Adaptive Coronagraphy Using a Digital Micromirror Array

Size: px
Start display at page:

Download "Adaptive Coronagraphy Using a Digital Micromirror Array"

Transcription

1 Adaptive Coronagraphy Using a Digital Micromirror Array Oregon State University Department of Physics by Brad Hermens Advisor: Dr. William Hetherington June 6, 2014

2 Abstract Coronagraphs have been used on telescopes for many years to block out bright sources in the sky to allow nearby objects to be resolved. A digital micromirror array (DMA) can be used in the focal plane of a telescope to serve as an adaptive coronagraph. The DMA can be configured to block out user defined sources after the telescope has been pointed. In this test, a new Python library was written to control the DMA, and its capabilities were tested on LEDs lit at various intensities. The new library did not increase the speed capabilities of the DMA but it offers a way for other programs to interface with the device. The test system was able to block out a single large LED in order to resolve the image of 4 small LEDs lit at roughly 1/800 the intensity. 1

3 CONTENTS CONTENTS Contents 1 Introduction 3 2 Methods Equipment Programming Test Setup Data Collection Results Programming Masking Results and Image Quality Discussion 10 5 Conclusion 11 2

4 1 Introduction A coronagraph is an attachment for a telescope that blocks out the light from bright objects so that nearby dim objects can be resolved. It was originally invented to block out the light of the sun to observe the corona, but can be used to block out any bright object. The coronagraph usually consists of a circular disk that is placed in the focal plane of the telescope where the bright object is in focus [4]. This masks the bright object and prevents its light from traveling any further through the optical system. A proper sized disk must be chosen and the telescope correctly aligned in order for this masking technique to work. The purpose of this research is to explore the viability of using a digital micromirror array as an adaptive mask. The micromirror array can quickly and easily be configured, removing the need to swap out masking disks. This could allow the user to change the mask while viewing or block out many objects at once. 2 Methods 2.1 Equipment The Meade LX inch telescope will be used for all imaging experiments. This telescope uses a cassegrain reflector which consists of a parabolic rear mirror and a hyperbolic front mirror. The rear parabolic mirror, also known as the primary mirror, has a large circular hole in the center. Light is collected from the front of the telescope, reflected off the primary mirror to the secondary mirror, and brought to a focal plane behind the primary mirror. The light path is shown in Figure 1. A focus knob on the back of the telescope allows the user to adjust the position of the primary mirror which will change the location of the focal plane. Figure 1: The light path of a cassegrain reflector. [2] The digital micromirror array (DMA) is a 1024 by 768 grid of tiny mirrors, each of which can be independently moved into one of three positions. The mirrors rest in a flat position and can also be tilted 12 up or down. The tilt direction is at 45 with reference to the face of the mirror array [5]. Figure 2 shows this tilt direction with respect to the face of the DMA and Figure 3 shows a close up of the individual mirrors. The DMA used for 3

5 this experiment measures.55 inches on the diagonal. The mirror array is attached to a control board which communicates with a computer using a USB connection. Mirror Tilt Direction DMA Face Figure 2: The micromirrors tilt in the direction of the arrows Figure 3: A closeup of the individual mirrors [1] The charge coupled device (CCD) used for all detection is the SBIG STF-8300M. The CCD is an array of photosensitive capacitors. These capacitors charge depending on the duration and intensity of light they are exposed to [3]. The charges can then be read by a computer to produce an image. 2.2 Programming The DMA comes with a simple program that uses monochrome bitmap images to set the direction of all the mirrors. Any black pixel on the bitmap represents a mirror that will be tilted towards the CCD, a white pixel is a mirror that will reflect light away. This program works well for simple low speed tasks but does not allow any sort of interfacing with other programs. The program provided with the DMA only works on the Windows XP operating system. The DMA program comes with two libraries for interfacing with the mirror array, a dynamic link library (DLL) for sending low level commands to the mirror array as well as a higher level ActiveX library. A wrapper, a thin layer of code that translates one interface to another, was written for the DLL to port the functionality to the Python programming language. This wrapper will allow other programs to be written that can interface with the DMA. The wrapper will be tested for ability to control the DMA and for execution speed. 2.3 Test Setup The entire experiment was set up on a cart so it can easily be moved out of the lab to be tested in different locations. Two optics breadboards were placed on top of a cart, one 4

6 laying flat and the other affixed on the edge. The telescope is positioned at one end of the flat breadboard and pointed out from the cart. Using a spirit level, the telescope was oriented to be parallel with the flat breadboard. Figure 6 is an image of the test system. The base of the telescope is butted against two vertical stops that are screwed into the breadboard and is surrounded with magnetic bases to hold it in place(figure 4). The telescope was set to the zero mark on the base and locked into position (Figure 5). Since the telescope was the most difficult to move, all other components of the optical system are moved to accommodate the telescopes position. Once the telescope was locked in place, only the focus would need to be adjusted for the remainder of the experiment. Figure 4: The back of the telescope. Stops are used to assure the base of the telescope is straight and the magnetic bases are used to hold it in place. Figure 5: Rotational axis of the telescope aligned with the base The DMA must be positioned at the center of the telescopes focal plane. To do this, the telescope field of view must first be mapped out. An LED was placed on the wall at the far end of the room and the telescope was pointed at it. The focus on the telescope must be adjusted so the image appears in the plane where the DMA will be mounted. With the image of the LED in focus, the LED is then moved left, right, up, and down while markings were made on the wall when the image left the field of view. The LED is then placed in the center of all the makings which is the center of the field of view for the telescope. With the LED in the center of the field of view, its image will be projected directly behind the telescope and served as a reference point for mounting the DMA. 5

