented by: Kenneth Wyatt Sr. EMC Consultant EMC & RF Design, Troubleshooting, Consulting & Training 10 Northern Boulevard, Suite 1 Amherst, New Hampshire 03031 +1 603 578 1842 www.silent-solutions.com

More information

11 Myths of EMI/EMC ORBEL.COM. Exploring common misconceptions and clarifying them. MYTH #1: EMI/EMC is black magic.

11 Myths of EMI/EMC ORBEL.COM. Exploring common misconceptions and clarifying them. MYTH #1: EMI/EMC is black magic. 11 Myths of EMI/EMC Exploring common misconceptions and clarifying them By Ed Nakauchi, Technical Consultant, Orbel Corporation What is a myth? A myth is defined as a popular belief or tradition that has

More information

Microwave and RF Engineering

Microwave and RF Engineering Microwave and RF Engineering Volume 1 An Electronic Design Automation Approach Ali A. Behagi and Stephen D. Turner BT Microwave LLC State College, PA 16803 Copyrighted Material Microwave and RF Engineering

More information

EMC & Wireless Device Requirements and Compliance Design Seminar

EMC & Wireless Device Requirements and Compliance Design Seminar EMC & Wireless Device Requirements and Compliance Design Seminar Learn how to reduce the time and cost of product compliance Get in-depth training on: Wireless and digital device approvals process Current

More information

Semiconductor Detector Systems

Semiconductor Detector Systems Semiconductor Detector Systems Helmuth Spieler Physics Division, Lawrence Berkeley National Laboratory OXFORD UNIVERSITY PRESS ix CONTENTS 1 Detector systems overview 1 1.1 Sensor 2 1.2 Preamplifier 3

More information

Common myths, fallacies and misconceptions in Electromagnetic Compatibility and their correction.

Common myths, fallacies and misconceptions in Electromagnetic Compatibility and their correction. Common myths, fallacies and misconceptions in Electromagnetic Compatibility and their correction. D. A. Weston EMC Consulting Inc 22-3-2010 These are some of the commonly held beliefs about EMC which are

More information

EC6011-ELECTROMAGNETICINTERFERENCEANDCOMPATIBILITY

EC6011-ELECTROMAGNETICINTERFERENCEANDCOMPATIBILITY EC6011-ELECTROMAGNETICINTERFERENCEANDCOMPATIBILITY UNIT-3 Part A 1. What is an opto-isolator? [N/D-16] An optoisolator (also known as optical coupler,optocoupler and opto-isolator) is a semiconductor device

More information

APPLIED ELECTROMAGNETICS: EARLY TRANSMISSION LINES APPROACH

APPLIED ELECTROMAGNETICS: EARLY TRANSMISSION LINES APPROACH APPLIED ELECTROMAGNETICS: EARLY TRANSMISSION LINES APPROACH STUART M. WENTWORTH Auburn University IICENTBN Nlfll 1807; WILEY 2 OO 7 ; Ttt^TlLtftiTTu CONTENTS CHAPTER1 Introduction 1 1.1 1.2 1.3 1.4 1.5

More information

Filter Considerations for the IBC

Filter Considerations for the IBC APPLICATION NOTE AN:202 Filter Considerations for the IBC Mike DeGaetano Application Engineering Contents Page Introduction 1 IBC Attributes 1 Input Filtering Considerations 2 Damping and Converter Bandwidth

More information

BIRD 74 - recap. April 7, Minor revisions Jan. 22, 2009

BIRD 74 - recap. April 7, Minor revisions Jan. 22, 2009 BIRD 74 - recap April 7, 2003 Minor revisions Jan. 22, 2009 Please direct comments, questions to the author listed below: Guy de Burgh, EM Integrity mail to: gdeburgh@nc.rr.com (919) 457-6050 Copyright

More information

The number of layers The number and types of planes (power and/or ground) The ordering or sequence of the layers The spacing between the layers

The number of layers The number and types of planes (power and/or ground) The ordering or sequence of the layers The spacing between the layers PCB Layer Stackup PCB layer stackup (the ordering of the layers and the layer spacing) is an important factor in determining the EMC performance of a product. The following four factors are important with

