# Telescopes and their configurations. Quick review at the GO level

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Telescopes and their configurations Quick review at the GO level

2 Refraction & Reflection Light travels slower in denser material Speed depends on wavelength

3 Image Formation real Focal Length (f) : Distance from lens to focus Focal Ratio (f/#) : f / lens diameter (D) virtual real virtual A real image can be projected onto a screen, film or detector

4 Galileo Telescope Strong lens Weak lens Long focal length This telescope makes a magnified virtual image Retina: detector array of 25 million photoreceptors

5 Galileo Telescope Strong lens Weak lens Long focal length This telescope makes a magnified virtual image Where would the detector go?

6 Kepler telescope Telescope evolution

7 Lick 1-meter telescope Why so long?

8 Problems with lenses?

9 Reflecting Telescopes Who came up with this idea?

10 Telescopes with long focal lengths in a shorter telescope LBT, Magellan, VATT, Giant Magellan Cassegrain Parabolic primary and ellipsoid secondary Parabolic/hyperbolic primary and hyperbolic secondary Gemini

11 Focii Primary Cassegrain Nasmyth

12 What are the advantages of each of these focii?

13 Examples Nasmyth Subaru f/2, f/12.2, f/12.6 LBT

14

15 Mounts one rotational axis parallel to the Earth's axis of rotation equatorial Alt-azimuth

16 Angular Magnification For look through telescopes

17 For a Detector Array Put the detector at the focus (orange) and consider the angle that subtends 1 mm For a telescope where there is no eye piece the angular magnification is specified by the Image scale or plate scale, θ: the number of arcseconds imaged onto 1 mm of the detector

18 Field of View Field of view depends on the linear scale, L, of the detector The larger the focal length the larger the angular magnification The smaller the focal length the larger the field of view.

19 Summary The configuration of the telescope determines the angular magnification, the field of view, the amount of light gathered, and the mounting possibilities for the instruments Next section: diffraction

20 Diffraction 1803, Thomas Young: Light behaves like waves

21 Interference Young s sketch to Royal Society (1803) What happened in 1961 and 1974?

22 What happens if you use electrons instead of photons?

23 What happens when you fire electrons at the 2 slits one at a time?

24 Jonsson at Tubingen: eform defraction patterns (1961) Merli at Bologna: e- one at a time make defraction patterns (1974)

25 Interference Young s sketch to Royal Society (1803) Jonsson at Tubingen: e- form defraction patterns (1961) Merli at Bologna: e- one at a time make defraction patterns (1974) But if you measure which slit the e- go through -> no diffraction pattern

26 Diffraction Limit limiting angular separation of two point sources in the sky

27 Question What is the size of the pixels that we need to resolve a diffraction limited image on the detector which sits at the focal plane?

28 Question What is the size of the pixels that we need to resolve a diffraction limited image on the detector which sits at the focal plane? θ=x/f Diffraction limit angle Angular extent of a pixel size x

29 Diffraction Limit The f-stop = f/# = f/d The focal length/lens diameter Considering the viewing of a uniformly lit field, the brightness of the projected image (illuminance) relative to the brightness of the scene in the lens's field of view (luminance) decreases with the square of the f-number Tells you the optimal pixel size for a telescope, which depends on D and f (f/#) and wavelength range.

30 Diffraction Limit My new Nikon 300 Middle f-stop: f/8 Pixel size of CCD is 5.3 um Is this consistent with the optics Consider our eyes Middle f-stop: f/5 Max density of cones 70,000/mm 2 Spacing is 2.5 um Is this a reasonable design? Tells you the optimal pixel size for a telescope, which depends on D and f (f/#) and wavelength range.

31 Diffraction Limit Tells you the optimal pixel size for a telescope, which depends on D and f (f/#) and wavelength range. For my Nikon 300 Middle f-stop: f/8 X = 1.22 * 8 * 0.42 um = 4.1 um Real pixel size is 5.3 um! Not bad For our eyes Middle f-stop: f/5 X = 1.22 * 5.7 * 0.42 um = 2.9 um Max density of cones 70,000/mm 2 Spacing is 2.5 um Nice design!

