Debugging EMI Using a Digital Oscilloscope. Dave Rishavy Product Manager - Oscilloscopes

Size: px
Start display at page:

Download "Debugging EMI Using a Digital Oscilloscope. Dave Rishavy Product Manager - Oscilloscopes"

Transcription

1 Debugging EMI Using a Digital Oscilloscope Dave Rishavy Product Manager - Oscilloscopes 06/2009 Nov 2010 Fundamentals Scope Seminar of DSOs Signal Fidelity 1 1 1

2 Debugging EMI Using a Digital Oscilloscope l l l l l Background radiated emissions Basics of near field probing Frequency domain analysis using an oscilloscope l FFT computation l Dynamic range and sensitivity l Time gating l Frequency domain triggering EMI debugging process Measurement example 2

3 Background radiated emissions

4 Basic Principles: Radiated Emissions The following conditions must exist ı An Interference source A sufficiently high enough disturbance level in a frequency range that is relevant for RF emissions ı A Coupling mechanism transmits disturbance signals from the interference source to the emitting element ı An Emitting element (Antenna) capable of radiating the energy produced by the source into the far field 4

5 Basic Principles: Radiated Emissions The following conditions must exist ı An Interference source A sufficiently high enough disturbance level in a frequency range that is relevant for RF emissions ı A Coupling mechanism transmits disturbance signals from the interference source to the emitting element ı An Emitting element (Antenna) capable of radiating the energy produced by the source into the far field 5

6 Interference sources ı Fast switching signals within digital circuits Single-ended (asymmetrical) data signals Switched mode power supplies - harmonics Differential data signals with significant common mode component ı High-order harmonics decrease at 20 to 40 db/decade ı Structures on the PC board can begin to resonate at harmonic frequency 6

7 Inference Sources: Differential Mode RF Emissions ı Emission results when signal and return are not routed together ı Near field probe can detect this by positioning within the loop position of probe is critical 7

8 General steps to help reduce Differential Mode RF emissions ı Reduction of the loop area (i.e. closer routing of the forward and return conductors) ı Reduction of the current in the conductor loop (if possible without impacting the circuit operation.) ı Reduce the rise/fall times for the transmitted data signals ı Use filtering to eliminate higher-frequency signal components (limit the disturbance spectrum.) 8

9 Inference Sources: Common Mode RF Emissions ı Common problem in multilayer PC boards ı Caused by parasitic inductance in return path or asymmetrical transmission ı External cable acts as an antenna ı Rule of thumb for line length as an antenna: λ/10 not critical λ/6 critical 9

10 Common Mode RF Emissions Best Possible Differential mode transmission Undesired parasitic capacitance in return path Unbalanced parasitic terminating impedances 10

11 General steps to help reduce common-mode RF emissions ı Reduce the RFI current I CM by optimizing the layout, reducing the ground plane impedances or rearranging components ı Reduce higher-frequency signal components through filtering or by reducing the rise and fall times of digital signals ı Use shielding (lines, enclosures, etc.) ı Optimize the signal integrity to reduce unwanted overshoots (ringing) 11

12 Basic Principles: Radiated Emissions The following conditions must exist ı An Interference source A sufficiently high enough disturbance level in a frequency range that is relevant for RF emissions ı A Coupling mechanism transmits disturbance signals from the interference source to the emitting element ı An Emitting element (Antenna) capable of radiating the energy produced by the source into the far field 12

13 Coupling Mechanisms ı Three coupling paths: Direct RF emissions from the source, e.g. from a trace or an individual component RF emissions via connected power supply, data or signal lines Conducted emission via connected power supply, data or signal lines ı Coupling Mechanisms Coupling via a common impedance Electric field coupling parasitic capacitance between source and antenna Magnetic field coupling parasitic inductance between source and antenna Electromagnetic coupling far field coupling (greater than 1 wavelength) 13

14 Basic Principles: Radiated Emissions The following conditions must exist ı An Interference source A sufficiently high enough disturbance level in a frequency range that is relevant for RF emissions ı A Coupling mechanism transmits disturbance signals from the interference source to the emitting element ı An Emitting element (Antenna) capable of radiating the energy produced by the source into the far field 14

15 Emitting Elements (Antennas) ı Unintentional antennas in electronic equipment Connected lines (power supply, data/signal/control lines) Printed circuit board tracks and planes Internal cables between system components Components and heat sinks Slots and openings in enclosures ı Main factor is the length of the antenna with respect to the wavelength of the interference. Rule of thumb antennas with length less than λ/10 are not critical 15

16 Basics of near field probing

17 Near Field Definition Distance from DUT r Wave impedance E field H field Near field Transition Far field r = 1.6m for f > 30 MHz ı Sources with Low Voltage, but high current predominantly generate magnetic fields (e.g. terminated high speed signals) ı Sources with High Voltage, but low current predominantly generate electrical fields (e.g. unterminated signals) 17

18 EMI Debugging Example Oscilloscope and accessories R&S RTO R&S RTE Current clamp R&S EZ-17 Nearfield probes R&S HZ-15 E- and H-field 30 MHz 1 GHz Applicable from 100 khz Optional: R&S HZ-16 preamplifier 18

19 Magnetic and Electrical Near-Field Probes ı Basically the probes are antennas that pickup the magnetic & electric field variation ı The output Depends on the position & orientation of the probe 19

20 H-Field Probe H field Vo Current flow ı Maximum response with probe parallel with current and closest to the current carrying conductor ı Traces with relatively high current, terminated wires and cables 20

21 E-Field Probe Vo E field Current flow ı Maximum response with probe perpendicular with current and closest to the current carrying conductor ı Traces with relatively high voltage: unterminated Cables, PCB traces to high impedance logic (tri-state outputs of logic IC s) 21

22 Frequency domain analysis using an oscilloscope

23 Using an Oscilloscope for EMI Debugging ı Benefits Wide instantaneous frequency coverage Overlapping FFT computation with color grading Gates FFT analysis for correlated time-frequency analysis Frequency masks for triggering on intermittent events Deep memory for capture of long signal sequences ı Limitations Dynamic range No preselection No standard-compliant detectors (i.e CISPR) 23