More information

EMC filters. Mounting instructions. Date: January 2006

EMC filters. Mounting instructions. Date: January 2006 Date: January 2006 EPCOS AG 2006. Reproduction, publication and dissemination of this data sheet and the information contained therein without EPCOS prior express consent is prohibited. EMC cannot be assured

More information

QPI-AN1 GENERAL APPLICATION NOTE QPI FAMILY BUS SUPPLY QPI CONVERTER

QPI-AN1 GENERAL APPLICATION NOTE QPI FAMILY BUS SUPPLY QPI CONVERTER QPI-AN1 GENERAL APPLICATION NOTE QPI FAMILY EMI control is a complex design task that is highly dependent on many design elements. Like passive filters, active filters for conducted noise require careful

More information

Categorized by the type of core on which inductors are wound:

Categorized by the type of core on which inductors are wound: Inductors Categorized by the type of core on which inductors are wound: air core and magnetic core. The magnetic core inductors can be subdivided depending on whether the core is open or closed. Equivalent

More information

Heat sink. Insulator. µp Package. Heatsink is shown with parasitic coupling.

Heat sink. Insulator. µp Package. Heatsink is shown with parasitic coupling. X2Y Heatsink EMI Reduction Solution Summary Many OEM s have EMI problems caused by fast switching gates of IC devices. For end products sold to consumers, products must meet FCC Class B regulations for

More information

EMC for Printed Circuit Boards

EMC for Printed Circuit Boards 9 Bracken View, Brocton Stafford, Staffs, UK tel: +44 (0)1785 660 247 fax +44 (0)1785 660 247 email: keith.armstrong@cherryclough.com web: www.cherryclough.com EMC for Printed Circuit Boards Basic and

More information

Electromagnetic Compatibility

Electromagnetic Compatibility Electromagnetic Compatibility Introduction to EMC International Standards Measurement Setups Emissions Applications for Switch-Mode Power Supplies Filters 1 What is EMC? A system is electromagnetic compatible

More information

Testing for EMC Compliance: Approaches and Techniques October 12, 2006

Testing for EMC Compliance: Approaches and Techniques October 12, 2006 : Approaches and Techniques October 12, 2006 Ed Nakauchi EMI/EMC/ESD/EMP Consultant Emulex Corporation 1 Outline Discuss EMC Basics & Physics Fault Isolation Techniques Tools & Techniques Correlation Analyzer

More information

High-Speed Circuit Board Signal Integrity

High-Speed Circuit Board Signal Integrity High-Speed Circuit Board Signal Integrity For a listing of recent titles in the Artech House Microwave Library, turn to the back of this book. High-Speed Circuit Board Signal Integrity Stephen C. Thierauf

More information

Common myths, fallacies and misconceptions in Electromagnetic Compatibility and their correction.

Common myths, fallacies and misconceptions in Electromagnetic Compatibility and their correction. Common myths, fallacies and misconceptions in Electromagnetic Compatibility and their correction. D. A. Weston EMC Consulting Inc 15-3-2013 1) First topic an introduction These are some of the commonly

More information

"Natural" Antennas. Mr. Robert Marcus, PE, NCE Dr. Bruce C. Gabrielson, NCE. Security Engineering Services, Inc. PO Box 550 Chesapeake Beach, MD 20732

Natural Antennas. Mr. Robert Marcus, PE, NCE Dr. Bruce C. Gabrielson, NCE. Security Engineering Services, Inc. PO Box 550 Chesapeake Beach, MD 20732 Published and presented: AFCEA TEMPEST Training Course, Burke, VA, 1992 Introduction "Natural" Antennas Mr. Robert Marcus, PE, NCE Dr. Bruce C. Gabrielson, NCE Security Engineering Services, Inc. PO Box

More information

Overview of the ATLAS Electromagnetic Compatibility Policy

Overview of the ATLAS Electromagnetic Compatibility Policy Overview of the ATLAS Electromagnetic Compatibility Policy G. Blanchot CERN, CH-1211 Geneva 23, Switzerland Georges.Blanchot@cern.ch Abstract The electromagnetic compatibility of ATLAS electronic equipments