32 Atmospheric effects

33 Atmospheric Effects Seeing FWHM of optical image of a point source The Strehl ratio: the ratio of the peak aberrated image intensity from a point source compared to the maximum attainable intensity using an ideal optical system limited only by diffraction over the system's aperture. Alternatively one uses not of the peak intensity but the intensity at the image center (intersection of the optical axis with the focal plane) due to an on-axis source

34 Point spread function: Rayeigh s criterion Angular Resolution degraded by atmospheric turbulence to arcsecs (called seeing )

35 Adaptive Optics Object & Guide star AO slides from Claire Max

36

37

38

39

40

41 Note PSF varies with time

42 Summary Telescope configurations define some observational limitations The diameter establishes: the diffration-limit spatial resolution the light bucket size The focal length affects the angular magnification the photon flux in the detector combined w. array size gives FOV The focal number indicates the power of the lens The mount can affect time-sequenced observations AO capabilities increases spatial resolution in IR measurements mess up photometric measurements (variable PSF)

43 Telescopes

44 Field of View L/2 Field of view depends on the linear scale, L, of the detector

45 Adaptive Optics Object & Guide star AO slides from Claire Max

### Early Telescopes & Geometrical Optics. C. A. Griffith, Class Notes, PTYS 521, 2016 Not for distribution.

Early Telescopes & Geometrical Optics C. A. Griffith, Class Notes, PTYS 521, 2016 Not for distribution. 1 1.2. Image Formation Fig. 1. Snell s law indicates the bending of light at the interface of two

### Reflectors vs. Refractors

1 Telescope Types - Telescopes collect and concentrate light (which can then be magnified, dispersed as a spectrum, etc). - In the end it is the collecting area that counts. - There are two primary telescope

### There is a range of distances over which objects will be in focus; this is called the depth of field of the lens. Objects closer or farther are

Chapter 25 Optical Instruments Some Topics in Chapter 25 Cameras The Human Eye; Corrective Lenses Magnifying Glass Telescopes Compound Microscope Aberrations of Lenses and Mirrors Limits of Resolution

### Binocular and Scope Performance 57. Diffraction Effects

Binocular and Scope Performance 57 Diffraction Effects The resolving power of a perfect optical system is determined by diffraction that results from the wave nature of light. An infinitely distant point

### INTRODUCTION THIN LENSES. Introduction. given by the paraxial refraction equation derived last lecture: Thin lenses (19.1) = 1. Double-lens systems

Chapter 9 OPTICAL INSTRUMENTS Introduction Thin lenses Double-lens systems Aberrations Camera Human eye Compound microscope Summary INTRODUCTION Knowledge of geometrical optics, diffraction and interference,

### PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing.

Optics Introduction In this lab, we will be exploring several properties of light including diffraction, reflection, geometric optics, and interference. There are two sections to this lab and they may

### PHY 431 Homework Set #5 Due Nov. 20 at the start of class

PHY 431 Homework Set #5 Due Nov. 0 at the start of class 1) Newton s rings (10%) The radius of curvature of the convex surface of a plano-convex lens is 30 cm. The lens is placed with its convex side down

### Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36

Light from distant things Chapter 36 We learn about a distant thing from the light it generates or redirects. The lenses in our eyes create images of objects our brains can process. This chapter concerns

### 12.4 Alignment and Manufacturing Tolerances for Segmented Telescopes

330 Chapter 12 12.4 Alignment and Manufacturing Tolerances for Segmented Telescopes Similar to the JWST, the next-generation large-aperture space telescope for optical and UV astronomy has a segmented

### 1.6 Beam Wander vs. Image Jitter

8 Chapter 1 1.6 Beam Wander vs. Image Jitter It is common at this point to look at beam wander and image jitter and ask what differentiates them. Consider a cooperative optical communication system that

### Geometrical Optics Optical systems

Phys 322 Lecture 16 Chapter 5 Geometrical Optics Optical systems Magnifying glass Purpose: enlarge a nearby object by increasing its image size on retina Requirements: Image should not be inverted Image