7 Figure 6: A photo of the experimental setup The DMA was mounted at a 45 angle so the mirrors will tilt vertically. This allows the user to direct light 24 up or down. The LED used previously to find the field of view was replaced with a red laser spot projected against the wall to remove the need to affix a LED to the wall. The image of the laser spot is used to center the DMA in the image plane of the telescope. Once the DMA was in place, a lens and the CCD were added to the system. The purpose of the lens was to focus an image of the DMA surface on the CCD. The distance between the DMA and the CCD can not be much more than 50cm due to the size of the optical breadboard and the placement of the telescope. Since the mirror is at an angle with respect to the lens and CCD, a lens with a long focal length must be chosen to maximize depth of field. To find the lens with the largest focal length that will work in a 50cm space, the thin lens equation was used (equation 1). 1 S S 2 = 1 f (1) S 1 and S 2 are the respective object and image distances from the lens and f is it s focal length. To get a real image, the object must be placed some distance away from the lens that is greater than the focal length. For a lens to work with the given distance, there must be a solution for equation 1 where the sum of S 1 and S 2 is equal or less than the distance between the DMA and the CCD. The maximum focal length that can be used must be 1/4 the length between the CCD and the DMA. The lens used in the system had a focal length of 120mm which is slightly less than the maximum focal length of 125mm. Once a lens was selected, the lens equation was used to find a rough starting point to focus the image. To get a clear image to focus, a checker pattern was set on the mirror 6

8 array. An image of a bitmap and the DMA showing the bitmap are shown in figures 7 and 8. The fine edges of the pattern allow a sharp image of the mirror surface to be focused on the CCD. Once the mirror array is in focus, the image from the telescope can be adjusted to be in same plane as the mirror. Figure 7: A bitmap used to set the state of the micromirror array. Figure 8: The pattern as displayed on the DMA. Four LEDs are placed on the wall in the center of the telescopes field of view. The CCD was configured to take successive pictures and display them on the monitor of a computer. Since the CCD was already focused on the surface of the mirror array, adjusting the focus on the telescope will brought the LEDs into focus on the mirror surface and made them visible in the pictures captured on the computer. 2.4 Data Collection The Python wrapper itself will be a form of data and it s capabilities will determine the abilities of the masking system. Masking data for this experiment consists of bitmap images captured from the CCD. The images will be of LEDs placed on the wall lit at various intensities and results of blocking them out with the DMA. 3 Results 3.1 Programming The Python library produced for the experiment added several capabilities that were not available with the original software. The new library allows the user to create lists that can set the state of the mirrors instead of relying only on bitmap images. This new 7

9 program also allows others the option to directly control the mirror array using their own custom programs. The library was modeled after the ActixeX library provided with the DMA and control board. An attempt was made to use the ActiveX library directly with no success. The source code for both libraries was provided upon request from Digital Light Innovations and provided useful insight on how to write a functional Python library. This new library makes use of the DLL provided to give the user functions that are slightly easier to use. The library allows the user to send raw data to the mirror array rather than being forced to use a monochrome bitmap. It can also be used in other programs to control the DMA for any sort of automated process that may be needed. The library allows the user to change the state of the DMA roughly 30 times per second. Although this is only 0.1% of the speed the mirror array is capable of, it is fast enough for coronagraphy. 3.2 Masking Results and Image Quality Figures 9 and 10 show 4 LEDs in focus emitting light at various intensities. The system was focused with all of the LEDs lit at the same intensity and every mirror oriented to reflect all light to the CCD. The best focus obtained is shown in figure 9. The intensity of the LEDs was reduced for the image displayed in figure 10, with two of the lights lit at an intensity much less than the others to test whether the finer details of the lights could be distinguished. The square shape of the LEDs can be seen in the two dim LEDs on the top of figure 10. 8

10 Figure 9: An image of 4 LEDs, all illuminated at the same intensity Figure 10: The same LEDs but the top ones have had their intensities significantly reduced. To determine the effectiveness of the masking capabilities, a large bright white LED was affixed next to the four LEDs from the previous section. The large LED is roughly 800 times brighter than the 4 small LEDS. A piece of black paper was placed between the bright LED and the dim ones to prevent reflections off solder joints around the small LEDs. The paper is oriented in a way that does not obscure the view of the LEDs through the telescope. The top image on figure 11 is a picture taken with all mirrors oriented to reflect light towards the CCD. In the bottom picture, light from the bright LED has been directed away from the CCD. The sharp line across the bottom image is the where the mirrors have been oriented in the opposite direction. The four dim LEDs are faintly visible in the bottom image. 9

11 Brad Hermens Thesis Ph 403 Figure 11: The top image shows a bright LED next to 4 dim LEDs. The 4 dim LEDs are not visible in the top image. In the bottom image the bright LED has bee blocked out by the DMA. The 4 dim LED are now visible due to the ability to take a longer exposure. 4 Discussion The results show that the DMA can be controlled by custom software and is capable of serving as an adaptable coronagraph. There was no noticeable effect on image quality due to diffraction from the DMA or effects from the lens. The DMA does not completely block out the large bright LED when the mirrors are directed away from the CCD. A faint image of the large LED can be seen at the bottom of figure 11. The ghost image of the large bright LED measures to be approximately the same intensity as the small LEDs. A significant amount of scattered light from the bright LED can be see despite the mask. The exact source of this is unknown, but it may be due to reflection off of a protective layer of glass covering the DMA surface. The mirror array limits the resolution of the image that can be captured as well as the minimum area that can be blocked. In figure 12, individual mirrors can be seen reflecting light from the LED. This resolution limit is directly proportional to the distance between the DMA and the telescope. The DMA in the test setup only reflects a small portion of the telescopes field of view back to the CCD. The DMA will need to be positioned much closer to the telescope in order to make a system that allows the telescope to move freely, which will reduce the image resolution significantly. 10