More information

EMI. Chris Herrick. Applications Engineer

EMI. Chris Herrick. Applications Engineer Fundamentals of EMI Chris Herrick Ansoft Applications Engineer Three Basic Elements of EMC Conduction Coupling process EMI source Emission Space & Field Conductive Capacitive Inductive Radiative Low, Middle

More information

z48831 / z :1/ 16:1 6 GHz Multiplexer Module

z48831 / z :1/ 16:1 6 GHz Multiplexer Module TECHNICAL SPECIFICATIONS z48831 / z48832 8:1/ 16:1 6 GHz Multiplexer Module 2017 LitePoint, A Teradyne Company. All rights reserved. Port Descriptions Front Panel Label Type Description 1-16 SMA RF1 to

More information

Application Note # 5438

Application Note # 5438 Application Note # 5438 Electrical Noise in Motion Control Circuits 1. Origins of Electrical Noise Electrical noise appears in an electrical circuit through one of four routes: a. Impedance (Ground Loop)

More information

Top Ten EMC Problems & EMC Troubleshooting Techniques by Kenneth Wyatt, DVD, Colorado Springs Rev. 1, Feb 26, 2007

Top Ten EMC Problems & EMC Troubleshooting Techniques by Kenneth Wyatt, DVD, Colorado Springs Rev. 1, Feb 26, 2007 EMC Engineering Top Ten EMC Problems & EMC Troubleshooting Techniques by Kenneth Wyatt, DVD, Colorado Springs Rev. 1, Feb 26, 2007 1a. Ground Impedance The overwhelming majority of high-frequency problems,

More information

Table of Contents. 1 Introduction. 2 System-Level Electrostatic Discharge (ESD) and Electrical Fast Transient (EFT) 3 Electromagnetic Interference

Table of Contents. 1 Introduction. 2 System-Level Electrostatic Discharge (ESD) and Electrical Fast Transient (EFT) 3 Electromagnetic Interference Electromagnetic Compatibility and Electrical Safety GR-1089-CORE Table of Contents Table of Contents 1 Introduction 1.1 Purpose and Scope.................................. 1 1 1.2 Items Not Covered in

More information

1) The diagrams in the section Assembly notes were provided by Rittal GmbH Co. KG, Herborn and by Invensys Systems GmbH EUROTHERM, Limburg/ Lahn.

1) The diagrams in the section Assembly notes were provided by Rittal GmbH Co. KG, Herborn and by Invensys Systems GmbH EUROTHERM, Limburg/ Lahn. EMC cannot be achieved by the use of EMC filters alone. It must be considered as an integrated system and requires careful planning and preparations. Measures such as shielded motor leads, grounding and

More information

Design for EMI & ESD compliance DESIGN FOR EMI & ESD COMPLIANCE

Design for EMI & ESD compliance DESIGN FOR EMI & ESD COMPLIANCE DESIGN FOR EMI & ESD COMPLIANCE All of we know the causes & impacts of EMI & ESD on our boards & also on our final product. In this article, we will discuss some useful design procedures that can be followed

More information

2620 Modular Measurement and Control System

2620 Modular Measurement and Control System European Union (EU) Council Directive 89/336/EEC Electromagnetic Compatibility (EMC) Test Report 2620 Modular Measurement and Control System Sensoray March 31, 2006 April 4, 2006 Tests Conducted by: ElectroMagnetic

More information

TRANSMISSION LINES IN DIGITAL AND ANALOG ELECTRONIC SYSTEMS

TRANSMISSION LINES IN DIGITAL AND ANALOG ELECTRONIC SYSTEMS TRANSMISSION LINES IN DIGITAL AND ANALOG ELECTRONIC SYSTEMS TRANSMISSION LINES IN DIGITAL AND ANALOG ELECTRONIC SYSTEMS Signal Integrity and Crosstalk CLAYTON R. PAUL Department of Electrical and Computer

More information

FUNDAMENTALS OF SIGNALS AND SYSTEMS

FUNDAMENTALS OF SIGNALS AND SYSTEMS FUNDAMENTALS OF SIGNALS AND SYSTEMS LIMITED WARRANTY AND DISCLAIMER OF LIABILITY THE CD-ROM THAT ACCOMPANIES THE BOOK MAY BE USED ON A SINGLE PC ONLY. THE LICENSE DOES NOT PERMIT THE USE ON A NETWORK (OF

More information

TIWI-R2 AND TIWI-BLE. Antenna Design Guide. Last updated February 10, The information in this document is subject to change without notice.