### Εισαγωγική στην Οπτική Απεικόνιση

Εισαγωγική στην Οπτική Απεικόνιση Δημήτριος Τζεράνης, Ph.D. Εμβιομηχανική και Βιοϊατρική Τεχνολογία Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. Χειμερινό Εξάμηνο 2015 Light: A type of EM Radiation EM radiation:

### Astronomical Cameras

Astronomical Cameras I. The Pinhole Camera Pinhole Camera (or Camera Obscura) Whenever light passes through a small hole or aperture it creates an image opposite the hole This is an effect wherever apertures

### Optics and Telescopes

Optics and Telescopes Properties of Light Law of Reflection - reflection Angle of Incidence = Angle of Law of Refraction - Light beam is bent towards the normal when passing into a medium of higher Index

### Lecture Outline Chapter 27. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 27 Physics, 4 th Edition James S. Walker Chapter 27 Optical Instruments Units of Chapter 27 The Human Eye and the Camera Lenses in Combination and Corrective Optics The Magnifying

### Puntino. Shack-Hartmann wavefront sensor for optimizing telescopes. The software people for optics

Puntino Shack-Hartmann wavefront sensor for optimizing telescopes 1 1. Optimize telescope performance with a powerful set of tools A finely tuned telescope is the key to obtaining deep, high-quality astronomical

### VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES

VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES Shortly after the experimental confirmation of the wave properties of the electron, it was suggested that the electron could be used to examine objects

### DESIGN NOTE: DIFFRACTION EFFECTS

NASA IRTF / UNIVERSITY OF HAWAII Document #: TMP-1.3.4.2-00-X.doc Template created on: 15 March 2009 Last Modified on: 5 April 2010 DESIGN NOTE: DIFFRACTION EFFECTS Original Author: John Rayner NASA Infrared

### Introduction to Light Microscopy. (Image: T. Wittman, Scripps)

Introduction to Light Microscopy (Image: T. Wittman, Scripps) The Light Microscope Four centuries of history Vibrant current development One of the most widely used research tools A. Khodjakov et al. Major

### DESIGNING AND IMPLEMENTING AN ADAPTIVE OPTICS SYSTEM FOR THE UH HOKU KE`A OBSERVATORY ABSTRACT

DESIGNING AND IMPLEMENTING AN ADAPTIVE OPTICS SYSTEM FOR THE UH HOKU KE`A OBSERVATORY University of Hawai`i at Hilo Alex Hedglen ABSTRACT The presented project is to implement a small adaptive optics system

### The New. Astronomy. 2 Practical Focusing

The New 2 Practical Focusing Astronomy CCD cameras represent some pretty fancy technology, but in some ways they are just like ordinary cameras. As with a traditional film camera, the difference between

### UV/Optical/IR Astronomy Part 2: Spectroscopy

UV/Optical/IR Astronomy Part 2: Spectroscopy Introduction We now turn to spectroscopy. Much of what you need to know about this is the same as for imaging I ll concentrate on the differences. Slicing the

### Diffraction of a Circular Aperture

DiffractionofaCircularAperture Diffraction can be understood by considering the wave nature of light. Huygen's principle, illustrated in the image below, states that each point on a propagating wavefront

### SUBJECT: PHYSICS. Use and Succeed.

SUBJECT: PHYSICS I hope this collection of questions will help to test your preparation level and useful to recall the concepts in different areas of all the chapters. Use and Succeed. Navaneethakrishnan.V

### 13. Optical Instruments*

13. Optical Instruments* Objective: Here what you have been learning about thin lenses is applied to make a telescope. In the process you encounter general optical instrument design concepts. The learning

### Physics 3340 Spring Fourier Optics

Physics 3340 Spring 011 Purpose Fourier Optics In this experiment we will show how the Fraunhofer diffraction pattern or spatial Fourier transform of an object can be observed within an optical system.