12 Figure 12: The individual mirrors can be seen near the edges of the light sources. 5 Conclusion A library was successfully created for the DMA. The test system successfully blocked out a bright light source allowing nearby dim lights to be resolved. This shows that the DMA is a viable option as a mask in coronagraphy. Future projects will need to significantly reduce the size of the system so it can be mounted on the back of the telescope. This will require new tests to determine if any depth of field or diffraction effects cause image degradation. Once a smaller system is created, it can be taken out of the lab and tested on stars and planets in the night sky. 11

13 References [1] Dmdchip.gif (GIF image, pixels). URL [2] File:Cassegrain-Telescope.svg. URL [3] James R. Janesick. Scientific Charge-coupled Devices. SPIE Press, January ISBN [4] Marc Kuchner and Wesley Traub. Kuchner & traub, TPF coronagraph, August URL [5] Texas Instruments. DMD Introduction to DMD technology, June Rev. A. 12

FRAUNHOFER AND FRESNEL DIFFRACTION IN ONE DIMENSION

FRAUNHOFER AND FRESNEL DIFFRACTION IN ONE DIMENSION FRAUNHOFER AND FRESNEL DIFFRACTION IN ONE DIMENSION Revised November 15, 2017 INTRODUCTION The simplest and most commonly described examples of diffraction and interference from two-dimensional apertures

More information

Applications of Optics

Applications of Optics Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 26 Applications of Optics Marilyn Akins, PhD Broome Community College Applications of Optics Many devices are based on the principles of optics

More information

ECEN 4606, UNDERGRADUATE OPTICS LAB

ECEN 4606, UNDERGRADUATE OPTICS LAB ECEN 4606, UNDERGRADUATE OPTICS LAB Lab 2: Imaging 1 the Telescope Original Version: Prof. McLeod SUMMARY: In this lab you will become familiar with the use of one or more lenses to create images of distant

More information

The techniques covered so far -- visual focusing, and

The techniques covered so far -- visual focusing, and Section 4: Aids to Focusing The techniques covered so far -- visual focusing, and focusing using numeric data from the software -- can work and work well. But a variety of variables, including everything

More information

CCD User s Guide SBIG ST7E CCD camera and Macintosh ibook control computer with Meade flip mirror assembly mounted on LX200

CCD User s Guide SBIG ST7E CCD camera and Macintosh ibook control computer with Meade flip mirror assembly mounted on LX200 Massachusetts Institute of Technology Department of Earth, Atmospheric, and Planetary Sciences Handout 8 /week of 2002 March 18 12.409 Hands-On Astronomy, Spring 2002 CCD User s Guide SBIG ST7E CCD camera

More information

SIPS instructions for installation and use

SIPS instructions for installation and use SIPS instructions for installation and use Introduction Thank you for purchasing the Starlight Integrated Paracorr System (referred to as SIPS hereafter), which incorporates the best focuser on the market

More information

OPTICS LENSES AND TELESCOPES

OPTICS LENSES AND TELESCOPES ASTR 1030 Astronomy Lab 97 Optics - Lenses & Telescopes OPTICS LENSES AND TELESCOPES SYNOPSIS: In this lab you will explore the fundamental properties of a lens and investigate refracting and reflecting

More information

Devices & Services Company

Devices & Services Company Devices & Services Company 10290 Monroe Drive, Suite 202 - Dallas, Texas 75229 USA - Tel. 214-902-8337 - Fax 214-902-8303 Web: www.devicesandservices.com Email: sales@devicesandservices.com D&S Technical

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Student Name Date MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.161 Modern Optics Project Laboratory Laboratory Exercise No. 3 Fall 2005 Diffraction

More information

The Design and Construction of an Inexpensive CCD Camera for Astronomical Imaging

The Design and Construction of an Inexpensive CCD Camera for Astronomical Imaging The Design and Construction of an Inexpensive CCD Camera for Astronomical Imaging Mr. Ben Teasdel III South Carolina State University Abstract The design, construction and testing results of an inexpensive

More information

Howie's Laser Collimator Instructions:

Howie's Laser Collimator Instructions: Howie's Laser Collimator Instructions: WARNING: AVOID DIRECT OR MIRROR REFLECTED EYE EXPOSURE TO LASER BEAM The laser collimator is a tool that enables precise adjustment of the alignment of telescope

More information

General Physics Experiment 5 Optical Instruments: Simple Magnifier, Microscope, and Newtonian Telescope

General Physics Experiment 5 Optical Instruments: Simple Magnifier, Microscope, and Newtonian Telescope General Physics Experiment 5 Optical Instruments: Simple Magnifier, Microscope, and Newtonian Telescope Objective: < To observe the magnifying properties of the simple magnifier, the microscope and the

More information

Basic Optics System OS-8515C

Basic Optics System OS-8515C 40 50 30 60 20 70 10 80 0 90 80 10 20 70 T 30 60 40 50 50 40 60 30 70 20 80 90 90 80 BASIC OPTICS RAY TABLE 10 0 10 70 20 60 50 40 30 Instruction Manual with Experiment Guide and Teachers Notes 012-09900B

More information

7. Michelson Interferometer

7. Michelson Interferometer 7. Michelson Interferometer In this lab we are going to observe the interference patterns produced by two spherical waves as well as by two plane waves. We will study the operation of a Michelson interferometer,

More information

PH 481/581 Physical Optics Winter 2014

PH 481/581 Physical Optics Winter 2014 PH 481/581 Physical Optics Winter 2014 Laboratory #1 Week of January 13 Read: Handout (Introduction & Projects #2 & 3 from Newport Project in Optics Workbook), pp.150-170 of Optics by Hecht Do: 1. Experiment

More information

lens Figure 1. A refractory focusing arrangement. Focal point

lens Figure 1. A refractory focusing arrangement. Focal point Laboratory 2 - Introduction to Lenses & Telescopes Materials Used: A set o our lenses, an optical bench with a centimeter scale, a white screen, several lens holders, a light source (with crossed arrows),

More information

ECEN 4606, UNDERGRADUATE OPTICS LAB

ECEN 4606, UNDERGRADUATE OPTICS LAB ECEN 4606, UNDERGRADUATE OPTICS LAB Lab 3: Imaging 2 the Microscope Original Version: Professor McLeod SUMMARY: In this lab you will become familiar with the use of one or more lenses to create highly

More information

VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES

VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES Shortly after the experimental confirmation of the wave properties of the electron, it was suggested that the electron could be used to examine objects

More information

Why is There a Black Dot when Defocus = 1λ?

