Spatial resolution. Spatial resolution

Size: px
Start display at page:

Download "Spatial resolution. Spatial resolution"

Transcription

1 11/05/00 Refraction Compound refractive lenses (concave) Snigirev et al, NATURE 199 patents: Tomie 1995 x-rays: n = 1 - δ - i β < 1 Chromatic lenses Prod.: Aachen, D need of concave and parabolic lenses f=r 0 /(δ) l = 1/(ρ*[µ/ρ]) lens transmission: T(y) = exp(-y /fδl) for d=0 Gaussian with σ = sqrt(fδl) resolution [nm] 10 8 Li CRL No: R 0 and N are free R=0.5λsqrt[R 0 /(Nlδ )] 1 R = λ Pt capillary R exp =7 x 55 1 kev for mini-lens in Si (Schroer et al, APL 005) 8 8 photon energy [ev] 1

2 11/05/00 Schroer et al (PRL 005): Better focus adiabatically to R=.7 7. kev R exp not yet (production D?) Schroer et al (PRL 005): Better lighten the lens with Fresnel s lighthouse lens strategy and focus adiabatically to R=.1 7. kev R exp not yet (production D?) What to do? Lighten a refractive lens by removing all material, which retards the field by multiples of π

3 11/05/00 Fresnel (kinoform)) lenses How to reduce absorption in CRL s? CRL B. Lengeler et al Clessidra A tiny plastic x-ray x lens (1D)! hair May 00 3

4 11/05/00 A tiny plastic x-ray x lens! Jark et al, JSR 00 Effective aperture similar to CRL s. f=1 m... m for λ=0.15 nm Exp. focus.8 µm! At ELETTRA 15x intensity gain in one dimension in 30 µm spot! Click to edit. mm Master subtitle style High resolution radiograph A tiny plastic x-ray x lens (D)! Two-dimensional focus behind crossed lenses CCD image: May 00 lens shadow focus, gain 5x size 50 x 80 µm

5 11/05/00 other Fresnel (kinoform)) lenses a b c d e No limit for R! Decreases with feature size! R exp 0. µm (1D with c) a) Aristov et al, APL000 b) Snigireva et al, NIM001 c) Evans-Lutterodt, OE003 d) ANKA, Karlsruhe, 005 e) Cederstroem, JSR 005 Diffraction Bragg-Fresnel reflection zone-plate Michette et al, Opt. Commun, 005 Combine diffraction of different order 5

6 11/05/00 resolution [nm] R = λ Pt capillary Li CRL photon energy [ev] Once more multilayer coating R ult x 30 kev R exp not yet Some problems: Spatial coherence Diffraction limited spot size is obtained with spatially coherent incident radiation A = lens aperture Q = source distance S (A/Q) = λ ===> Q=SA/λ e.g. S=30 µm, A=1 mm, λ =0.15 nm: Q=00 m!! S= 30 µm, A=0.0 mm, λ=0.15 nm: Q= m!! Is your aperture spatially coherently illuminated? Is your demagnification of order of 10,000?

7 11/05/00 Some problems: Depth of focus Let s go back Schroer et al, PRL 005 f<1 7. kev! assume NA=10 mrad=0.01 then f µm for s 0 nm f 100 µm for s 1000 nm Attenuation length l in Au/Si l = 1/00 7. kev l =.5/10 10 kev l = 0.0/ kev Scanning or imaging? Some problems: spot size? Classical knife-edge test CRL: C.G. Schroer et al, APL 87, 1103 (005) Fluorescence from test pattern A.C. Thomson et al, Proc. SPIE 15, 1 (000) 100 Fit to integrated data 0. µm Click to edit Master 0 subtitle style 1.0 µm R from knife-edge (fwhm) KB mirror: 1.0 µm zone-plate: 0. µm rel. transmission [%] Simulation:.0 µm experiment: KB mirrors zoneplate dot diameter [microns] 7