TIWI-R2 AND TIWI-BLE. Antenna Design Guide. Last updated February 10, The information in this document is subject to change without notice. Antenna Design Guide Last updated February 10, 2016 330-0105-R2.2 Copyright 2010-2014 LSR Page 1 of 31 Table of Contents 1 Introduction... 3 1.1 Purpose & Scope... 3 1.2 Applicable Documents... 3 1.3 Revision

More information

Electro-Magnetic Interference and Electro-Magnetic Compatibility (EMI/EMC)

Electro-Magnetic Interference and Electro-Magnetic Compatibility (EMI/EMC) INTROUCTION Manufacturers of electrical and electronic equipment regularly submit their products for EMI/EMC testing to ensure regulations on electromagnetic compatibility are met. Inevitably, some equipment

More information

FlexRay Communications System. Physical Layer Common mode Choke EMC Evaluation Specification. Version 2.1

FlexRay Communications System. Physical Layer Common mode Choke EMC Evaluation Specification. Version 2.1 FlexRay Communications System Physical Layer Common mode Choke EMC Evaluation Specification Version 2.1 Disclaimer DISCLAIMER This specification as released by the FlexRay Consortium is intended for the

More information

Output Filtering & Electromagnetic Noise Reduction

Output Filtering & Electromagnetic Noise Reduction Output Filtering & Electromagnetic Noise Reduction Application Note Assignment 14 November 2014 Stanley Karas Abstract The motivation of this application note is to both review what is meant by electromagnetic

More information

ADVANCED MODELING IN COMPUTATIONAL ELECTROMAGNETIC COMPATIBILITY

ADVANCED MODELING IN COMPUTATIONAL ELECTROMAGNETIC COMPATIBILITY ADVANCED MODELING IN COMPUTATIONAL ELECTROMAGNETIC COMPATIBILITY DRAGAN POLJAK, PhD Department of Electronics University of Split, Croatia BICENTENNIAL 1 8 O 7 WILEY 2 O O 7 ICENTENNIAL WILEY-INTERSCIENCE

More information

ANTENNAS FROM THEORY TO PRACTICE WILEY. Yi Huang University of Liverpool, UK. Kevin Boyle NXP Semiconductors, UK

ANTENNAS FROM THEORY TO PRACTICE WILEY. Yi Huang University of Liverpool, UK. Kevin Boyle NXP Semiconductors, UK ANTENNAS FROM THEORY TO PRACTICE Yi Huang University of Liverpool, UK Kevin Boyle NXP Semiconductors, UK WILEY A John Wiley and Sons, Ltd, Publication Contents Preface Acronyms and Constants xi xiii 1

More information

Internal Model of X2Y Chip Technology

Internal Model of X2Y Chip Technology Internal Model of X2Y Chip Technology Summary At high frequencies, traditional discrete components are significantly limited in performance by their parasitics, which are inherent in the design. For example,

More information

MPC5606E: Design for Performance and Electromagnetic Compatibility

MPC5606E: Design for Performance and Electromagnetic Compatibility Freescale Semiconductor, Inc. Document Number: AN5100 Application Note MPC5606E: Design for Performance and Electromagnetic Compatibility by: Tomas Kulig 1. Introduction This document provides information

More information

Debugging EMI Using a Digital Oscilloscope. Dave Rishavy Product Manager - Oscilloscopes

Debugging EMI Using a Digital Oscilloscope. Dave Rishavy Product Manager - Oscilloscopes Debugging EMI Using a Digital Oscilloscope Dave Rishavy Product Manager - Oscilloscopes 06/2009 Nov 2010 Fundamentals Scope Seminar of DSOs Signal Fidelity 1 1 1 Debugging EMI Using a Digital Oscilloscope

More information

TN ADC design guidelines. Document information

TN ADC design guidelines. Document information Rev. 1 8 May 2014 Technical note Document information Info Content Keywords Abstract This technical note provides common best practices for board layout required when Analog circuits (which are sensitive