24 Important Scope-Parameters for EMI Debugging Parameter Record length Sample rate Coupling Vertical sensitivity Color table & persistence FFT Span / RBW Signal zoom & FFT gating Description Ensure that you capture enough >2x max frequency, start with 2.5 GS/s for 0 1 GHz frequency range 50 Ω for near-field probes (important for bandwidth) 1 5 mv/div is usually a good setting across full BW Easily detect and distinguish CW signals and burst Easy to use familiar interface, Lively Update Easily isolate spurious spectral components in time domain 24

25 Frequency Domain Analysis FFT Basics FFT t s f FFT Integration time t int N FFT samples input for FFT Total bandwidth f s N FFT filter output of FFT ı N FFT ı f FFT ı t int ı f s Number of consecutive samples (acquired in time domain), power of 2 (e.g. 1024) Frequency resolution (RBW) = integration time FFT t sample rate f 1 = int f N s FFT 25

26 FFT as Basis for EMI Debugging with Oscilloscopes Conventional FFT Implementation on a Scope Time Domain t = 1/F s F max = F s /2 Frequency Domain x(t) S(f) S(f) t Data acquisition Windowing FFT f 1 f 2 f Zoom (f 1 f 2 ) f 1 f 2 Display f Record length T f = 1/T 26

27 FFT on the Rohde and Schwarz RTE and RTO Spectrum Analyzer Use Model ı Use model: Frequency domain controls time domain Time domain parameters automatically changed as Time Domain x(t) Zoom happens here before the FFT 500 MHz center, 10 MHz span: Fs = 1 GS/s vs 20 MS/s F s =2Β Data acquisition t HW Zoom (DDC) NCO LP necessary ı Downconversion FFT (DDC) zooms into frequency range before FFT Largely reduced record length, much faster FFT Decimation Windowing FFT S(f) Β=f 2 -f 1 f 1 f 2 Display f Frequency Domain Record length T f = 1/T 27

28 Measurement Consideration Gated FFT in the RTE and RTO Practical Time-Frequency Analysis Gated FFT: 50% overlap (default setting) One complete Time-Domain capture The Key to unraveling the time domain 28

29 FFT Gating 29

30 Measurement Consideration: Sensitivity Ability to detect weak Signals EMI tends to be weak and near field probes have low gain, the oscilloscope needs to be able to detect small signals over its full bandwidth 1mV/div Low Noise and High Sensitivity at Full Bandwidth 30

31 Signal to Noise and ENOB Higher ENOB => lower quantization error and higher SNR => Better accuracy l Thermal noise is proportion to BW. l An FFT bin is captures a narrow BW proportional to 1/ N FFT l Noise is reduced in each bin by a factor of 10 log10 l The limit approaches sum of all non-random errors. (Measurement induced errors are still present) 1 N FFT f FFT 31

32 Measurement Consideration: Signal to Noise >80 db 32

33 Measurement Consideration: Limit Lines ı Mask Tool Upper for limit line usage Mask definition in units of FFT Upper region mask acting as limit line Stop-on mask violation setting is very useful! ı 6 db EMI filter? Not critical for precompliance, will change results only slightly. 33

34 Measurement Consideration: Frequency Mask Triggering 34

35 EMI debugging process

36 The Problem: isolating sources of EMI ı EMI compliance is tested in the RF far field Compliance is based on specific allowable power levels as a function of frequency using a specific antenna, resolution bandwidth and distance from the DUT No localization of specific emitters within the DUT ı What happens when compliance fails? Need to locate where the offending emitter is within the DUT Local probing in the near field (close to the DUT) can help physically locate the problem Remediate using shielding or by reducing the EM radiation ı How do we find the source? Frequency domain measurement Time/frequency domain measurement Localizing in space 36

37 EMI Debugging Procedure Analysis steps EMI compliant testing / Test lab EMI Debugging / R&D A) Far-field measurement C) Reference measurement without DUT B) Know your DUT : List of potential interferer sources Source Clock frequency Ethernet PHY Voltage converter / power adapter Frequency e.g. 25 MHz + Multiples e.g. 125 MHz + Multiples broadband D) Interferer current measurement to find out the coupling type E) Nearfield probe to localize the interferer source F) Analysis of counter-measures 37

38 Observe the Spectrum While Scanning With a NearField Probe I) General Approach ı Wide Span scan fundamental of interfering signals are usually lower than 1GHz, a span of <1GHz is sufficient as a start 38

39 Observe the Spectrum While Scanning With a NearField Probe I) General Approach ı Wide Span scan fundamental of interfering signals are usually lower than 1GHz, a span of <1GHz is sufficient as a start ı Identify abnormal spurious or behavior and its location while moving the probe around 39

40 Observe the Spectrum While Scanning With a NearField Probe I) General Approach ı Wide Span scan fundamental of interfering signals are usually lower than 1GHz, a span of <1GHz is sufficient as a start ı Identify abnormal spike or behavior and its location while moving the probe around ı Narrow down to smaller span and RBW, change to smaller probe for better analysis 40

41 Measurement Example

42 Measurement Example IP Phone 42

43 Example: IP-phone Situation ı IP-phone components Complex processor unit DDR2 memory Ethernet Layer 2 Switch 2 x Gigabit Ethernet PHYs Several DC/DC Converters SPI-Interface to keyboard module Analog circuits (loudspeaker, Microphone) ı Failed in EMI compliant test Frequency (MHz) Level (dbµv/m) Limit (dbµv/m) Margin (db) Height (cm) Azimuth (deg) HOR HOR HOR Polarization 43

44 Far Field Test Result 44

45 RFI Current Measurement 375 MHz Spur Peak detect separates intermittent interference 45

46 Example: IP-phone Current-probing on interface lines 250 MHz 375 MHz 200 MHz 425 MHz ı Additionally detected emissions on following frequencies: CW: 375 MHz Broadband: 250 MHz 46

47 Example: IP-phone Nearfield-probing for source localization Lokalisierung DC/DC-converter no. 2 No significant emission Nearfield spectrum in the area of the processor module; among others 375 MHz interferer 47

48 Correlating Time and Frequency Domains 48

49 Example: IP-phone Results ı Interferer signal detected on interface lines The interferer is probably transferred via common-mode coupling ı Interferer sources localized DC/DC converter no. 1 Processor module respectively LAN PHY interfaces ı Analysis of layout and implementation of counter measures. 49