Why is There a Black Dot when Defocus = 1λ? Why is There a Black Dot when Defocus = 1λ? W = W 020 = a 020 ρ 2 When a 020 = 1λ Sag of the wavefront at full aperture (ρ = 1) = 1λ Sag of the wavefront at ρ = 0.707 = 0.5λ Area of the pupil from ρ =

More information

PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing.

PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing. Optics Introduction In this lab, we will be exploring several properties of light including diffraction, reflection, geometric optics, and interference. There are two sections to this lab and they may

More information

Physics 1411 Telescopes Lab

Physics 1411 Telescopes Lab Name: Section: Partners: Physics 1411 Telescopes Lab Refracting and Reflecting telescopes are the two most common types of telescopes you will find. Each of these can be mounted on either an equatorial

More information

Imaging Systems Laboratory II. Laboratory 8: The Michelson Interferometer / Diffraction April 30 & May 02, 2002

Imaging Systems Laboratory II. Laboratory 8: The Michelson Interferometer / Diffraction April 30 & May 02, 2002 1051-232 Imaging Systems Laboratory II Laboratory 8: The Michelson Interferometer / Diffraction April 30 & May 02, 2002 Abstract. In the last lab, you saw that coherent light from two different locations

More information

Chapter Ray and Wave Optics

Chapter Ray and Wave Optics 109 Chapter Ray and Wave Optics 1. An astronomical telescope has a large aperture to [2002] reduce spherical aberration have high resolution increase span of observation have low dispersion. 2. If two

More information

SCHLIEREN SYSTEMS. AEROLAB LLC 8291 Patuxent Range Road Suite 1200 Jessup, MD 20794

SCHLIEREN SYSTEMS. AEROLAB LLC 8291 Patuxent Range Road Suite 1200 Jessup, MD 20794 SCHLIEREN SYSTEMS AEROLAB LLC 8291 Patuxent Range Road Suite 1200 Jessup, MD 20794 Phone: 301.776.6585 Fax: 301.776.2892 contact@aerolab.com www.aerolab.com TABLE OF CONTENTS Introduction 3 Z-Type Schlieren

More information

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Equipment Set for Wave Optics with Laser 1003053 Instruction sheet 06/18 Alf 1. Safety instructions The laser emits visible radiation at a wavelength of 635 nm with a maximum power

More information

Activity 6.1 Image Formation from Spherical Mirrors

Activity 6.1 Image Formation from Spherical Mirrors PHY385H1F Introductory Optics Practicals Day 6 Telescopes and Microscopes October 31, 2011 Group Number (number on Intro Optics Kit):. Facilitator Name:. Record-Keeper Name: Time-keeper:. Computer/Wiki-master:..

More information

Department of Mechanical and Aerospace Engineering, Princeton University Department of Astrophysical Sciences, Princeton University ABSTRACT

Department of Mechanical and Aerospace Engineering, Princeton University Department of Astrophysical Sciences, Princeton University ABSTRACT Phase and Amplitude Control Ability using Spatial Light Modulators and Zero Path Length Difference Michelson Interferometer Michael G. Littman, Michael Carr, Jim Leighton, Ezekiel Burke, David Spergel

More information

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36 Light from distant things Chapter 36 We learn about a distant thing from the light it generates or redirects. The lenses in our eyes create images of objects our brains can process. This chapter concerns

More information

THE TELESCOPE. PART 1: The Eye and Visual Acuity

THE TELESCOPE. PART 1: The Eye and Visual Acuity THE TELESCOPE OBJECTIVE: As seen with the naked eye the heavens are a wonderfully fascinating place. With a little careful watching the brighter stars can be grouped into constellations and an order seen

More information

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Equipment Set for Wave Optics with Laser U17303 Instruction sheet 10/08 Alf 1. Safety instructions The laser emits visible radiation at a wavelength of 635 nm with a maximum power

More information

DESIGNING AND IMPLEMENTING AN ADAPTIVE OPTICS SYSTEM FOR THE UH HOKU KE`A OBSERVATORY ABSTRACT

DESIGNING AND IMPLEMENTING AN ADAPTIVE OPTICS SYSTEM FOR THE UH HOKU KE`A OBSERVATORY ABSTRACT DESIGNING AND IMPLEMENTING AN ADAPTIVE OPTICS SYSTEM FOR THE UH HOKU KE`A OBSERVATORY University of Hawai`i at Hilo Alex Hedglen ABSTRACT The presented project is to implement a small adaptive optics system

More information

Eric B. Burgh University of Wisconsin. 1. Scope

Eric B. Burgh University of Wisconsin. 1. Scope Southern African Large Telescope Prime Focus Imaging Spectrograph Optical Integration and Testing Plan Document Number: SALT-3160BP0001 Revision 5.0 2007 July 3 Eric B. Burgh University of Wisconsin 1.