More information

Comparison of IC Conducted Emission Measurement Methods

Comparison of IC Conducted Emission Measurement Methods IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 52, NO. 3, JUNE 2003 839 Comparison of IC Conducted Emission Measurement Methods Franco Fiori, Member, IEEE, and Francesco Musolino, Member, IEEE

More information

Analogue circuit design for RF immunity

Analogue circuit design for RF immunity Analogue circuit design for RF immunity By EurIng Keith Armstrong, C.Eng, FIET, SMIEEE, www.cherryclough.com First published in The EMC Journal, Issue 84, September 2009, pp 28-32, www.theemcjournal.com

More information

Introductory Electronics for Scientists and Engineers

Introductory Electronics for Scientists and Engineers Introductory Electronics for Scientists and Engineers Second Edition ROBERT E. SIMPSON University of New Hampshire Allyn and Bacon, Inc. Boston London Sydney Toronto Contents Preface xiü 1 Direct Current

More information

EMI AND BEL MAGNETIC ICM

EMI AND BEL MAGNETIC ICM EMI AND BEL MAGNETIC ICM ABSTRACT Electromagnetic interference (EMI) in a local area network (LAN) system is a common problem that every LAN system designer faces, and it is a growing problem because the

More information

Preface... xv Acknowledgments... xix. Chapter 1 An Overview of Vacuum Tube Audio Applications... 1

Preface... xv Acknowledgments... xix. Chapter 1 An Overview of Vacuum Tube Audio Applications... 1 Contents Preface... xv Acknowledgments... xix Chapter 1 An Overview of Vacuum Tube Audio Applications... 1 The Evolution of Analog Audio... 1 Technology Waves... 3 Tube vs. Solid State.................................................

More information

EMC Simulation of Consumer Electronic Devices

EMC Simulation of Consumer Electronic Devices of Consumer Electronic Devices By Andreas Barchanski Describing a workflow for the EMC simulation of a wireless router, using techniques that can be applied to a wide range of consumer electronic devices.

More information

EMC Data Sheet CSD100 Model size 4 to 6. Variable Speed AC drive for permanent magnet motors

EMC Data Sheet CSD100 Model size 4 to 6. Variable Speed AC drive for permanent magnet motors EMC Data Sheet CSD100 Model size 4 to 6 Variable Speed AC drive for permanent magnet motors Safety Warnings A Warning contains information which is essential for avoiding a safety hazard. A Caution contains

More information

ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1. Chapter 8: Cable Modeling

ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1. Chapter 8: Cable Modeling ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1 Chapter 8: Cable Modeling Related to the topic in section 8.14, sometimes when an RF transmitter is connected to an unbalanced antenna fed against earth ground

More information

Class-D Audio Power Amplifiers: PCB Layout For Audio Quality, EMC & Thermal Success (Home Entertainment Devices)

Class-D Audio Power Amplifiers: PCB Layout For Audio Quality, EMC & Thermal Success (Home Entertainment Devices) Class-D Audio Power Amplifiers: PCB Layout For Audio Quality, EMC & Thermal Success (Home Entertainment Devices) Stephen Crump http://e2e.ti.com Audio Power Amplifier Applications Audio and Imaging Products

More information

Electromagnetic Interference Mitigation

Electromagnetic Interference Mitigation Electromagnetic Interference Mitigation Picture or Drawing 20.7 x 8.6 cm Frits J.K. Buesink, Senior Researcher EMC frits.buesink@utwente.nl Funded by the European Union on the basis of Decision No 912/2009/EC,

More information

Understanding Noise Cut Transformers

Understanding Noise Cut Transformers 2014 Understanding Noise Cut Transformers By Quality Transformer and Electronics James Nealon Understanding Noise Cut Transformers By Quality Transformer and Electronics Engineering and Sales Staff Quality

More information

Chapter 3 G rounding Grounding Electromagnetic Compatibility Compatibility Engineering by Henry W Ott.

Chapter 3 G rounding Grounding Electromagnetic Compatibility Compatibility Engineering by Henry W Ott. Chapter 3 Grounding Electromagnetic Compatibility Engineering by Henry W. Ott Introduction Grounding is one of the primary ways of minimizing unwanted noise and of producing a safe system. A good ground

More information

ANTENNA DESIGN GUIDE. Last updated March 8 th, The information in this document is subject to change without notice.