50 Debugging EMI Using a Digital Oscilloscope Summary ı If we can measure something in the far field, it must have an electric and magnetic near field source. ı The conditions required for a radiated emission allow us insight to track down a source and mitigate potential interferers. ı EMI Debugging with an Oscilloscope enables correlation of interfering signals with time domain while maintaining very fast and lively update rate. ı The combination of synchronized time and frequency domain analysis with advanced triggers allows engineers to gain insight on EMI problems to isolate and converge the source and solution quickly. ı Please see this shortcut to our application note for additional information: 50

Rohde & Schwarz EMI/EMC debugging with modern oscilloscope. Ing. Leonardo Nanetti Rohde&Schwarz

Rohde & Schwarz EMI/EMC debugging with modern oscilloscope. Ing. Leonardo Nanetti Rohde&Schwarz Rohde & Schwarz EMI/EMC debugging with modern oscilloscope Ing. Leonardo Nanetti Rohde&Schwarz EMI debugging Agenda l The basics l l l l The idea of EMI debugging How is it done? Application example What

More information

Debugging EMI Using a Digital Oscilloscope

Debugging EMI Using a Digital Oscilloscope Debugging EMI Using a Digita Oscioscope 06/2009 Nov 2010 Fundamentas Scope Seminar of DSOs Signa Fideity 1 1 1 Debugging EMI Using a Digita Oscioscope Background radiated emissions Basics of near fied

More information

Essential Capabilities of EMI Receivers. Application Note

Essential Capabilities of EMI Receivers. Application Note Essential Capabilities of EMI Receivers Application Note Contents Introduction... 3 CISPR 16-1-1 Compliance... 3 MIL-STD-461 Compliance... 4 Important features not required by CISPR 16-1-1 or MIL-STD-461...

More information

From Digital to RF Debugging in the Time and Frequency Domain. Embedded Systems Conference 2015 May 6-7, 2015

From Digital to RF Debugging in the Time and Frequency Domain. Embedded Systems Conference 2015 May 6-7, 2015 From Digital to RF Debugging in the Time and Frequency Domain Embedded Systems Conference 2015 May 6-7, 2015 Agenda In this seminar we ll discuss ı The challenges of debugging mixed domain embedded systems

More information

Keysight Technologies Essential Capabilities of EMI Receivers. Application Note

Keysight Technologies Essential Capabilities of EMI Receivers. Application Note Keysight Technologies Essential Capabilities of EMI Receivers Application Note Contents Introduction... 3 CISPR 16-1-1 Compliance... 3 MIL-STD-461 Compliance... 4 Important features not required by CISPR

More information

Troubleshooting Common EMI Problems

Troubleshooting Common EMI Problems By William D. Kimmel, PE Kimmel Gerke Associates, Ltd. Learn best practices for troubleshooting common EMI problems in today's digital designs. Industry expert William Kimmel of Kimmel Gerke Associates

More information

Why/When I need a Spectrum Analyzer. Jan 12, 2017

Why/When I need a Spectrum Analyzer. Jan 12, 2017 Why/When I need a Jan 12, 2017 Common Questions What s the difference of Oscilloscope and Spectrum Analysis Almost all Oscilloscope has FFT for a spectrum view, why I need a spectrum analyzer? When shall

More information

An Introduction to EMC Testing (what can be done with scopes) Vincent Lascoste EMC Product Manager - RSF

An Introduction to EMC Testing (what can be done with scopes) Vincent Lascoste EMC Product Manager - RSF An Introduction to EMC Testing (what can be done with scopes) Vincent Lascoste EMC Product Manager - RSF Definition of ElectroMagnetic Compatibility (EMC) EMC is defined as: "The ability of devices and

More information

Multi-Signal, Multi-Format Analysis With Agilent VSA Software

Multi-Signal, Multi-Format Analysis With Agilent VSA Software Multi-Signal, Multi-Format Analysis With Agilent 89600 VSA Software Ken Voelker Agilent Technologies Inc. April 2012 1 April, 25 2012 Agenda Introduction: New Measurement Challenges Multi-Measurements

More information

10 Safety earthing/grounding does not help EMC at RF

10 Safety earthing/grounding does not help EMC at RF 1of 6 series Webinar #3 of 3, August 28, 2013 Grounding, Immunity, Overviews of Emissions and Immunity, and Crosstalk Contents of Webinar #3 Topics 1 through 9 were covered by the previous two webinars

More information

Understanding the Unintended Antenna Behavior of a Product

Understanding the Unintended Antenna Behavior of a Product Understanding the Unintended Antenna Behavior of a Product Colin E. Brench Southwest Research Institute Electromagnetic Compatibility Research and Testing colin.brench@swri.org Radiating System Source

More information

EMC Near-field Probes + Wideband Amplifier

EMC Near-field Probes + Wideband Amplifier 1 Introduction The H20, H10, H5 and E5 are magnetic field (H) and electric field (E) probes for radiated emissions EMC precompliance measurements. The probes are used in the near field of sources of electromagnetic

More information

Ileana-Diana Nicolae ICMET CRAIOVA UNIVERSITY OF CRAIOVA MAIN BUILDING FACULTY OF ELECTROTECHNICS

Ileana-Diana Nicolae ICMET CRAIOVA UNIVERSITY OF CRAIOVA MAIN BUILDING FACULTY OF ELECTROTECHNICS The Designing, Realization and Testing of a Network Filter used to Reduce Electromagnetic Disturbances and to Improve the EMI for Static Switching Equipment Petre-Marian Nicolae Ileana-Diana Nicolae George

More information

Guide Version Five techniques for fast, accurate power integrity measurements

Guide Version Five techniques for fast, accurate power integrity measurements Guide Version 01.00 Five techniques for fast, accurate power integrity measurements Rail voltages are getting smaller, and tolerances are decreasing. As a result, making accurate power rail measurements

More information

EMI Test Receivers: Past, Present and Future

EMI Test Receivers: Past, Present and Future EM Test Receivers: Past, Present and Future Andy Coombes EMC Product Manager Rohde & Schwarz UK Ltd 9 th November 2016 ntroduction ı Andy Coombes EMC Product Manager ı 20 years experience in the field

More information

Utilizzo del Time Domain per misure EMI

Utilizzo del Time Domain per misure EMI Utilizzo del Time Domain per misure EMI Roberto Sacchi Measurement Expert Manager - Europe 7 Giugno 2017 Compliance EMI receiver requirements (CISPR 16-1-1 ) range 9 khz - 18 GHz: A normal +/- 2 db absolute