### Confocal Imaging Through Scattering Media with a Volume Holographic Filter

Confocal Imaging Through Scattering Media with a Volume Holographic Filter Michal Balberg +, George Barbastathis*, Sergio Fantini % and David J. Brady University of Illinois at Urbana-Champaign, Urbana,

### Section 1: Sound. Sound and Light Section 1

Sound and Light Section 1 Section 1: Sound Preview Key Ideas Bellringer Properties of Sound Sound Intensity and Decibel Level Musical Instruments Hearing and the Ear The Ear Ultrasound and Sonar Sound

### Fundamental Paraxial Equation for Thin Lenses

THIN LENSES Fundamental Paraxial Equation for Thin Lenses A thin lens is one for which thickness is "negligibly" small and may be ignored. Thin lenses are the most important optical entity in ophthalmic

### Experiment 1: Fraunhofer Diffraction of Light by a Single Slit

Experiment 1: Fraunhofer Diffraction of Light by a Single Slit Purpose 1. To understand the theory of Fraunhofer diffraction of light at a single slit and at a circular aperture; 2. To learn how to measure

### !"#\$%&\$'()(*'+,&-./,'(0' focal point! parallel rays! converging lens" image of an object in a converging lens" converging lens: 3 easy rays" !

!"#\$%&\$'()(*'+,&-./,'(0' converging lens"! +,7\$,\$'! 8,9/4&:27'473'+,7\$,\$'! 84#';%4?.4:27' 1234#5\$'126%&\$'''! @4=,/4\$'! 1",'A.=47'>#,*'+,7\$,\$'473'B4

### Chapter 17: Wave Optics. What is Light? The Models of Light 1/11/13

Chapter 17: Wave Optics Key Terms Wave model Ray model Diffraction Refraction Fringe spacing Diffraction grating Thin-film interference What is Light? Light is the chameleon of the physical world. Under

### CS 443: Imaging and Multimedia Cameras and Lenses

CS 443: Imaging and Multimedia Cameras and Lenses Spring 2008 Ahmed Elgammal Dept of Computer Science Rutgers University Outlines Cameras and lenses! 1 They are formed by the projection of 3D objects.

### SECTION 1 QUESTIONS NKB.CO.IN

OPTICS SECTION 1 QUESTIONS 1. A diverging beam of light falls on a plane mirror. The image formed by the mirror is a) real, erect b) virtual, inverted c) virtual, erect d) real, inverted. In a pond water

### LECTURE 13 DIFFRACTION. Instructor: Kazumi Tolich

LECTURE 13 DIFFRACTION Instructor: Kazumi Tolich Lecture 13 2 Reading chapter 33-4 & 33-6 to 33-7 Single slit diffraction Two slit interference-diffraction Fraunhofer and Fresnel diffraction Diffraction

### Dr. Todd Satogata (ODU/Jefferson Lab) Monday, April

University Physics 227N/232N Mirrors and Lenses Homework Optics 2 due Friday AM Quiz Friday Optional review session next Monday (Apr 28) Bring Homework Notebooks to Final for Grading Dr. Todd Satogata

### Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline

Lecture 4: Geometrical Optics 2 Outline 1 Optical Systems 2 Images and Pupils 3 Rays 4 Wavefronts 5 Aberrations Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical

### IMAGE FORMATION. Light source properties. Sensor characteristics Surface. Surface reflectance properties. Optics

IMAGE FORMATION Light source properties Sensor characteristics Surface Exposure shape Optics Surface reflectance properties ANALOG IMAGES An image can be understood as a 2D light intensity function f(x,y)

### Evaluating Commercial Scanners for Astronomical Images. The underlying technology of the scanners: Pixel sizes:

Evaluating Commercial Scanners for Astronomical Images Robert J. Simcoe Associate Harvard College Observatory rjsimcoe@cfa.harvard.edu Introduction: Many organizations have expressed interest in using

### Converging and Diverging Surfaces. Lenses. Converging Surface

Lenses Sandy Skoglund 2 Converging and Diverging s AIR Converging If the surface is convex, it is a converging surface in the sense that the parallel rays bend toward each other after passing through the