ANTENNA DESIGN GUIDE. Last updated March 8 th, The information in this document is subject to change without notice. Last updated March 8 th, 2012 330-0092-R2.0 Copyright 2012 LS Research, LLC Page 1 of 22 Table of Contents 1 Introduction... 3 1.1 Purpose & Scope... 3 1.2 Applicable Documents... 3 1.3 Revision History...

More information

THE JOHN DEERE WAY. Performance That Endures. David Magee. John Wiley & Sons, Inc.

THE JOHN DEERE WAY. Performance That Endures. David Magee. John Wiley & Sons, Inc. THE JOHN DEERE WAY Performance That Endures David Magee John Wiley & Sons, Inc. THE JOHN DEERE WAY THE JOHN DEERE WAY Performance That Endures David Magee John Wiley & Sons, Inc. Copyright 2005 by David

More information

FUNDAMENTALS OF EMC. Candace Suriano John Suriano

FUNDAMENTALS OF EMC. Candace Suriano John Suriano FUNDAMENTALS OF EMC Candace Suriano John Suriano Special Thanks to our Sponsor Helpful books on EMC Helpful books on Signals Much of our material can be found in these articles Articles: Candace Suriano,

More information

z47524 PXI Quad SPDT RF Changeover Switch Module

z47524 PXI Quad SPDT RF Changeover Switch Module TECHNICAL SPECIFICATIONS z47524 PXI Quad SPDT RF Changeover Switch Module 2017 LitePoint, A Teradyne Company. All rights reserved. Overview The z47524 PXI RF switching module has a bank of four individual

More information

John Vance Fouad Zeidan Brian Murphy

John Vance Fouad Zeidan Brian Murphy machinery vibration and rotordynamics John Vance Fouad Zeidan Brian Murphy MACHINERY VIBRATION AND ROTORDYNAMICS MACHINERY VIBRATION AND ROTORDYNAMICS John Vance, Fouad Zeidan, Brian Murphy JOHN WILEY

More information

Electromagnetic Compatibility ( EMC )

Electromagnetic Compatibility ( EMC ) Electromagnetic Compatibility ( EMC ) Introduction EMC Testing 1-2 -1 Agenda System Radiated Interference Test System Conducted Interference Test 1-2 -2 System Radiated Interference Test Open-Area Test

More information

Antenna Design Guide

Antenna Design Guide Antenna Design Guide Last updated February 11, 2016 330-0093-R1.3 Copyright 2012-2016 LSR Page 1 of 23 Table of Contents 1 Introduction... 3 1.1 Purpose & Scope... 3 1.2 Applicable Documents... 3 1.3 Revision

More information

MINIMIZING EMI EFFECTS DURING PCB LAYOUT OF Z8/Z8PLUS CIRCUITS

MINIMIZING EMI EFFECTS DURING PCB LAYOUT OF Z8/Z8PLUS CIRCUITS APPLICATION NOTE MINIMIZING EMI EFFECTS DURING PCB LAYOUT OF Z8/Z8PLUS CIRCUITS INTRODUCTION The Z8/Z8Plus families have redefined ease-of-use by being the simplest 8-bit microcontrollers to program. Combined

More information

CHAPTER 6 EMI EMC MEASUREMENTS AND STANDARDS FOR TRACKED VEHICLES (MIL APPLICATION)

CHAPTER 6 EMI EMC MEASUREMENTS AND STANDARDS FOR TRACKED VEHICLES (MIL APPLICATION) 147 CHAPTER 6 EMI EMC MEASUREMENTS AND STANDARDS FOR TRACKED VEHICLES (MIL APPLICATION) 6.1 INTRODUCTION The electrical and electronic devices, circuits and systems are capable of emitting the electromagnetic

More information

ELECTRICAL FILTERS. (Command Control Communications Computer & Intelligence) E 3 LINE FILTERS EMI LEMP NEMP HEMP TEMPEST

ELECTRICAL FILTERS. (Command Control Communications Computer & Intelligence) E 3 LINE FILTERS EMI LEMP NEMP HEMP TEMPEST ELECTRICAL FILTERS INTEGRATED PROTECTION OF C 4 I EQUIPMENT & FACILITIES (Command Control Communications Computer & Intelligence) E 3 LINE FILTERS EMI LEMP NEMP HEMP TEMPEST Electromagnetic Environmental

More information

ANTENNA DESIGN GUIDE. Last updated February 11, The information in this document is subject to change without notice.