More information

CHAPTER 6 EMI EMC MEASUREMENTS AND STANDARDS FOR TRACKED VEHICLES (MIL APPLICATION)

CHAPTER 6 EMI EMC MEASUREMENTS AND STANDARDS FOR TRACKED VEHICLES (MIL APPLICATION) 147 CHAPTER 6 EMI EMC MEASUREMENTS AND STANDARDS FOR TRACKED VEHICLES (MIL APPLICATION) 6.1 INTRODUCTION The electrical and electronic devices, circuits and systems are capable of emitting the electromagnetic

More information

A NEW COMMON-MODE VOLTAGE PROBE FOR PREDICTING EMI FROM UNSHIELDED DIFFERENTIAL-PAIR CABLES

A NEW COMMON-MODE VOLTAGE PROBE FOR PREDICTING EMI FROM UNSHIELDED DIFFERENTIAL-PAIR CABLES A NEW COMMON-MODE VOLTAGE PROBE FOR PREDICTING EMI FROM UNSHIELDED DIFFERENTIAL-PAIR CABLES Neven Pischl Bay Networks Division of Nortel Networks Santa Clara, CA npischl@nortelnetworks.com (408) 495 3261

More information

Techniques to reduce electromagnetic noise produced by wired electronic devices

Techniques to reduce electromagnetic noise produced by wired electronic devices Rok / Year: Svazek / Volume: Číslo / Number: Jazyk / Language 2016 18 5 EN Techniques to reduce electromagnetic noise produced by wired electronic devices - Tomáš Chvátal xchvat02@stud.feec.vutbr.cz Faculty

More information

Measurement of Digital Transmission Systems Operating under Section March 23, 2005

Measurement of Digital Transmission Systems Operating under Section March 23, 2005 Measurement of Digital Transmission Systems Operating under Section 15.247 March 23, 2005 Section 15.403(f) Digital Modulation Digital modulation is required for Digital Transmission Systems (DTS). Digital

More information

3250 Series Spectrum Analyzer

3250 Series Spectrum Analyzer The most important thing we build is trust ADVANCED ELECTRONIC SOLUTIONS AVIATION SERVICES COMMUNICATIONS AND CONNECTIVITY MISSION SYSTEMS 3250 Series Spectrum Analyzer > Agenda Introduction

More information

Chapter 12 Digital Circuit Radiation. Electromagnetic Compatibility Engineering. by Henry W. Ott

Chapter 12 Digital Circuit Radiation. Electromagnetic Compatibility Engineering. by Henry W. Ott Chapter 12 Digital Circuit Radiation Electromagnetic Compatibility Engineering by Henry W. Ott Forward Emission control should be treated as a design problem from the start, it should receive the necessary

More information

EMI 相容性測試 預相容性測試及量測法規

EMI 相容性測試 預相容性測試及量測法規 EMI 相容性測試 預相容性測試及量測法規 12/13/2016 太克科技 Laurance Yeh 葉志豪 chi-hao.yeh@tektronix.com Agenda EMI introduction EMI pre-compliance and debugging tools RSA306B demo MDO4000C demo lab 13 December 2016 Agenda EMI

More information

General purpose Signal generation and analysis. Well-equipped for field and lab the R&S Spectrum Rider

General purpose Signal generation and analysis. Well-equipped for field and lab the R&S Spectrum Rider General purpose Signal generation and analysis Well-equipped for field and lab the R&S Spectrum Rider 32 The new R&S Spectrum Rider makes spectrum analysis in the field and lab easier, faster and more

More information

EMC / FIELD STRENGTH Test receivers. Fast and straightforward: diagnostic and precompliance measurements with the R&S ESRP

EMC / FIELD STRENGTH Test receivers. Fast and straightforward: diagnostic and precompliance measurements with the R&S ESRP EMC / FIELD STRENGTH Test receivers Fast and straightforward: diagnostic and precompliance measurements with the R&S ESRP 54 Many of the requirements such as speed, functionality and ease of use imposed

More information

Effectively Using the EM 6992 Near Field Probe Kit to Troubleshoot EMI Issues

Effectively Using the EM 6992 Near Field Probe Kit to Troubleshoot EMI Issues Effectively Using the EM 6992 Near Field Probe Kit to Troubleshoot EMI Issues Introduction The EM 6992 Probe Kit includes three magnetic (H) field and two electric (E) field passive, near field probes

More information

Advanced Test Equipment Rentals ATEC (2832)

Advanced Test Equipment Rentals ATEC (2832) Established 1981 Advanced Test Equipment Rentals www.atecorp.com 800-404-ATEC (2832) R3000 EMI TEST RECEIVERS Fully IF digital EMI Receivers family for measurement of electromagnetic interference from

More information

Measurement Techniques

Measurement Techniques Measurement Techniques Primary measurement tool: Oscilloscope Other lab tools: Logic Analyser, Gain-Phase Analyser, Spectrum Analyser Visualisation of electrical signals in the time domain Visualisation

More information

Application Note # 5438

Application Note # 5438 Application Note # 5438 Electrical Noise in Motion Control Circuits 1. Origins of Electrical Noise Electrical noise appears in an electrical circuit through one of four routes: a. Impedance (Ground Loop)

More information

FFT 3010 EMI TEST RECEIVER

FFT 3010 EMI TEST RECEIVER FFT 3010 EMI TEST RECEIVER Fully FFT digital EMI Receiver for measurement of conducted electromagnetic interference from 9kHz to 30MHz Compact designed and manufactured compliant to CISPR 16 International

More information

7. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission

7. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission 7. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission 7.1 Test Setup Refer to the APPENDIX I. 7.2 Limit According to 15.247(d), in any 100 khz bandwidth outside the frequency band

More information

Using Frequency Diversity to Improve Measurement Speed Roger Dygert MI Technologies, 1125 Satellite Blvd., Suite 100 Suwanee, GA 30024

Using Frequency Diversity to Improve Measurement Speed Roger Dygert MI Technologies, 1125 Satellite Blvd., Suite 100 Suwanee, GA 30024 Using Frequency Diversity to Improve Measurement Speed Roger Dygert MI Technologies, 1125 Satellite Blvd., Suite 1 Suwanee, GA 324 ABSTRACT Conventional antenna measurement systems use a multiplexer or