Chapter 34 Images Copyright 34-1 Images and Plane Mirrors Learning Objectives 34.01 Distinguish virtual images from real images. 34.02 Explain the common roadway mirage. 34.03 Sketch a ray diagram for

### OptiSpheric IOL. Integrated Optical Testing of Intraocular Lenses

OptiSpheric IOL Integrated Optical Testing of Intraocular Lenses OPTICAL TEST STATION OptiSpheric IOL ISO 11979 Intraocular Lens Testing OptiSpheric IOL PRO with in air tray on optional instrument table

### IMAGE SENSOR SOLUTIONS. KAC-96-1/5" Lens Kit. KODAK KAC-96-1/5" Lens Kit. for use with the KODAK CMOS Image Sensors. November 2004 Revision 2

KODAK for use with the KODAK CMOS Image Sensors November 2004 Revision 2 1.1 Introduction Choosing the right lens is a critical aspect of designing an imaging system. Typically the trade off between image

### THE TELESCOPE. PART 1: The Eye and Visual Acuity

THE TELESCOPE OBJECTIVE: As seen with the naked eye the heavens are a wonderfully fascinating place. With a little careful watching the brighter stars can be grouped into constellations and an order seen

### Practice Problems for Chapter 25-26

Practice Problems for Chapter 25-26 1. What are coherent waves? 2. Describe diffraction grating 3. What are interference fringes? 4. What does monochromatic light mean? 5. What does the Rayleigh Criterion

### Chapter 34: Geometrical Optics (Part 2)

Chapter 34: Geometrical Optics (Part 2) Brief review Optical instruments Camera Human eye Magnifying glass Telescope Microscope Optical Aberrations Phys Phys 2435: 22: Chap. 34, 31, Pg 1 The Lens Equation

### Diffraction. Interference with more than 2 beams. Diffraction gratings. Diffraction by an aperture. Diffraction of a laser beam

Diffraction Interference with more than 2 beams 3, 4, 5 beams Large number of beams Diffraction gratings Equation Uses Diffraction by an aperture Huygen s principle again, Fresnel zones, Arago s spot Qualitative

### Person s Optics Test KEY SSSS

Person s Optics Test KEY SSSS 2017-18 Competitors Names: School Name: All questions are worth one point unless otherwise stated. Show ALL WORK or you may not receive credit. Include correct units whenever

Adaptive Optics lectures 2. Adaptive optics Invented in 1953 by H.Babcock Andrei Tokovinin 1 Plan General idea (open/closed loop) Wave-front sensing, its limitations Correctors (DMs) Control (spatial and

### INTRODUCTION TO CCD IMAGING

ASTR 1030 Astronomy Lab 85 Intro to CCD Imaging INTRODUCTION TO CCD IMAGING SYNOPSIS: In this lab we will learn about some of the advantages of CCD cameras for use in astronomy and how to process an image.

### SOAR Integral Field Spectrograph (SIFS): Call for Science Verification Proposals

Published on SOAR (http://www.ctio.noao.edu/soar) Home > SOAR Integral Field Spectrograph (SIFS): Call for Science Verification Proposals SOAR Integral Field Spectrograph (SIFS): Call for Science Verification

### Intorduction to light sources, pinhole cameras, and lenses

Intorduction to light sources, pinhole cameras, and lenses Erik G. Learned-Miller Department of Computer Science University of Massachusetts, Amherst Amherst, MA 01003 October 26, 2011 Abstract 1 1 Analyzing

### General Physics Experiment 5 Optical Instruments: Simple Magnifier, Microscope, and Newtonian Telescope

General Physics Experiment 5 Optical Instruments: Simple Magnifier, Microscope, and Newtonian Telescope Objective: < To observe the magnifying properties of the simple magnifier, the microscope and the

### Basic principles of photography. David Capel 346B IST

Basic principles of photography David Capel 346B IST Latin Camera Obscura = Dark Room Light passing through a small hole produces an inverted image on the opposite wall Safely observing the solar eclipse

### The Optics of Mirrors

Use with Text Pages 558 563 The Optics of Mirrors Use the terms in the list below to fill in the blanks in the paragraphs about mirrors. reversed smooth eyes concave focal smaller reflect behind ray convex