8 11/05/00 Summary: l Simpler optics may bring us ideally to R - nm (capillaries, waveguides, tilted Laue lenses, adiabatic CRL s) l More sophisticated objects are capable of R 1- nm (ideal Laue lenses, adiabatic kinoform refractive lenses, Bragg-Fresnel reflection zone-plates) l Is R λ possible? l An X-ray waveguide could provide already R 5- nm (but only 1D, no further recent efforts) l Fresnel zone-plates have R 0 nm (better in imaging) l Many other systems could arrive at about R 30-5 nm X-ray Zoom lens: Do-It It-Yourself! 1 many n>1: in the visible β θ = (1-n)/tanβ n<1: x-rays B. Cederström, R. N. Cahn, M. Danielsson, M. Lundqvist, D. R. Nygren: Focusing x-rays with old LP s Nature 0, 951 (000) Click to edit Master θsubtitle style d d g/n L g g y x 1 3 N 8

9 11/05/00 Get it almost for free 0 µm 1 mm Sawtooth comb milled into PLEXIGLASS in ELETTRA workshop [Marco De Gregorio, Gilio Sandrin] For geometrical optics it is a lens with parabolic transmission function, i.e. an approximation of CRL Test it at home x-ray tube (35 kv white) 0.0 mm x mm alligator lens in PMMA 50 teeth over 50 mm vert. acc mm for 1 kev opening 0. mm ( µm pitch) Si(Li) detector behind 0.01 mm slit expected beam size: without lens: 0.3 mm with lens: 0.0 mm 90 mm 90 mm With an average transmission of 0.85 in the effective aperture an intensity gain of g = 0.85 * 0.3/0.0 =.3 is expected 9

10 11/05/00 Results (1D) You get gain! Jark, X-ray spectrom. 00 experiment g/n =.0 µm Open/close the alligator mouth (lens): a) tunable large bandpass x-ray monochromator! b) tunable beam collimator d d g/n θ L y Click gto edit Master subtitle style g x gain gain 0 ray-tracing perfect comb defect comb Lens 30tuning photon energy [kev] experiment g/n = 1.3 µm ray-tracing perfect comb defect comb 1 3 N D with crossed pair photon energy [kev] Reflection vertically focusing elliptical mirror parabola: y l v Appendix: in more detail = b x (x'',y'') r' v l h r' h horiz. foc. ellip. mirror Crossed mirror pair (Kirkpatrick-Baez system) image Click to edit y Master subtitle style (x',y') x l Ideally elliptical mirrors needed l approximate as parabola y=(bx) 1/, y/ x =0.5 (b/x) 1/ l for x=x : y/ x (x ) = Φ crit l then b=(φ crit ) x and at x=x : y/ x (x ) = Φ crit (x /x ) 1/ l deflection angle is y/ x l and convergence angle in focus (h,v),f = NA = Φ crit [1-(x /x ) 1/ ] l Mirror size parameter: q=l/r= x -x /r 10

11 11/05/00 Reflection l NA = Φ crit (1 q ) + q l mirrors just touch with q h = l h /r h = l v /r v = q v = q r h q r h = r v q r v we put r v = m r h : then q = (m-1)/(m+1) l at ELETTRA m=5: q = 1.33 h,f = v,f = 1.1 Φ crit = NA l more realistic NA = Φ crit In more detail Crossed mirror pair (Kirkpatrick-Baez system) vertically focusing elliptical mirror l v r' v l h r' h horiz. foc. ellip. mirror image OPERATIONAL example: ESRF (bendable flat mirror): f=95 mm and l=90 mm NA = 0.8 Φ crit R = λ/(0.8 sqrt(δ)) = R prac = 5 * R single bounce capillary exp: Φ =. mrad at 0.5 kev 11

Experience of synchrotron sources and optics modelling at Diamond Light Source

Experience of synchrotron sources and optics modelling at Diamond Light Source Experience of synchrotron sources and optics modelling at Diamond Light Source Lucia Alianelli Outline Microfocus MX beamline optics design (Principal Beamline Scientist G. Evans) Surface and interface

More information

Brief review of Refractive optics Motivation for kinoforms Are there fundamental limits of these optics