More information

Understanding Probability of Intercept for Intermittent Signals

Understanding Probability of Intercept for Intermittent Signals 2013 Understanding Probability of Intercept for Intermittent Signals Richard Overdorf & Rob Bordow Agilent Technologies Agenda Use Cases and Signals Time domain vs. Frequency Domain Probability of Intercept

More information

VDE Testing and Certification Institute. Contents Directory

VDE Testing and Certification Institute. Contents Directory Contents Directory 1 Description of the sample (EUT)...3 1.1 General description...3 1.2 Technical Specifications...4 1.2.1 Transmitter...4 2 Summary of test results...8 2.1 Transmitter test results...8

More information

Development of a noval Switched Beam Antenna for Communications

Development of a noval Switched Beam Antenna for Communications Master Thesis Presentation Development of a noval Switched Beam Antenna for Communications By Ashraf Abuelhaija Supervised by Prof. Dr.-Ing. Klaus Solbach Institute of Microwave and RF Technology Department

More information

ELEC 0017: ELECTROMAGNETIC COMPATIBILITY LABORATORY SESSIONS

ELEC 0017: ELECTROMAGNETIC COMPATIBILITY LABORATORY SESSIONS Academic Year 2015-2016 ELEC 0017: ELECTROMAGNETIC COMPATIBILITY LABORATORY SESSIONS V. BEAUVOIS P. BEERTEN C. GEUZAINE 1 CONTENTS: EMC laboratory session 1: EMC tests of a commercial Christmas LED light

More information

Common myths, fallacies and misconceptions in Electromagnetic Compatibility and their correction.

Common myths, fallacies and misconceptions in Electromagnetic Compatibility and their correction. Common myths, fallacies and misconceptions in Electromagnetic Compatibility and their correction. D. A. Weston EMC Consulting Inc 22-3-2010 These are some of the commonly held beliefs about EMC which are

More information

Course Introduction Purpose Objectives Content Learning Time

Course Introduction Purpose Objectives Content Learning Time Course Introduction Purpose This course discusses techniques for analyzing and eliminating noise in microcontroller (MCU) and microprocessor (MPU) based embedded systems. Objectives Learn about a method

More information

Spectrum Analyzers 2680 Series Features & benefits

Spectrum Analyzers 2680 Series Features & benefits Data Sheet Features & benefits n Frequency range: 9 khz to 2.1 or 3.2 GHz n High Sensitivity -161 dbm/hz displayed average noise level (DANL) n Low phase noise of -98 dbc/hz @ 10 khz offset n Low level

More information

The Causes and Impact of EMI in Power Systems; Part 1. Chris Swartz

The Causes and Impact of EMI in Power Systems; Part 1. Chris Swartz The Causes and Impact of EMI in Power Systems; Part Chris Swartz Agenda Welcome and thank you for attending. Today I hope I can provide a overall better understanding of the origin of conducted EMI in

More information

Specification for Conducted Emission Test

Specification for Conducted Emission Test 1 of 10 1. EMI Receiver Frequency range 9kHz 7.0 GHz Measurement time per frequency 10 µs to 100 s time sweep, span = 0 Hz - 1 µs to 16000 s Sweep time in steps of 5 % frequency sweep, span 10 Hz - 2.5

More information

The Value of Pre-Selection in EMC Testing. Scott Niemiec Application Engineer

The Value of Pre-Selection in EMC Testing. Scott Niemiec Application Engineer The Value of Pre-Selection in EMC Testing Scott Niemiec Application Engineer Video Demonstrating Benefit of Pre-selection 400MHz -1GHz Sweep with RBW = 120kHz Yellow: w/ preselection Green: w/o pre-selection

More information

FUNDAMENTALS OF EMC. Candace Suriano John Suriano

FUNDAMENTALS OF EMC. Candace Suriano John Suriano FUNDAMENTALS OF EMC Candace Suriano John Suriano Special Thanks to our Sponsor Helpful books on EMC Helpful books on Signals Much of our material can be found in these articles Articles: Candace Suriano,

More information

Measurement of conducted EMI when using a switching power supply

Measurement of conducted EMI when using a switching power supply EMC/FIELD STRENGTH A new firmware module has been developed for the R&S ESPI (FIG 1) that further facilitates EMI emission Precompliance Test Receiver R&S ESPI Measurement of conducted EMI when using a

More information

Investigation of Electromagnetic Field Coupling from DC-DC Buck Converters to Automobile AM/FM Antennas

Investigation of Electromagnetic Field Coupling from DC-DC Buck Converters to Automobile AM/FM Antennas CST North American Automotive Workshop Investigation of Electromagnetic Field Coupling from DC-DC Buck Converters to Automobile AM/FM Antennas Patrick DeRoy, CST of America, Framingham, Massachusetts,

More information

Don t Let EMI/EMC Compliance Certification Slow You Down TUTORIAL

Don t Let EMI/EMC Compliance Certification Slow You Down TUTORIAL Don t Let EMI/EMC Compliance Certification Slow You Down TUTORIAL TUTORIAL Uncover Problems Early with Pre-compliance Testing EMI regulations are in place throughout the world to provide improved reliability

More information

EET 223 RF COMMUNICATIONS LABORATORY EXPERIMENTS

EET 223 RF COMMUNICATIONS LABORATORY EXPERIMENTS EET 223 RF COMMUNICATIONS LABORATORY EXPERIMENTS Experimental Goals A good technician needs to make accurate measurements, keep good records and know the proper usage and limitations of the instruments

More information

Verifying Simulation Results with Measurements. Scott Piper General Motors

Verifying Simulation Results with Measurements. Scott Piper General Motors Verifying Simulation Results with Measurements Scott Piper General Motors EM Simulation Software Can be easy to justify the purchase of software packages even costing tens of thousands of dollars Upper

More information

Electromagnetic Compliance: Troubleshooting with Near-Field and Current Probes October 20, 2017

Electromagnetic Compliance: Troubleshooting with Near-Field and Current Probes October 20, 2017 Electromagnetic Compliance: Troubleshooting with Near-Field and Current Probes October 20, 2017 Electromagnetic interference (EMI) can cause a host of problems, especially when developing a product or

More information

Understanding and Optimizing Electromagnetic Compatibility in Switchmode Power Supplies