More information

Light sources can be natural or artificial (man-made)

Light sources can be natural or artificial (man-made) Light The Sun is our major source of light Light sources can be natural or artificial (man-made) People and insects do not see the same type of light - people see visible light - insects see ultraviolet

More information

PHYS 3153 Methods of Experimental Physics II O2. Applications of Interferometry

PHYS 3153 Methods of Experimental Physics II O2. Applications of Interferometry Purpose PHYS 3153 Methods of Experimental Physics II O2. Applications of Interferometry In this experiment, you will study the principles and applications of interferometry. Equipment and components PASCO

More information

Refraction of Light. Refraction of Light

Refraction of Light. Refraction of Light 1 Refraction of Light Activity: Disappearing coin Place an empty cup on the table and drop a penny in it. Look down into the cup so that you can see the coin. Move back away from the cup slowly until the

More information

Laboratory Experiment of a High-contrast Imaging Coronagraph with. New Step-transmission Filters

Laboratory Experiment of a High-contrast Imaging Coronagraph with. New Step-transmission Filters Laboratory Experiment of a High-contrast Imaging Coronagraph with New Step-transmission Filters Jiangpei Dou *a,b,c, Deqing Ren a,b,d, Yongtian Zhu a,b & Xi Zhang a,b,c a. National Astronomical Observatories/Nanjing

More information

OPTICS I LENSES AND IMAGES

OPTICS I LENSES AND IMAGES APAS Laboratory Optics I OPTICS I LENSES AND IMAGES If at first you don t succeed try, try again. Then give up- there s no sense in being foolish about it. -W.C. Fields SYNOPSIS: In Optics I you will learn

More information

Astronomical Cameras

Astronomical Cameras Astronomical Cameras I. The Pinhole Camera Pinhole Camera (or Camera Obscura) Whenever light passes through a small hole or aperture it creates an image opposite the hole This is an effect wherever apertures

More information

PHYSICS 289 Experiment 8 Fall Geometric Optics II Thin Lenses

PHYSICS 289 Experiment 8 Fall Geometric Optics II Thin Lenses PHYSICS 289 Experiment 8 Fall 2005 Geometric Optics II Thin Lenses Please look at the chapter on lenses in your text before this lab experiment. Please submit a short lab report which includes answers

More information

Binocular and Scope Performance 57. Diffraction Effects

Binocular and Scope Performance 57. Diffraction Effects Binocular and Scope Performance 57 Diffraction Effects The resolving power of a perfect optical system is determined by diffraction that results from the wave nature of light. An infinitely distant point

More information

Instruction Manual for HyperScan Spectrometer

Instruction Manual for HyperScan Spectrometer August 2006 Version 1.1 Table of Contents Section Page 1 Hardware... 1 2 Mounting Procedure... 2 3 CCD Alignment... 6 4 Software... 7 5 Wiring Diagram... 19 1 HARDWARE While it is not necessary to have

More information

P202/219 Laboratory IUPUI Physics Department THIN LENSES

P202/219 Laboratory IUPUI Physics Department THIN LENSES THIN LENSES OBJECTIVE To verify the thin lens equation, m = h i /h o = d i /d o. d o d i f, and the magnification equations THEORY In the above equations, d o is the distance between the object and the

More information

Week IV: FIRST EXPERIMENTS WITH THE ADVANCED OPTICS SET

Week IV: FIRST EXPERIMENTS WITH THE ADVANCED OPTICS SET Week IV: FIRST EXPERIMENTS WITH THE ADVANCED OPTICS SET The Advanced Optics set consists of (A) Incandescent Lamp (B) Laser (C) Optical Bench (with magnetic surface and metric scale) (D) Component Carriers

More information

Converging Lens. Goal: To measure the focal length of a converging lens using various methods and to study how a converging lens forms a real image.

Converging Lens. Goal: To measure the focal length of a converging lens using various methods and to study how a converging lens forms a real image. Converging Lens Goal: To measure the focal length of a converging lens using various methods and to study how a converging lens forms a real image. Lab Preparation The picture on the screen in a movie

More information

CHARA AO Calibration Process

CHARA AO Calibration Process CHARA AO Calibration Process Judit Sturmann CHARA AO Project Overview Phase I. Under way WFS on telescopes used as tip-tilt detector Phase II. Not yet funded WFS and large DM in place of M4 on telescopes

More information

PH 481/581 Physical Optics Winter 2013

PH 481/581 Physical Optics Winter 2013 PH 481/581 Physical Optics Winter 2013 Laboratory #1 Week of January 14 Read: Handout (Introduction & Projects #2 & 3 from Newport Project in Optics Workbook), pp. 150-170 of "Optics" by Hecht Do: 1. Experiment

More information

Person s Optics Test KEY SSSS

Person s Optics Test KEY SSSS Person s Optics Test KEY SSSS 2017-18 Competitors Names: School Name: All questions are worth one point unless otherwise stated. Show ALL WORK or you may not receive credit. Include correct units whenever

More information

ECEN. Spectroscopy. Lab 8. copy. constituents HOMEWORK PR. Figure. 1. Layout of. of the

ECEN. Spectroscopy. Lab 8. copy. constituents HOMEWORK PR. Figure. 1. Layout of. of the ECEN 4606 Lab 8 Spectroscopy SUMMARY: ROBLEM 1: Pedrotti 3 12-10. In this lab, you will design, build and test an optical spectrum analyzer and use it for both absorption and emission spectroscopy. The

More information

Optical Coherence: Recreation of the Experiment of Thompson and Wolf

Optical Coherence: Recreation of the Experiment of Thompson and Wolf Optical Coherence: Recreation of the Experiment of Thompson and Wolf David Collins Senior project Department of Physics, California Polytechnic State University San Luis Obispo June 2010 Abstract The purpose