Brief review of Refractive optics Motivation for kinoforms Are there fundamental limits of these optics Can Kinoform hard X-ray optics produce sub-10nm beams? K.Evans-Lutterodt A.Stein Brief review of Refractive optics Motivation for kinoforms Are there fundamental limits of these optics U.S. DEPARTMENT

More information

Microspot x-ray focusing using a short focal-length compound refractive lenses

Microspot x-ray focusing using a short focal-length compound refractive lenses REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 75, NUMBER 11 NOVEMBER 2004 Microspot x-ray focusing using a short focal-length compound refractive lenses Y. I. Dudchik, a) N. N. Kolchevsky, and F. F. Komarov

More information

X-Ray Microfocusing Optics. Barry Lai X-Ray Science Division Advanced Photon Source

X-Ray Microfocusing Optics. Barry Lai X-Ray Science Division Advanced Photon Source X-Ray Microfocusing Optics Barry Lai X-Ray Science Division Advanced Photon Source Outline Introduction General considerations Reflective optics Diffractive optics Refractive optics Future prospects 2

More information

Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember

Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember Günter Toesko - Laserseminar BLZ im Dezember 2009 1 Aberrations An optical aberration is a distortion in the image formed by an optical system compared to the original. It can arise for a number of reasons

More information

Fiber Optic Communications

Fiber Optic Communications Fiber Optic Communications ( Chapter 2: Optics Review ) presented by Prof. Kwang-Chun Ho 1 Section 2.4: Numerical Aperture Consider an optical receiver: where the diameter of photodetector surface area

More information

REFRACTIVE X-RAY LENSES NEW DEVELOPMENTS

REFRACTIVE X-RAY LENSES NEW DEVELOPMENTS REFRACTIVE X-RAY LENSES NEW DEVELOPMENTS BRUNO LENGELER PHYSICS DEPARTMENT RWTH AACHEN UNIVERSITY and RXOPTICS info@rxoptics.de and www.rxoptics.de (2012) 1 Rotational parabolic and linear parabolic x-ray

More information

X-Ray Optics for Imaging

X-Ray Optics for Imaging X-Ray Optics for Imaging ideal mirror r Outline Hercules Specialised Course 19 (a) -500 lateral axis, z in nm -250 0 250 500-1.0 0.0 1.0 x in mm 1.0 0.5 0.0 Introduction + History Reflective Optics Diffractive

More information

Fabrication, testing, and performance of a variable-focus x-ray compound lens

Fabrication, testing, and performance of a variable-focus x-ray compound lens Fabrication, testing, and performance of a variable-focus x-ray compound lens A. Khounsary *a, S. D. Shastri a, A. Mashayekhi a, A. Macrander a, R. Smither a, F. F. Kraft b a Advanced Photon Source, Argonne

More information

Single-element elliptical hard x-ray micro-optics

Single-element elliptical hard x-ray micro-optics Single-element elliptical hard x-ray micro-optics Kenneth Evans-Lutterodt, James M. Ablett, Aaron Stein and Chi-Chang Kao National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York,

More information

Mirrors and Lenses. Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses.

Mirrors and Lenses. Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses. Mirrors and Lenses Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses. Notation for Mirrors and Lenses The object distance is the distance from the object

More information

Optical Characterization of Compound Refractive Lenses

Optical Characterization of Compound Refractive Lenses Optical Characterization of Compound Refractive Lenses ARNDT LAST, INSTITUTE OF MICROSTRUCTURE TECHNOLOGY (IMT) CRL Layout 1357_00_A0 KIT University of the State of Baden-Wuerttemberg and National Research

More information

Sources & Beam Line Optics

Sources & Beam Line Optics SSRL Scattering Workshop May 16, 2006 Sources & Beam Line Optics Thomas Rabedeau SSRL Beam Line Development Objective/Scope Objective - develop a better understanding of the capabilities and limitations