Understanding and Optimizing Electromagnetic Compatibility in Switchmode Power Supplies Understanding and Optimizing Electromagnetic Compatibility in Switchmode Power Supplies 1 Definitions EMI = Electro Magnetic Interference EMC = Electro Magnetic Compatibility (No EMI) Three Components

More information

Chambers Accessories Equipment 1 Equipment 2 Amplifiers Antennas Emission

Chambers Accessories Equipment 1 Equipment 2 Amplifiers Antennas Emission Chambers Accessories Equipment 1 Equipment 2 Amplifiers Antennas Emission Core-6 EMI Receiver 9 khz 6 GHz Features: Frequency ranges: 9 khz 30 MHz and 30 MHz 6 GHz Fully compliant acc. to CISPR 16-1-1

More information

Electromagnetic Compatibility

Electromagnetic Compatibility Electromagnetic Compatibility Introduction to EMC International Standards Measurement Setups Emissions Applications for Switch-Mode Power Supplies Filters 1 What is EMC? A system is electromagnetic compatible

More information

RIGOL Presents: New Solutions for Affordable Pre- Compliance Testing

RIGOL Presents: New Solutions for Affordable Pre- Compliance Testing Product Demo RIGOL Presents: New Solutions for Affordable Pre- Compliance Testing Wednesday, April 27, 2016 2:20 pm - 2:35 pm EDT Chris Armstrong Chris Armstrong is the Director of Product Marketing &

More information

MITIGATING INTERFERENCE ON AN OUTDOOR RANGE

MITIGATING INTERFERENCE ON AN OUTDOOR RANGE MITIGATING INTERFERENCE ON AN OUTDOOR RANGE Roger Dygert MI Technologies Suwanee, GA 30024 rdygert@mi-technologies.com ABSTRACT Making measurements on an outdoor range can be challenging for many reasons,

More information

EMI Pre-Compliance Testing Solution

EMI Pre-Compliance Testing Solution 99 Washington Street Melrose, MA 02176 Phone 781-665-1400 Toll Free 1-800-517-8431 Visit us at www.testequipmentdepot.com EMI Pre-Compliance Testing Solution GW Instek introduces the latest and comprehensive

More information

Timing Considerations Using FFT-based Measuring Receivers for EMI Compliance Measurements

Timing Considerations Using FFT-based Measuring Receivers for EMI Compliance Measurements Timing Considerations Using FFT-based Measuring Receivers for EMI Compliance Measurements Jens Medler Rohde & Schwarz GmbH & Co. KG Abstract The use of FFT-based measuring receivers for EMI compliance

More information

RF Emissions Test Report To Determine Compliance With: FCC, Part 15 Rules and Regulations

RF Emissions Test Report To Determine Compliance With: FCC, Part 15 Rules and Regulations RF Emissions Test Report To Determine Compliance With: FCC, Part 15 Rules and Regulations Model numbers: HT130022 Rev. B. December 17, 2002 Manufacturer: HQ, Inc. 210 9th Steet Drive Palmetto, FL 34221

More information

AN IMPROVED MODEL FOR ESTIMATING RADIATED EMISSIONS FROM A PCB WITH ATTACHED CABLE

AN IMPROVED MODEL FOR ESTIMATING RADIATED EMISSIONS FROM A PCB WITH ATTACHED CABLE Progress In Electromagnetics Research M, Vol. 33, 17 29, 2013 AN IMPROVED MODEL FOR ESTIMATING RADIATED EMISSIONS FROM A PCB WITH ATTACHED CABLE Jia-Haw Goh, Boon-Kuan Chung *, Eng-Hock Lim, and Sheng-Chyan

More information

Signal and Noise Measurement Techniques Using Magnetic Field Probes

Signal and Noise Measurement Techniques Using Magnetic Field Probes Signal and Noise Measurement Techniques Using Magnetic Field Probes Abstract: Magnetic loops have long been used by EMC personnel to sniff out sources of emissions in circuits and equipment. Additional

More information

Electro-Magnetic Interference and Electro-Magnetic Compatibility (EMI/EMC)

Electro-Magnetic Interference and Electro-Magnetic Compatibility (EMI/EMC) INTROUCTION Manufacturers of electrical and electronic equipment regularly submit their products for EMI/EMC testing to ensure regulations on electromagnetic compatibility are met. Inevitably, some equipment

More information

ER55 EMI TEST RECEIVER Family of automatic test receivers for measurement of electromagnetic interference from 9kHz to 2.8GHz.

ER55 EMI TEST RECEIVER Family of automatic test receivers for measurement of electromagnetic interference from 9kHz to 2.8GHz. ER55 EMI TEST RECEIVER Family of automatic test receivers for measurement of electromagnetic interference from 9kHz to 2.8GHz. Compact designed and manufactured in compliance with CISPR 16-1-1 For Measurements

More information

9. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY

9. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY 9. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY 9.1. MEASUREMENT PROCEDURE (1). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator (2). Set the EUT Work on the top, the middle

More information

EXHIBIT 7: MEASUREMENT PROCEDURES Pursuant 47 CFR 2.947

EXHIBIT 7: MEASUREMENT PROCEDURES Pursuant 47 CFR 2.947 EXHIBIT 7: MEASUREMENT PROCEDURES Pursuant 47 CFR 2.947 7.1 RF Power -- Pursuant to 47 CFR 2.947(c) Method of Conducted Output Power Measurement: Adaptation of TIA/EIA-603-A clause 2.2.1 for Pulsed Measurements

More information

SiTime University Turbo Seminar Series

SiTime University Turbo Seminar Series SiTime University Turbo Seminar Series How to Measure Clock Jitter Part I Principle and Practice April 8-9, 2013 Agenda Jitter definitions and terminology Who cares about jitter How to measure clock jitter

More information

EMC Overview. What is EMC? Why is it Important? Case Studies. Examples of calculations used in EMC. EMC Overview 1

EMC Overview. What is EMC? Why is it Important? Case Studies. Examples of calculations used in EMC. EMC Overview 1 EMC Overview What is EMC? Why is it Important? Case Studies. Examples of calculations used in EMC. EMC Overview 1 What Is EMC? Electromagnetic Compatibility (EMC): The process of determining the interaction