### Microscope anatomy, image formation and resolution

Microscope anatomy, image formation and resolution Ian Dobbie Buy this book for your lab: D.B. Murphy, "Fundamentals of light microscopy and electronic imaging", ISBN 0-471-25391-X Visit these websites:

### Education in Microscopy and Digital Imaging

Contact Us Carl Zeiss Education in Microscopy and Digital Imaging ZEISS Home Products Solutions Support Online Shop ZEISS International ZEISS Campus Home Interactive Tutorials Basic Microscopy Spectral

### Chapter 26. The Refraction of Light: Lenses and Optical Instruments

Chapter 26 The Refraction of Light: Lenses and Optical Instruments 26.1 The Index of Refraction Light travels through a vacuum at a speed c=3. 00 10 8 m/ s Light travels through materials at a speed less

### Lab 10: Lenses & Telescopes

Physics 2020, Fall 2010 Lab 8 page 1 of 6 Circle your lab day and time. Your name: Mon Tue Wed Thu Fri TA name: 8-10 10-12 12-2 2-4 4-6 INTRODUCTION Lab 10: Lenses & Telescopes In this experiment, you

### Test procedures Page: 1 of 5

Test procedures Page: 1 of 5 1 Scope This part of document establishes uniform requirements for measuring the numerical aperture of optical fibre, thereby assisting in the inspection of fibres and cables

### Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu

Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu 1. Principles of image formation by mirrors (1a) When all length scales of objects, gaps, and holes are much larger than the wavelength

### Properties of optical instruments. Visual optical systems part 2: focal visual instruments (microscope type)

Properties of optical instruments Visual optical systems part 2: focal visual instruments (microscope type) Examples of focal visual instruments magnifying glass Eyepieces Measuring microscopes from the

### LSST All-Sky IR Camera Cloud Monitoring Test Results

LSST All-Sky IR Camera Cloud Monitoring Test Results Jacques Sebag a, John Andrew a, Dimitri Klebe b, Ronald D. Blatherwick c a National Optical Astronomical Observatory, 950 N Cherry, Tucson AZ 85719

### APPENDIX D: ANALYZING ASTRONOMICAL IMAGES WITH MAXIM DL

APPENDIX D: ANALYZING ASTRONOMICAL IMAGES WITH MAXIM DL Written by T.Jaeger INTRODUCTION Early astronomers relied on handmade sketches to record their observations (see Galileo s sketches of Jupiter s

### Presented by Jerry Hubbell Lake of the Woods Observatory (MPC I24) President, Rappahannock Astronomy Club

Presented by Jerry Hubbell Lake of the Woods Observatory (MPC I24) President, Rappahannock Astronomy Club ENGINEERING A FIBER-FED FED SPECTROMETER FOR ASTRONOMICAL USE Objectives Discuss the engineering

### CHAPTER 3LENSES. 1.1 Basics. Convex Lens. Concave Lens. 1 Introduction to convex and concave lenses. Shape: Shape: Symbol: Symbol:

CHAPTER 3LENSES 1 Introduction to convex and concave lenses 1.1 Basics Convex Lens Shape: Concave Lens Shape: Symbol: Symbol: Effect to parallel rays: Effect to parallel rays: Explanation: Explanation:

### Performance Comparison of Spectrometers Featuring On-Axis and Off-Axis Grating Rotation

Performance Comparison of Spectrometers Featuring On-Axis and Off-Axis Rotation By: Michael Case and Roy Grayzel, Acton Research Corporation Introduction The majority of modern spectrographs and scanning

### An Indian Journal FULL PAPER. Trade Science Inc. Parameters design of optical system in transmitive star simulator ABSTRACT KEYWORDS

[Type text] [Type text] [Type text] ISSN : 0974-7435 Volume 10 Issue 23 BioTechnology 2014 An Indian Journal FULL PAPER BTAIJ, 10(23), 2014 [14257-14264] Parameters design of optical system in transmitive

### LAB 12 Reflection and Refraction

Cabrillo College Physics 10L Name LAB 12 Reflection and Refraction Read Hewitt Chapters 28 and 29 What to learn and explore Please read this! When light rays reflect off a mirror surface or refract through

### JPN Pahang Physics Module Form 4 Chapter 5 Light. In each of the following sentences, fill in the bracket the appropriate word or words given below.