More information

Installation Instructions FW8S-STXL / FW8G-STXL Filter Wheel

Installation Instructions FW8S-STXL / FW8G-STXL Filter Wheel Installation Instructions FW8S-STXL / FW8G-STXL Filter Wheel SBIG Astronomical Instruments, A Division of Diffraction Limited. 59 Grenfell Crescent, Unit B, Ottawa, ON Canada, k2g 0G3 Tel: 613.225.2732

More information

E X P E R I M E N T 12

E X P E R I M E N T 12 E X P E R I M E N T 12 Mirrors and Lenses Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics II, Exp 12: Mirrors and Lenses

More information

Hubble Optics CDK 17 Collimation Instructions 03/27/2012 Hubble Optics

Hubble Optics CDK 17 Collimation Instructions 03/27/2012 Hubble Optics Hubble Optics CDK 17 Collimation Instructions 03/27/2012 Hubble Optics 1: CDK17 Specification: System Effective Focal Length: 2894.7 mm, (this might be slightly different for different set of optics) Figure

More information

Be aware that there is no universal notation for the various quantities.

Be aware that there is no universal notation for the various quantities. Fourier Optics v2.4 Ray tracing is limited in its ability to describe optics because it ignores the wave properties of light. Diffraction is needed to explain image spatial resolution and contrast and

More information

Supplementary Materials

Supplementary Materials Supplementary Materials In the supplementary materials of this paper we discuss some practical consideration for alignment of optical components to help unexperienced users to achieve a high performance

More information

Implementation of Adaptive Coded Aperture Imaging using a Digital Micro-Mirror Device for Defocus Deblurring

Implementation of Adaptive Coded Aperture Imaging using a Digital Micro-Mirror Device for Defocus Deblurring Implementation of Adaptive Coded Aperture Imaging using a Digital Micro-Mirror Device for Defocus Deblurring Ashill Chiranjan and Bernardt Duvenhage Defence, Peace, Safety and Security Council for Scientific

More information

Using the USB2.0 camera and guider interface

Using the USB2.0 camera and guider interface Using the USB2.0 camera and guider interface The USB2.0 interface is an updated replacement for the original Starlight Xpress USB1.1 unit, released in 2001. Its main function is to provide a USB2 compatible

More information

Feasibility and Design for the Simplex Electronic Telescope. Brian Dodson

Feasibility and Design for the Simplex Electronic Telescope. Brian Dodson Feasibility and Design for the Simplex Electronic Telescope Brian Dodson Charge: A feasibility check and design hints are wanted for the proposed Simplex Electronic Telescope (SET). The telescope is based

More information

PlaneWave CDK Telescope Instructions. Setting the spacing and collimation for the CDK14/17/20/24

PlaneWave CDK Telescope Instructions. Setting the spacing and collimation for the CDK14/17/20/24 PlaneWave CDK Telescope Instructions Setting the spacing and collimation for the CDK14/17/20/24 Collimation and Secondary Spacing Procedure The CDK optical design has four optical elements shown in Figure

More information

Geometrical Optics Optical systems

Geometrical Optics Optical systems Phys 322 Lecture 16 Chapter 5 Geometrical Optics Optical systems Magnifying glass Purpose: enlarge a nearby object by increasing its image size on retina Requirements: Image should not be inverted Image

More information

Presented by Jerry Hubbell Lake of the Woods Observatory (MPC I24) President, Rappahannock Astronomy Club

Presented by Jerry Hubbell Lake of the Woods Observatory (MPC I24) President, Rappahannock Astronomy Club Presented by Jerry Hubbell Lake of the Woods Observatory (MPC I24) President, Rappahannock Astronomy Club ENGINEERING A FIBER-FED FED SPECTROMETER FOR ASTRONOMICAL USE Objectives Discuss the engineering

More information

Exercise 8: Interference and diffraction

Exercise 8: Interference and diffraction Physics 223 Name: Exercise 8: Interference and diffraction 1. In a two-slit Young s interference experiment, the aperture (the mask with the two slits) to screen distance is 2.0 m, and a red light of wavelength

More information

Lab #1 Lenses and Imaging

Lab #1 Lenses and Imaging Lab #1 Lenses and Imaging (1 week) Contents: 1. Optics Lab Safety 2. New tools: HeNe Laser Optical mounts and positioners 3. Lens focal length measurement 4. Imaging with a lens 5. Compound lens: beam

More information

Physics II. Chapter 23. Spring 2018

Physics II. Chapter 23. Spring 2018 Physics II Chapter 23 Spring 2018 IMPORTANT: Except for multiple-choice questions, you will receive no credit if you show only an answer, even if the answer is correct. Always show in the space on your

More information

PRINCIPLE PROCEDURE ACTIVITY. AIM To observe diffraction of light due to a thin slit.

PRINCIPLE PROCEDURE ACTIVITY. AIM To observe diffraction of light due to a thin slit. ACTIVITY 12 AIM To observe diffraction of light due to a thin slit. APPARATUS AND MATERIAL REQUIRED Two razor blades, one adhesive tape/cello-tape, source of light (electric bulb/ laser pencil), a piece

More information

Chapter 34. Images. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 34. Images. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 34 Images Copyright 34-1 Images and Plane Mirrors Learning Objectives 34.01 Distinguish virtual images from real images. 34.02 Explain the common roadway mirage. 34.03 Sketch a ray diagram for

More information

Olivier Thizy François Cochard

Olivier Thizy François Cochard Alpy guiding User Guide Olivier Thizy (olivier.thizy@shelyak.com) François Cochard (francois.cochard@shelyak.com) DC0017B : feb. 2014 Alpy guiding module User Guide Olivier Thizy (olivier.thizy@shelyak.com)

More information

Option G 4:Diffraction

Option G 4:Diffraction Name: Date: Option G 4:Diffraction 1. This question is about optical resolution. The two point sources shown in the diagram below (not to scale) emit light of the same frequency. The light is incident

More information

BEAM HALO OBSERVATION BY CORONAGRAPH

BEAM HALO OBSERVATION BY CORONAGRAPH BEAM HALO OBSERVATION BY CORONAGRAPH T. Mitsuhashi, KEK, TSUKUBA, Japan Abstract We have developed a coronagraph for the observation of the beam halo surrounding a beam. An opaque disk is set in the beam

More information

Introducing Celestron s EdgeHD Optical System

Introducing Celestron s EdgeHD Optical System Introducing Celestron s EdgeHD Optical System See the Universe in HD EdgeHD is an Aplanatic Schmidt telescope designed to produce aberration free images across a wide visual and photographic field of view.