More information

Imaging in the EUV region. Eberhard Spiller

Imaging in the EUV region. Eberhard Spiller Imaging in the EUV region Eberhard Spiller Introduction to Imaging Applications Astronomy Microscopy EUV Lithography Direct Reconstruction E. Spiller, June 11, 2008 2 Imaging with light Waves move by λ

More information

Simulation of aperture-optimised refractive lenses for hard X-ray full field microscopy

Simulation of aperture-optimised refractive lenses for hard X-ray full field microscopy Simulation of aperture-optimised refractive lenses for hard X-ray full field microscopy Felix Marschall, 1,2 Arndt Last, 1, Markus Simon, 1,3 Harald Vogt, 1,4 and Jürgen Mohr 1 1 Institute of Microstructure

More information

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations. Lecture 2: Geometrical Optics Outline 1 Geometrical Approximation 2 Lenses 3 Mirrors 4 Optical Systems 5 Images and Pupils 6 Aberrations Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl

More information

Introduction to Electron Microscopy

Introduction to Electron Microscopy Introduction to Electron Microscopy Prof. David Muller, dm24@cornell.edu Rm 274 Clark Hall, 255-4065 Ernst Ruska and Max Knoll built the first electron microscope in 1931 (Nobel Prize to Ruska in 1986)

More information

Exam 4. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Exam 4. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Exam 4 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Mirages are a result of which physical phenomena a. interference c. reflection

More information

EUV Plasma Source with IR Power Recycling

EUV Plasma Source with IR Power Recycling 1 EUV Plasma Source with IR Power Recycling Kenneth C. Johnson kjinnovation@earthlink.net 1/6/2016 (first revision) Abstract Laser power requirements for an EUV laser-produced plasma source can be reduced

More information

EUV and Soft X-Ray Optics

EUV and Soft X-Ray Optics David Attwood University of California, Berkeley Cheiron School September 2012 SPring-8 1 The short wavelength region of the electromagnetic spectrum n = 1 + i,

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1: Raw data. These are measured at a single orientation of the sample showing intensity contributions from individual subgrains: a) the second beamtime, which

More information

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations. Lecture 2: Geometrical Optics Outline 1 Geometrical Approximation 2 Lenses 3 Mirrors 4 Optical Systems 5 Images and Pupils 6 Aberrations Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl

More information

Workshop IGLEX Andromède & ThomX 23 June 2016, LAL Orsay. The X-line of ThomX.

Workshop IGLEX Andromède & ThomX 23 June 2016, LAL Orsay. The X-line of ThomX. Workshop IGLEX Andromède & ThomX 23 June 2016, LAL Orsay The X-line of ThomX jerome.lacipiere@neel.cnrs.fr mjacquet@lal.in2p3.fr Brightness panorama of X-ray (10-100 kev) sources Synchrotron : not very

More information

Will contain image distance after raytrace Will contain image height after raytrace

Will contain image distance after raytrace Will contain image height after raytrace Name: LASR 51 Final Exam May 29, 2002 Answer all questions. Module numbers are for guidance, some material is from class handouts. Exam ends at 8:20 pm. Ynu Raytracing The first questions refer to the

More information

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name:

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name: EE119 Introduction to Optical Engineering Fall 2009 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

PHY 431 Homework Set #5 Due Nov. 20 at the start of class

PHY 431 Homework Set #5 Due Nov. 20 at the start of class PHY 431 Homework Set #5 Due Nov. 0 at the start of class 1) Newton s rings (10%) The radius of curvature of the convex surface of a plano-convex lens is 30 cm. The lens is placed with its convex side down

More information

Water-Window Microscope Based on Nitrogen Plasma Capillary Discharge Source

Water-Window Microscope Based on Nitrogen Plasma Capillary Discharge Source 2015 International Workshop on EUV and Soft X-Ray Sources Water-Window Microscope Based on Nitrogen Plasma Capillary Discharge Source T. Parkman 1, M. F. Nawaz 2, M. Nevrkla 2, M. Vrbova 1, A. Jancarek

More information

BEAM HALO OBSERVATION BY CORONAGRAPH

BEAM HALO OBSERVATION BY CORONAGRAPH BEAM HALO OBSERVATION BY CORONAGRAPH T. Mitsuhashi, KEK, TSUKUBA, Japan Abstract We have developed a coronagraph for the observation of the beam halo surrounding a beam. An opaque disk is set in the beam

More information

Hard X-Ray Microanalysis with Parabolic Refractive Lenses.