More information

VLSI is scaling faster than number of interface pins

VLSI is scaling faster than number of interface pins High Speed Digital Signals Why Study High Speed Digital Signals Speeds of processors and signaling Doubled with last few years Already at 1-3 GHz microprocessors Early stages of terahertz Higher speeds

More information

150Hz to 1MHz magnetic field coupling to a typical shielded cable above a ground plane configuration

150Hz to 1MHz magnetic field coupling to a typical shielded cable above a ground plane configuration 150Hz to 1MHz magnetic field coupling to a typical shielded cable above a ground plane configuration D. A. Weston Lowfreqcablecoupling.doc 7-9-2005 The data and information contained within this report

More information

Debugging of Embedded IoT Systems

Debugging of Embedded IoT Systems Debugging of Embedded IoT Systems Jarno Tervo Key Account Manager 3-May-2017 The Triangle of 5G Use Cases embb the known playground ı Established ecosystem (operators, manufacturers, Massive IoT ı A diverse

More information

EMI. Chris Herrick. Applications Engineer

EMI. Chris Herrick. Applications Engineer Fundamentals of EMI Chris Herrick Ansoft Applications Engineer Three Basic Elements of EMC Conduction Coupling process EMI source Emission Space & Field Conductive Capacitive Inductive Radiative Low, Middle

More information

Getting the most out of your Measurements Workshop. Mike Schnecker

Getting the most out of your Measurements Workshop. Mike Schnecker Getting the most out of your Measurements Workshop Mike Schnecker Agenda Oscilloscope Basics Using a RTE1000 Series Oscilloscope. Probing Basics Passive probe compensation Ground lead effects Vertical

More information

High Speed Digital Design & Verification Seminar. Measurement fundamentals

High Speed Digital Design & Verification Seminar. Measurement fundamentals High Speed Digital Design & Verification Seminar Measurement fundamentals Agenda Sources of Jitter, how to measure and why Importance of Noise Select the right probes! Capture the eye diagram Why measure

More information

RF test report AU01+W02

RF test report AU01+W02 Customer: Kehlbergstrasse 109 8054 Graz Austria Tel.: +43 664 415 6260 RF test report 170186-AU01+W02 The test result refers exclusively to the tested model. This test report may not be copied or published

More information

Pulsed VNA Measurements:

Pulsed VNA Measurements: Pulsed VNA Measurements: The Need to Null! January 21, 2004 presented by: Loren Betts Copyright 2004 Agilent Technologies, Inc. Agenda Pulsed RF Devices Pulsed Signal Domains VNA Spectral Nulling Measurement

More information

TEST REPORT... 1 CONTENT...

TEST REPORT... 1 CONTENT... CONTENT TEST REPORT... 1 CONTENT... 2 1 TEST RESULTS SUMMARY... 3 2 EMF RESULTS CONCLUSION... 4 3 LABORATORY MEASUREMENTS... 5 4 EMI TEST... 6 4.1 DISTURBANCE VOLTAGE ON MAINS TERMINALS ( KHZ- MHZ)...

More information

Comparison of IC Conducted Emission Measurement Methods

Comparison of IC Conducted Emission Measurement Methods IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 52, NO. 3, JUNE 2003 839 Comparison of IC Conducted Emission Measurement Methods Franco Fiori, Member, IEEE, and Francesco Musolino, Member, IEEE

More information

EMC Training. Ing Angelo Cereser Mobile:

EMC Training. Ing Angelo Cereser Mobile: EMC Training Ing Angelo Cereser angelo.cereser@microlease.com Mobile: 335 57 88 293 Dott Mirko Bombelli mirko.bombelli@microlease.com Mobile: 335 12 36 792 Agenda Introduzione alle misure EMI Terminologia;

More information

Design for EMI & ESD compliance DESIGN FOR EMI & ESD COMPLIANCE

Design for EMI & ESD compliance DESIGN FOR EMI & ESD COMPLIANCE DESIGN FOR EMI & ESD COMPLIANCE All of we know the causes & impacts of EMI & ESD on our boards & also on our final product. In this article, we will discuss some useful design procedures that can be followed

More information

NEAR FIELD MEASURING MEASURING SET-UP. LANGER E M V - T e c h n i k

NEAR FIELD MEASURING MEASURING SET-UP. LANGER E M V - T e c h n i k MEASURING SET-UP NEAR FIELD MEASURING The measurement of near fields to 6 GHz directly on electronic modules aids in the reduction of disturbance emission. Near field probes measurement setup-0513pe 2

More information

1 Introduction. Webinar sponsored by: Cost-effective uses of close-field probing. Contents

1 Introduction. Webinar sponsored by: Cost-effective uses of close-field probing. Contents 1of 8 Close-field probing series Webinar #1 of 2, Cost-effective uses of close-field probing in every project stage: emissions, immunity and much more Webinar sponsored by: Keith Armstrong CEng, EurIng,

More information

RF Measurements You Didn't Know Your Oscilloscope Could Make

RF Measurements You Didn't Know Your Oscilloscope Could Make RF Measurements You Didn't Know Your Oscilloscope Could Make January 21, 2015 Brad Frieden Product Manager Keysight Technologies Agenda RF Measurements using an oscilloscope (30 min) When to use an Oscilloscope

More information

Testing for EMC Compliance: Approaches and Techniques October 12, 2006

Testing for EMC Compliance: Approaches and Techniques October 12, 2006 : Approaches and Techniques October 12, 2006 Ed Nakauchi EMI/EMC/ESD/EMP Consultant Emulex Corporation 1 Outline Discuss EMC Basics & Physics Fault Isolation Techniques Tools & Techniques Correlation Analyzer

More information

ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1. Chapter 8: Cable Modeling

ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1. Chapter 8: Cable Modeling ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1 Chapter 8: Cable Modeling Related to the topic in section 8.14, sometimes when an RF transmitter is connected to an unbalanced antenna fed against earth ground

More information

11 Myths of EMI/EMC ORBEL.COM. Exploring common misconceptions and clarifying them. MYTH #1: EMI/EMC is black magic.

11 Myths of EMI/EMC ORBEL.COM. Exploring common misconceptions and clarifying them. MYTH #1: EMI/EMC is black magic. 11 Myths of EMI/EMC Exploring common misconceptions and clarifying them By Ed Nakauchi, Technical Consultant, Orbel Corporation What is a myth? A myth is defined as a popular belief or tradition that has