More information

PHY 431 Homework Set #5 Due Nov. 20 at the start of class

PHY 431 Homework Set #5 Due Nov. 20 at the start of class PHY 431 Homework Set #5 Due Nov. 0 at the start of class 1) Newton s rings (10%) The radius of curvature of the convex surface of a plano-convex lens is 30 cm. The lens is placed with its convex side down

More information

APPENDIX D: ANALYZING ASTRONOMICAL IMAGES WITH MAXIM DL

APPENDIX D: ANALYZING ASTRONOMICAL IMAGES WITH MAXIM DL APPENDIX D: ANALYZING ASTRONOMICAL IMAGES WITH MAXIM DL Written by T.Jaeger INTRODUCTION Early astronomers relied on handmade sketches to record their observations (see Galileo s sketches of Jupiter s

More information

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1. Penn et al. (43) Pub. Date: Aug. 7, 2003

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1. Penn et al. (43) Pub. Date: Aug. 7, 2003 US 2003O147052A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0147052 A1 Penn et al. (43) Pub. Date: (54) HIGH CONTRAST PROJECTION Related U.S. Application Data (60) Provisional

More information

USING THE 2 TELETUBE XLS TM & TELECAT XLS TM ADJUSTABLE SIGHT TUBE

USING THE 2 TELETUBE XLS TM & TELECAT XLS TM ADJUSTABLE SIGHT TUBE USING THE 2 TELETUBE XLS TM & TELECAT XLS TM ADJUSTABLE SIGHT TUBE Revised 09/20/08 With the rapid proliferation of larger-aperture, low f-ratio Newtonian telescopes with 2" focusers and larger diagonal

More information

Aberrations of a lens

Aberrations of a lens Aberrations of a lens 1. What are aberrations? A lens made of a uniform glass with spherical surfaces cannot form perfect images. Spherical aberration is a prominent image defect for a point source on

More information

NANO 703-Notes. Chapter 9-The Instrument

NANO 703-Notes. Chapter 9-The Instrument 1 Chapter 9-The Instrument Illumination (condenser) system Before (above) the sample, the purpose of electron lenses is to form the beam/probe that will illuminate the sample. Our electron source is macroscopic

More information

Physics 1230 Homework 8 Due Friday June 24, 2016

Physics 1230 Homework 8 Due Friday June 24, 2016 At this point, you know lots about mirrors and lenses and can predict how they interact with light from objects to form images for observers. In the next part of the course, we consider applications of

More information

Using a Howie Glatter Laser for Collimation of the Altair Deepfield RC

Using a Howie Glatter Laser for Collimation of the Altair Deepfield RC Using a Howie Glatter Laser for Collimation of the Altair Deepfield RC Background Collimating a Richey Cretien scope is fundamentally different to collimating a Newtonian or SCT. For optimum performance,

More information

Lecture 15: Fraunhofer diffraction by a circular aperture

Lecture 15: Fraunhofer diffraction by a circular aperture Lecture 15: Fraunhofer diffraction by a circular aperture Lecture aims to explain: 1. Diffraction problem for a circular aperture 2. Diffraction pattern produced by a circular aperture, Airy rings 3. Importance

More information

AgilEye Manual Version 2.0 February 28, 2007

AgilEye Manual Version 2.0 February 28, 2007 AgilEye Manual Version 2.0 February 28, 2007 1717 Louisiana NE Suite 202 Albuquerque, NM 87110 (505) 268-4742 support@agiloptics.com 2 (505) 268-4742 v. 2.0 February 07, 2007 3 Introduction AgilEye Wavefront

More information

LOS 1 LASER OPTICS SET

LOS 1 LASER OPTICS SET LOS 1 LASER OPTICS SET Contents 1 Introduction 3 2 Light interference 5 2.1 Light interference on a thin glass plate 6 2.2 Michelson s interferometer 7 3 Light diffraction 13 3.1 Light diffraction on a

More information

AgilOptics mirrors increase coupling efficiency into a 4 µm diameter fiber by 750%.

AgilOptics mirrors increase coupling efficiency into a 4 µm diameter fiber by 750%. Application Note AN004: Fiber Coupling Improvement Introduction AgilOptics mirrors increase coupling efficiency into a 4 µm diameter fiber by 750%. Industrial lasers used for cutting, welding, drilling,

More information

Optics Laboratory Spring Semester 2017 University of Portland

Optics Laboratory Spring Semester 2017 University of Portland Optics Laboratory Spring Semester 2017 University of Portland Laser Safety Warning: The HeNe laser can cause permanent damage to your vision. Never look directly into the laser tube or at a reflection

More information

Instruction sheet VideoCom Retroreflecting Foil Falling Body for VideoCom. 1 Safety notes

Instruction sheet VideoCom Retroreflecting Foil Falling Body for VideoCom. 1 Safety notes Physics Chemistry Biology Technics LEYBOLD DIDACTIC GMBH 8/97-Hund- Instruction sheet 337 47 337 471 337 472 VideoCom Retroreflecting Foil Falling Body for VideoCom Fig. 1 VideoCom (337 47) is a camera