Hard X-Ray Microanalysis with Parabolic Refractive Lenses. Hard X-Ray Microanalysis with Parabolic Refractive Lenses. Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch Westfälischen Technischen Hochschule Aachen zur Erlangung des

More information

Reflectors vs. Refractors

Reflectors vs. Refractors 1 Telescope Types - Telescopes collect and concentrate light (which can then be magnified, dispersed as a spectrum, etc). - In the end it is the collecting area that counts. - There are two primary telescope

More information

Aberrations and adaptive optics for biomedical microscopes

Aberrations and adaptive optics for biomedical microscopes Aberrations and adaptive optics for biomedical microscopes Martin Booth Department of Engineering Science And Centre for Neural Circuits and Behaviour University of Oxford Outline Rays, wave fronts and

More information

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline Lecture 4: Geometrical Optics 2 Outline 1 Optical Systems 2 Images and Pupils 3 Rays 4 Wavefronts 5 Aberrations Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical

More information

Hartmann wavefront sensing Beamline alignment

Hartmann wavefront sensing Beamline alignment Hartmann wavefront sensing Beamline alignment Guillaume Dovillaire SOS Trieste October 4th, 2016 G. Dovillaire M COM PPT 2016.01 GD 1 SOS Trieste October 4th, 2016 G. Dovillaire M COM PPT 2016.01 GD 2

More information

DEVELOPMENT OF A WAVELENGTH DISPERSIVE X-RAY FLUORESCENCE SPECTROMETER USING A MULTI-CAPILLARY X-RAY LENS FOR X-RAY DETECTION

DEVELOPMENT OF A WAVELENGTH DISPERSIVE X-RAY FLUORESCENCE SPECTROMETER USING A MULTI-CAPILLARY X-RAY LENS FOR X-RAY DETECTION Copyright JCPDS - International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Volume 46. 346 DEVELOPMENT OF A WAVELENGTH DISPERSIVE X-RAY FLUORESCENCE SPECTROMETER USING A MULTI-CAPILLARY

More information

Applications of Optics

Applications of Optics Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 26 Applications of Optics Marilyn Akins, PhD Broome Community College Applications of Optics Many devices are based on the principles of optics

More information

BL39XU Magnetic Materials

BL39XU Magnetic Materials BL39XU Magnetic Materials BL39XU is an undulator beamline that is dedicated to hard X-ray spectroscopy and diffractometry requiring control of the X-ray polarization state. The major applications of the

More information

GRINTECH GmbH. product information.

GRINTECH GmbH. product information. GRINTECH GmbH product information www.grintech.de GRIN rod lenses Gradient index lenses for fiber coupling and beam shaping of laser diodes z l d s f Order example: GT-LFRL-100-025-50-CC (670) Design wavelength

More information

Making hard x-ray micro-focus beam and imaging microscopy with Fresnel zone plate optics. -SPring-8 summer school text- Sept Revised June 2009,

Making hard x-ray micro-focus beam and imaging microscopy with Fresnel zone plate optics. -SPring-8 summer school text- Sept Revised June 2009, Making hard x-ray micro-focus beam and imaging microscopy with Fresnel zone plate optics -SPring-8 summer school text- Sept. 2008 Revised June 2009, Revised October 2009 (Imaging microscope) Revised Sep.