ANTENNA DESIGN GUIDE. Last updated February 11, The information in this document is subject to change without notice. TIWI-UB2 Last updated February 11, 2016 330-0106-R1.2 Copyright 2012-2016 LSR Page 1 of 21 Table of Contents 1 Introduction... 3 1.1 Purpose & Scope... 3 1.2 Applicable Documents... 3 1.3 Revision History...

More information

Douglas J. Cumming The Robert W. Kolb Series in Finance John Wiley & Sons, Inc.

Douglas J. Cumming The Robert W. Kolb Series in Finance John Wiley & Sons, Inc. VENTURE CAPITAL The Robert W. Kolb Series in Finance provides a comprehensive view of the field of finance in all of its variety and complexity. The series is projected to include approximately 65 volumes

More information

AC Motor Drives EMC Standard Installation Guide EMC Compliance Practice

AC Motor Drives EMC Standard Installation Guide EMC Compliance Practice http://www.delta.com.tw/industrialautomation/ AC Motor Drives EMC Standard Installation Guide EMC Compliance Practice i Preface When an AC motor drive is installed in a noisy environment, radiated and/or

More information

2. Design Recommendations when Using EZRadioPRO RF ICs

2. Design Recommendations when Using EZRadioPRO RF ICs EZRADIOPRO LAYOUT DESIGN GUIDE 1. Introduction The purpose of this application note is to help users design EZRadioPRO PCBs using design practices that allow for good RF performance. This application note

More information

EMC Test Report. Report Number: M030826

EMC Test Report. Report Number: M030826 Page 1 of 36 EMC Technologies Pty Ltd ABN 82 057 105 549 57 Assembly Drive Tullamarine Victoria Australia 3043 Ph: + 613 9335 3333 Fax: + 613 9338 9260 email: melb@emctech.com.au EMC Test Report Report

More information

Intellectual Capital in Enterprise Success

Intellectual Capital in Enterprise Success Intellectual Capital in Enterprise Success Strategy Revisited Dr. Lindsay Moore and Lesley Craig, Esq. John Wiley & Sons, Inc. Additional praise for Strategic Intellectual Capital Lesley Craig and Lindsay

More information

Microwave Circuit Analysis and Amplifier Design

Microwave Circuit Analysis and Amplifier Design Microwave Circuit Analysis and Amplifier Design SAMUEL Y. LIAO Professor of Electrical Engineering California State University, Fresno PRENTICE-HALL, INC., Englewood Cliffs, New Jersey 07632 Contents PREFACE

More information

EMC review for Belle II (Grounding & shielding plans) PXD DEPFET system

EMC review for Belle II (Grounding & shielding plans) PXD DEPFET system EMC review for Belle II (Grounding & shielding plans) PXD DEPFET system Outline 1. Introduction 2. Grounding strategy Implementation aspects 3. Noise emission issues Test plans 4. Noise immunity issues

More information

Reducing Motor Drive Radiated Emissions

Reducing Motor Drive Radiated Emissions Volume 2, Number 2, April, 1996 Application Note 107 Donald E. Fulton Reducing Motor Drive Radiated Emissions Introduction This application note discusses radiated emissions (30 Mhz+) of motor drives and

More information

EMC TEST REPORT For MPP SOLAR INC Inverter/ Charger Model Number : PIP 4048HS

EMC TEST REPORT For MPP SOLAR INC Inverter/ Charger Model Number : PIP 4048HS EMC-E20130903E EMC TEST REPORT For MPP SOLAR INC Inverter/ Charger Model Number : PIP 4048HS Prepared for : MPP SOLAR INC Address : 4F, NO. 50-1, SECTION 1, HSIN-SHENG S. RD. TAIPEI, TAIWAN Prepared by

More information