JPN Pahang Physics Module orm 4 HAPTER 5: LIGHT In each of the following sentences, fill in the bracket the appropriate word or words given below. solid, liquid, gas, vacuum, electromagnetic wave, energy

### University of Rochester Department of Physics and Astronomy Physics123, Spring Homework 5 - Solutions

Problem 5. University of Rochester Department of Physics and Astronomy Physics23, Spring 202 Homework 5 - Solutions An optometrist finds that a farsighted person has a near point at 25 cm. a) If the eye

### Properties of optical instruments

Properties of optical instruments Visual optical systems part 1: afocal systems (telescope type) A basic optical description of the eye Power: 60 diopters (at rest) Equivalent to a single spherical surface,

### OPTICS LENSES AND TELESCOPES

ASTR 1030 Astronomy Lab 97 Optics - Lenses & Telescopes OPTICS LENSES AND TELESCOPES SYNOPSIS: In this lab you will explore the fundamental properties of a lens and investigate refracting and reflecting

### PYRAMID WAVEFRONT SENSOR PERFORMANCE WITH LASER GUIDE STARS

Florence, Italy. Adaptive May 2013 Optics for Extremely Large Telescopes III ISBN: 978-88-908876-0-4 DOI: 10.12839/AO4ELT3.13138 PYRAMID WAVEFRONT SENSOR PERFORMANCE WITH LASER GUIDE STARS Fernando Quirós-Pacheco

### Chapter 23. Mirrors and Lenses

Chapter 23 Mirrors and Lenses Mirrors and Lenses The development of mirrors and lenses aided the progress of science. It led to the microscopes and telescopes. Allowed the study of objects from microbes

### 3/5/17. Detector Basics. Quantum Efficiency (QE) and Spectral Response. Quantum Efficiency (QE) and Spectral Response

3/5/17 Detector Basics The purpose of any detector is to record the light collected by the telescope. All detectors transform the incident radiation into a some other form to create a permanent record,

### Katarina Logg, Kristofer Bodvard, Mikael Käll. Dept. of Applied Physics. 12 September Optical Microscopy. Supervisor s signature:...

Katarina Logg, Kristofer Bodvard, Mikael Käll Dept. of Applied Physics 12 September 2007 O1 Optical Microscopy Name:.. Date:... Supervisor s signature:... Introduction Over the past decades, the number

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A plane mirror is placed on the level bottom of a swimming pool that holds water (n =

### Chapter 2: Gathering light - the telescope

2.1.Basic Principles Chapter 2: Gathering light - the telescope Astronomy centers on the study of vanishingly faint signals, often from complex fields of sources. Job number one is therefore to collect

### Introducing Celestron s EdgeHD Optical System

Introducing Celestron s EdgeHD Optical System See the Universe in HD EdgeHD is an Aplanatic Schmidt telescope designed to produce aberration free images across a wide visual and photographic field of view.

### NFMS THEORY LIGHT AND COLOR MEASUREMENTS AND THE CCD-BASED GONIOPHOTOMETER. Presented by: January, 2015 S E E T H E D I F F E R E N C E

NFMS THEORY LIGHT AND COLOR MEASUREMENTS AND THE CCD-BASED GONIOPHOTOMETER Presented by: January, 2015 1 NFMS THEORY AND OVERVIEW Contents Light and Color Theory Light, Spectral Power Distributions, and

### Model ST-9XE CCD Imaging Camera SBIG ASTRONOMICAL INSTRUMENTS

Model ST-9XE CCD Imaging Camera.. SBIG ASTRONOMICAL INSTRUMENTS 1... Model ST-9XE Dual CCD Self-Guiding Camera The ST-9XE is identical to the ST-7/8/10/2000 cameras with the exception of the imaging CCD.