More information

AC Wire Carrier Current Devices (Unintentional Radiators)

AC Wire Carrier Current Devices (Unintentional Radiators) Issue 3 July 2018 Spectrum Management and Telecommunications Interference-Causing Equipment Standard AC Wire Carrier Current Devices (Unintentional Radiators) Aussi disponible en français NMB-006 Preface

More information

FCC TEST REPORT. Table of Contents. Report no. ETLE , Page 2 of 21

FCC TEST REPORT. Table of Contents. Report no. ETLE , Page 2 of 21 Table of Contents FCC Measurement Report 1. Introduction 2. Product Information 3. Description of Tests 4. Test Condition 5. Test Results 5.1 Summary of Test Results 5.2 Conducted Emissions Measurement

More information

Overview of EMC Regulations and Testing. Prof. Tzong-Lin Wu Department of Electrical Engineering National Taiwan University

Overview of EMC Regulations and Testing. Prof. Tzong-Lin Wu Department of Electrical Engineering National Taiwan University Overview of EMC Regulations and Testing Prof. Tzong-Lin Wu Department of Electrical Engineering National Taiwan University What is EMC Electro-Magnetic Compatibility ( 電磁相容 ) EMC EMI (Interference) Conducted

More information

A statistical survey of common-mode noise

A statistical survey of common-mode noise A statistical survey of common-mode noise By Jerry Gaboian Characterization Engineer, High Performance Linear Department Introduction In today s high-tech world, one does not have to look very far to find

More information

Switched Mode Power Supply Measurements

Switched Mode Power Supply Measurements Power Analysis 1 Switched Mode Power Supply Measurements AC Input Power measurements Safe operating area Harmonics and compliance Efficiency Switching Transistor Losses Measurement challenges Transformer

More information

8 Hints for Better Spectrum Analysis. Application Note

8 Hints for Better Spectrum Analysis. Application Note 8 Hints for Better Spectrum Analysis Application Note 1286-1 The Spectrum Analyzer The spectrum analyzer, like an oscilloscope, is a basic tool used for observing signals. Where the oscilloscope provides

More information

RECOMMENDATION ITU-R F.1097 * (Question ITU-R 159/9)

RECOMMENDATION ITU-R F.1097 * (Question ITU-R 159/9) Rec. ITU-R F.1097 1 RECOMMENDATION ITU-R F.1097 * INTERFERENCE MITIGATION OPTIONS TO ENHANCE COMPATIBILITY BETWEEN RADAR SYSTEMS AND DIGITAL RADIO-RELAY SYSTEMS (Question ITU-R 159/9) Rec. ITU-R F.1097

More information

Chapter 5 Electromagnetic interference in flash lamp pumped laser systems

Chapter 5 Electromagnetic interference in flash lamp pumped laser systems Chapter 5 Electromagnetic interference in flash lamp pumped laser systems This chapter presents the analysis and measurements of radiated near and far fields, and conducted emissions due to interconnects

More information

RF Signal Generators. SG380 Series DC to 2 GHz, 4 GHz and 6 GHz analog signal generators. SG380 Series RF Signal Generators

RF Signal Generators. SG380 Series DC to 2 GHz, 4 GHz and 6 GHz analog signal generators. SG380 Series RF Signal Generators RF Signal Generators SG380 Series DC to 2 GHz, 4 GHz and 6 GHz analog signal generators SG380 Series RF Signal Generators DC to 2 GHz, 4 GHz or 6 GHz 1 µhz resolution AM, FM, ΦM, PM and sweeps OCXO timebase

More information

EMI -- T E S T R E P O R T

EMI -- T E S T R E P O R T Registration No. DAT-P-207/05 EMI -- T E S T R E P O R T - FCC Part 15B - Test Report No. : T32619-00-04HU 24. July 2008 Date of issue Type / Model Name : R-PO7470 Product Description : Handheld Reader

More information

Applications of 3D Electromagnetic Modeling in Magnetic Recording: ESD and Signal Integrity

Applications of 3D Electromagnetic Modeling in Magnetic Recording: ESD and Signal Integrity Applications of 3D Electromagnetic Modeling in Magnetic Recording: ESD and Signal Integrity CST NORTH AMERICAN USERS FORUM John Contreras 1 and Al Wallash 2 Hitachi Global Storage Technologies 1. San Jose

More information

2620 Modular Measurement and Control System

2620 Modular Measurement and Control System European Union (EU) Council Directive 89/336/EEC Electromagnetic Compatibility (EMC) Test Report 2620 Modular Measurement and Control System Sensoray March 31, 2006 April 4, 2006 Tests Conducted by: ElectroMagnetic

More information

8 Hints for Better Spectrum Analysis. Application Note

8 Hints for Better Spectrum Analysis. Application Note 8 Hints for Better Spectrum Analysis Application Note 1286-1 The Spectrum Analyzer The spectrum analyzer, like an oscilloscope, is a basic tool used for observing signals. Where the oscilloscope provides

More information

MAKING TRANSIENT ANTENNA MEASUREMENTS

MAKING TRANSIENT ANTENNA MEASUREMENTS MAKING TRANSIENT ANTENNA MEASUREMENTS Roger Dygert, Steven R. Nichols MI Technologies, 1125 Satellite Boulevard, Suite 100 Suwanee, GA 30024-4629 ABSTRACT In addition to steady state performance, antennas

More information

Measurement Procedure & Test Equipment Used

Measurement Procedure & Test Equipment Used Measurement Procedure & Test Equipment Used Except where otherwise stated, all measurements are made following the Electronic Industries Association (EIA) Minimum Standard for Portable/Personal Land Mobile

More information

Spectrum Analyzer R&S FS300

Spectrum Analyzer R&S FS300 Spectrum Analyzer R&S FS300 9 khz to 3 GHz The new product family from Rohde & Schwarz Professional test equipment for laboratory, service and production The R&S FS300 is a highly accurate spectrum analyzer

More information

Electromagnetic Compliance: Pre-Compliance Conducted Emissions Testing October 19, 2017

Electromagnetic Compliance: Pre-Compliance Conducted Emissions Testing October 19, 2017 Electromagnetic Compliance: Pre-Compliance Conducted Emissions Testing October 19, 2017 Electromagnetic compliance (EMC) testing involves measuring the radio frequency (RF) output of a product and comparing

More information