More information

Astroimaging Setup and Operation. S. Douglas Holland

Astroimaging Setup and Operation. S. Douglas Holland Outline: 1. Mount 2. Telescope 3. Cameras 4. Balance Mount 5. Acclimation 6. Cabling & Computer 7. Polar Alignment 8. CWD Position 9. 4 Star Align 10. Camera Control Software 11. Focus 12. Install Guide

More information

Experiment 1: Fraunhofer Diffraction of Light by a Single Slit

Experiment 1: Fraunhofer Diffraction of Light by a Single Slit Experiment 1: Fraunhofer Diffraction of Light by a Single Slit Purpose 1. To understand the theory of Fraunhofer diffraction of light at a single slit and at a circular aperture; 2. To learn how to measure

More information

Transmission electron Microscopy

Transmission electron Microscopy Transmission electron Microscopy Image formation of a concave lens in geometrical optics Some basic features of the transmission electron microscope (TEM) can be understood from by analogy with the operation

More information

IMAGE FORMATION. Light source properties. Sensor characteristics Surface. Surface reflectance properties. Optics

IMAGE FORMATION. Light source properties. Sensor characteristics Surface. Surface reflectance properties. Optics IMAGE FORMATION Light source properties Sensor characteristics Surface Exposure shape Optics Surface reflectance properties ANALOG IMAGES An image can be understood as a 2D light intensity function f(x,y)

More information

Overview. Image formation - 1

Overview. Image formation - 1 Overview perspective imaging Image formation Refraction of light Thin-lens equation Optical power and accommodation Image irradiance and scene radiance Digital images Introduction to MATLAB Image formation

More information

Preview. Light and Reflection Section 1. Section 1 Characteristics of Light. Section 2 Flat Mirrors. Section 3 Curved Mirrors

Preview. Light and Reflection Section 1. Section 1 Characteristics of Light. Section 2 Flat Mirrors. Section 3 Curved Mirrors Light and Reflection Section 1 Preview Section 1 Characteristics of Light Section 2 Flat Mirrors Section 3 Curved Mirrors Section 4 Color and Polarization Light and Reflection Section 1 TEKS The student

More information

ENSC 470/894 Lab 1 V2.0 (Sept )

ENSC 470/894 Lab 1 V2.0 (Sept ) ENSC 470/894 Lab 1 V2.0 (Sept. 22 2013) Introduction: Lab 1 is designed to give students basic experience in optics. In the lab you will set up lenses on an optical table, with a LCD screen pattern as

More information

The New. Astronomy. 2 Practical Focusing

The New. Astronomy. 2 Practical Focusing The New 2 Practical Focusing Astronomy CCD cameras represent some pretty fancy technology, but in some ways they are just like ordinary cameras. As with a traditional film camera, the difference between

More information

PHYSICS. Chapter 35 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 35 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 35 Lecture RANDALL D. KNIGHT Chapter 35 Optical Instruments IN THIS CHAPTER, you will learn about some common optical instruments and

More information

Pinhole Camera. Nuts and Bolts

Pinhole Camera. Nuts and Bolts Nuts and Bolts What Students Will Do Build a specialized, Sun-measuring pinhole camera. Safely observe the Sun with the pinhole camera and record image size measurements. Calculate the diameter of the

More information

Bruker Dimension Icon AFM Quick User s Guide

Bruker Dimension Icon AFM Quick User s Guide Bruker Dimension Icon AFM Quick User s Guide March 3, 2015 GLA Contacts Jingjing Jiang (jjiang2@caltech.edu 626-616-6357) Xinghao Zhou (xzzhou@caltech.edu 626-375-0855) Bruker Tech Support (AFMSupport@bruker-nano.com

More information

Chapter 23. Mirrors and Lenses

Chapter 23. Mirrors and Lenses Chapter 23 Mirrors and Lenses Mirrors and Lenses The development of mirrors and lenses aided the progress of science. It led to the microscopes and telescopes. Allowed the study of objects from microbes

More information

Telescopes and their configurations. Quick review at the GO level

Telescopes and their configurations. Quick review at the GO level Telescopes and their configurations Quick review at the GO level Refraction & Reflection Light travels slower in denser material Speed depends on wavelength Image Formation real Focal Length (f) : Distance

More information

UV/Optical/IR Astronomy Part 2: Spectroscopy

UV/Optical/IR Astronomy Part 2: Spectroscopy UV/Optical/IR Astronomy Part 2: Spectroscopy Introduction We now turn to spectroscopy. Much of what you need to know about this is the same as for imaging I ll concentrate on the differences. Slicing the

More information

1.6 Beam Wander vs. Image Jitter

1.6 Beam Wander vs. Image Jitter 8 Chapter 1 1.6 Beam Wander vs. Image Jitter It is common at this point to look at beam wander and image jitter and ask what differentiates them. Consider a cooperative optical communication system that

More information

A Stony Brook Student s Guide to Using CCDSoft By Stephanie Zajac Last Updated: 3 February 2012

A Stony Brook Student s Guide to Using CCDSoft By Stephanie Zajac Last Updated: 3 February 2012 A Stony Brook Student s Guide to Using CCDSoft By Stephanie Zajac Last Updated: 3 February 2012 This document is meant to serve as a quick start guide to using CCDSoft to take data using the Mt. Stony

More information

PHYS 1112L - Introductory Physics Laboratory II

PHYS 1112L - Introductory Physics Laboratory II PHYS 1112L - Introductory Physics Laboratory II Laboratory Advanced Sheet Thin Lenses 1. Objectives. The objectives of this laboratory are a. to be able to measure the focal length of a converging lens.

More information