More information

MICROFOCUSING SOURCE AND MULTILAYER OPTICS BASED X- RAY DIFFRACTION SYSTEMS

MICROFOCUSING SOURCE AND MULTILAYER OPTICS BASED X- RAY DIFFRACTION SYSTEMS THE RIGAKU JOURNAL VOL. 19 / NO.1 / 2002 MICROFOCUSING SOURCE AND MULTILAYER OPTICS BASED X- RAY DIFFRACTION SYSTEMS BORIS VERMAN, LICAI JIANG AND BONGLEA KIM Osmic, Inc., 1900 Taylor Rd., Auburn Hills,

More information

OPAC 202 Optical Design and Instrumentation. Topic 3 Review Of Geometrical and Wave Optics. Department of

OPAC 202 Optical Design and Instrumentation. Topic 3 Review Of Geometrical and Wave Optics. Department of OPAC 202 Optical Design and Instrumentation Topic 3 Review Of Geometrical and Wave Optics Department of http://www.gantep.edu.tr/~bingul/opac202 Optical & Acustical Engineering Gaziantep University Feb

More information

Making hard x-ray micro-focus beam and imaging microscope with Fresnel zone plate optics. -SPring-8 summer school text- September 2008

Making hard x-ray micro-focus beam and imaging microscope with Fresnel zone plate optics. -SPring-8 summer school text- September 2008 Making hard x-ray micro-focus beam and imaging microscope with Fresnel zone plate optics -SPring-8 summer school text- September 2008 Revised June 2009, Revised October 2009 (Imaging microscope) Revised

More information

ADVANCED OPTICS LAB -ECEN 5606

ADVANCED OPTICS LAB -ECEN 5606 ADVANCED OPTICS LAB -ECEN 5606 Basic Skills Lab Dr. Steve Cundiff and Edward McKenna, 1/15/04 rev KW 1/15/06, 1/8/10 The goal of this lab is to provide you with practice of some of the basic skills needed

More information

Opto-VLSI-based reconfigurable photonic RF filter

Opto-VLSI-based reconfigurable photonic RF filter Research Online ECU Publications 29 Opto-VLSI-based reconfigurable photonic RF filter Feng Xiao Mingya Shen Budi Juswardy Kamal Alameh This article was originally published as: Xiao, F., Shen, M., Juswardy,

More information

ADVANCED OPTICS LAB -ECEN Basic Skills Lab

ADVANCED OPTICS LAB -ECEN Basic Skills Lab ADVANCED OPTICS LAB -ECEN 5606 Basic Skills Lab Dr. Steve Cundiff and Edward McKenna, 1/15/04 Revised KW 1/15/06, 1/8/10 Revised CC and RZ 01/17/14 The goal of this lab is to provide you with practice

More information

Computer Generated Holograms for Optical Testing

Computer Generated Holograms for Optical Testing Computer Generated Holograms for Optical Testing Dr. Jim Burge Associate Professor Optical Sciences and Astronomy University of Arizona jburge@optics.arizona.edu 520-621-8182 Computer Generated Holograms

More information

Focusing X-ray beams below 50 nm using bent multilayers. O. Hignette Optics group. European Synchrotron Radiation Facility (FRANCE) Outline

Focusing X-ray beams below 50 nm using bent multilayers. O. Hignette Optics group. European Synchrotron Radiation Facility (FRANCE) Outline Focusing X-ray beams below 50 nm using bent multilayers O. Hignette Optics group European Synchrotron Radiation Facility (FRANCE) Outline Graded multilayers resolution limits 40 nanometers focusing Fabrication

More information

Low Cost Rolled X-ray Prism Lenses to Increase Photon Flux Density in Diffractometry Experiments

Low Cost Rolled X-ray Prism Lenses to Increase Photon Flux Density in Diffractometry Experiments Copyright JCPDS-International Centre for Diffraction Data 2014 ISSN 1097-0002 17 Low Cost Rolled X-ray Prism Lenses to Increase Photon Flux Density in Diffractometry Experiments H. Vogt a, A. Last a, J.

More information

Heisenberg) relation applied to space and transverse wavevector

Heisenberg) relation applied to space and transverse wavevector 2. Optical Microscopy 2.1 Principles A microscope is in principle nothing else than a simple lens system for magnifying small objects. The first lens, called the objective, has a short focal length (a

More information

Supplementary Figure 1. Effect of the spacer thickness on the resonance properties of the gold and silver metasurface layers.