### Design and test of a high-contrast imaging coronagraph based on two. 50-step transmission filters

Design and test of a high-contrast imaging coronagraph based on two 50-step transmission filters Jiangpei Dou *a,b, Deqing Ren a,b,c, Yongtian Zhu a,b, Xi Zhang a,b,d, Xue Wang a,b,d a. National Astronomical

### Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Lecture 2 Aug 24 th, 2017 Slides from Dr. Shishir K Shah, Rajesh Rao and Frank (Qingzhong) Liu 1 Instructor TA Digital Image Processing COSC 6380/4393 Pranav Mantini

### Photometry. La Palma trip 2014 Lecture 2 Prof. S.C. Trager

Photometry La Palma trip 2014 Lecture 2 Prof. S.C. Trager Photometry is the measurement of magnitude from images technically, it s the measurement of light, but astronomers use the above definition these

### A prototype of the Laser Guide Stars wavefront sensor for the E-ELT multi-conjugate adaptive optics module

1st AO4ELT conference, 05020 (2010) DOI:10.1051/ao4elt/201005020 Owned by the authors, published by EDP Sciences, 2010 A prototype of the Laser Guide Stars wavefront sensor for the E-ELT multi-conjugate

### CHAPTER 18 REFRACTION & LENSES

Physics Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 18 REFRACTION & LENSES Day Plans for the day Assignments for the day 1 18.1 Refraction of Light o Snell

### Basic spectrometer types

Spectroscopy Basic spectrometer types Differential-refraction-based, in which the variation of refractive index with wavelength of an optical material is used to separate the wavelengths, as in a prism

### OPTICS I LENSES AND IMAGES

APAS Laboratory Optics I OPTICS I LENSES AND IMAGES If at first you don t succeed try, try again. Then give up- there s no sense in being foolish about it. -W.C. Fields SYNOPSIS: In Optics I you will learn

### EXPRIMENT 3 COUPLING FIBERS TO SEMICONDUCTOR SOURCES

EXPRIMENT 3 COUPLING FIBERS TO SEMICONDUCTOR SOURCES OBJECTIVES In this lab, firstly you will learn to couple semiconductor sources, i.e., lightemitting diodes (LED's), to optical fibers. The coupling

### Basics of Light Microscopy and Metallography

ENGR45: Introduction to Materials Spring 2012 Laboratory 8 Basics of Light Microscopy and Metallography In this exercise you will: gain familiarity with the proper use of a research-grade light microscope

### Chapter 36. Image Formation

Chapter 36 Image Formation Real and Virtual Images Real images can be displayed on screens Virtual Images can not be displayed onto screens. Focal Length& Radius of Curvature When the object is very far

### arxiv: v1 [astro-ph.im] 26 Mar 2012

The image slicer for the Subaru Telescope High Dispersion Spectrograph arxiv:1203.5568v1 [astro-ph.im] 26 Mar 2012 Akito Tajitsu The Subaru Telescope, National Astronomical Observatory of Japan, 650 North

### Improved Spectra with a Schmidt-Czerny-Turner Spectrograph

Improved Spectra with a Schmidt-Czerny-Turner Spectrograph Abstract For years spectra have been measured using traditional Czerny-Turner (CT) design dispersive spectrographs. Optical aberrations inherent

### MICROSCOPE LAB. Resolving Power How well specimen detail is preserved during the magnifying process.

AP BIOLOGY Cells ACTIVITY #2 MICROSCOPE LAB OBJECTIVES 1. Demonstrate proper care and use of a compound microscope. 2. Identify the parts of the microscope and describe the function of each part. 3. Compare

### 1) An electromagnetic wave is a result of electric and magnetic fields acting together. T 1)

Exam 3 Review Name TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) An electromagnetic wave is a result of electric and magnetic fields acting together. T 1) 2) Electromagnetic

### CHAPTER 34. Optical Images

CHAPTER 34 1* Can a virtual image be photographed? Yes. Note that a virtual image is seen because the eye focuses the diverging rays to form a real image on the retina. Similarly, the camera lens can focus