Supplementary Figure 1. Effect of the spacer thickness on the resonance properties of the gold and silver metasurface layers. Supplementary Figure 1. Effect of the spacer thickness on the resonance properties of the gold and silver metasurface layers. Finite-difference time-domain calculations of the optical transmittance through

More information

Manufacturing Metrology Team

Manufacturing Metrology Team The Team has a range of state-of-the-art equipment for the measurement of surface texture and form. We are happy to discuss potential measurement issues and collaborative research Manufacturing Metrology

More information

Diffractive optical elements based on Fourier optical techniques: a new class of optics for extreme ultraviolet and soft x-ray wavelengths

Diffractive optical elements based on Fourier optical techniques: a new class of optics for extreme ultraviolet and soft x-ray wavelengths Diffractive optical elements based on Fourier optical techniques: a new class of optics for extreme ultraviolet and soft x-ray wavelengths Chang Chang, Patrick Naulleau, Erik Anderson, Kristine Rosfjord,

More information

Radial Polarization Converter With LC Driver USER MANUAL

Radial Polarization Converter With LC Driver USER MANUAL ARCoptix Radial Polarization Converter With LC Driver USER MANUAL Arcoptix S.A Ch. Trois-portes 18 2000 Neuchâtel Switzerland Mail: info@arcoptix.com Tel: ++41 32 731 04 66 Principle of the radial polarization

More information

Characterization of a High-Energy X-ray Compound Refractive Lens

Characterization of a High-Energy X-ray Compound Refractive Lens Characterization of a High-Energy X-ray Compound Refractive Lens Stewart Laird Advisor: Dr. Jim Knauer Laboratory for Laser Energetics University of Rochester Summer High School Research Program 25 Traditionally,

More information

Advancing EDS Analysis in the SEM Quantitative XRF. International Microscopy Congress, September 5 th, Outline

Advancing EDS Analysis in the SEM Quantitative XRF. International Microscopy Congress, September 5 th, Outline Advancing EDS Analysis in the SEM with in-situ Quantitative XRF Brian J. Cross (1) & Kenny C. Witherspoon (2) 1) CrossRoads Scientific, El Granada, CA 94018, USA 2) ixrf Systems, Inc., Houston, TX 77059,

More information

Lecture Notes 10 Image Sensor Optics. Imaging optics. Pixel optics. Microlens

Lecture Notes 10 Image Sensor Optics. Imaging optics. Pixel optics. Microlens Lecture Notes 10 Image Sensor Optics Imaging optics Space-invariant model Space-varying model Pixel optics Transmission Vignetting Microlens EE 392B: Image Sensor Optics 10-1 Image Sensor Optics Microlens

More information

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name:

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name: EE119 Introduction to Optical Engineering Spring 2003 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

Photon Diagnostics. FLASH User Workshop 08.

Photon Diagnostics. FLASH User Workshop 08. Photon Diagnostics FLASH User Workshop 08 Kai.Tiedtke@desy.de Outline What kind of diagnostic tools do user need to make efficient use of FLASH? intensity (New GMD) beam position intensity profile on the

More information

Design Description Document

Design Description Document UNIVERSITY OF ROCHESTER Design Description Document Flat Output Backlit Strobe Dare Bodington, Changchen Chen, Nick Cirucci Customer: Engineers: Advisor committee: Sydor Instruments Dare Bodington, Changchen

More information

Principles of Optics for Engineers

Principles of Optics for Engineers Principles of Optics for Engineers Uniting historically different approaches by presenting optical analyses as solutions of Maxwell s equations, this unique book enables students and practicing engineers

More information

Chapter Wave Optics. MockTime.com. Ans: (d)

Chapter Wave Optics. MockTime.com. Ans: (d) Chapter Wave Optics Q1. Which one of the following phenomena is not explained by Huygen s construction of wave front? [1988] (a) Refraction Reflection Diffraction Origin of spectra Q2. Which of the following

More information

Lecture 10. Dielectric Waveguides and Optical Fibers

Lecture 10. Dielectric Waveguides and Optical Fibers Lecture 10 Dielectric Waveguides and Optical Fibers Slab Waveguide, Modes, V-Number Modal, Material, and Waveguide Dispersions Step-Index Fiber, Multimode and Single Mode Fibers Numerical Aperture, Coupling

More information

Εισαγωγική στην Οπτική Απεικόνιση

Εισαγωγική στην Οπτική Απεικόνιση Εισαγωγική στην Οπτική Απεικόνιση Δημήτριος Τζεράνης, Ph.D. Εμβιομηχανική και Βιοϊατρική Τεχνολογία Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. Χειμερινό Εξάμηνο 2015 Light: A type of EM Radiation EM radiation:

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Optically reconfigurable metasurfaces and photonic devices based on phase change materials S1: Schematic diagram of the experimental setup. A Ti-Sapphire femtosecond laser (Coherent Chameleon Vision S)

More information

FRESNEL LENS TOPOGRAPHY WITH 3D METROLOGY

FRESNEL LENS TOPOGRAPHY WITH 3D METROLOGY FRESNEL LENS TOPOGRAPHY WITH 3D METROLOGY INTRO: Prepared by Benjamin Mell 6 Morgan, Ste156, Irvine CA 92618 P: 949.461.9292 F: 949.461.9232 nanovea.com Today's standard for tomorrow's materials. 2010

More information

Testing Aspheric Lenses: New Approaches

Testing Aspheric Lenses: New Approaches Nasrin Ghanbari OPTI 521 - Synopsis of a published Paper November 5, 2012 Testing Aspheric Lenses: New Approaches by W. Osten, B. D orband, E. Garbusi, Ch. Pruss, and L. Seifert Published in 2010 Introduction

More information

Lithography. 3 rd. lecture: introduction. Prof. Yosi Shacham-Diamand. Fall 2004

Lithography. 3 rd. lecture: introduction. Prof. Yosi Shacham-Diamand. Fall 2004 Lithography 3 rd lecture: introduction Prof. Yosi Shacham-Diamand Fall 2004 1 List of content Fundamental principles Characteristics parameters Exposure systems 2 Fundamental principles Aerial Image Exposure

More information

research papers Focusing X-rays with simple arrays of prismlike

research papers Focusing X-rays with simple arrays of prismlike Focusing X-rays with simple arrays of prismlike structures Werner Jark, a * FreÂderic PeÂrenneÁs, a Marco Matteucci, b Lucia Mancini, a Francesco Montanari, c Luigi Rigon, d Giuliana Tromba, a Andrea Somogyi,

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1. Modal simulation and frequency response of a high- frequency (75- khz) MEMS. a, Modal frequency of the device was simulated using Coventorware and shows

More information

Lecture 3: Geometrical Optics 1. Spherical Waves. From Waves to Rays. Lenses. Chromatic Aberrations. Mirrors. Outline

Lecture 3: Geometrical Optics 1. Spherical Waves. From Waves to Rays. Lenses. Chromatic Aberrations. Mirrors. Outline Lecture 3: Geometrical Optics 1 Outline 1 Spherical Waves 2 From Waves to Rays 3 Lenses 4 Chromatic Aberrations 5 Mirrors Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical

More information

Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: Signature:

Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: Signature: Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: PID: Signature: CLOSED BOOK. TWO 8 1/2 X 11 SHEET OF NOTES (double sided is allowed), AND SCIENTIFIC POCKET CALCULATOR

More information

PANalytical X pert Pro Gazing Incidence X-ray Reflectivity User Manual (Version: )

PANalytical X pert Pro Gazing Incidence X-ray Reflectivity User Manual (Version: ) University of Minnesota College of Science and Engineering Characterization Facility PANalytical X pert Pro Gazing Incidence X-ray Reflectivity User Manual (Version: 2012.10.17) The following instructions

More information

Micro- and Nano-Technology... for Optics

Micro- and Nano-Technology... for Optics Micro- and Nano-Technology...... for Optics 3.2 Lithography U.D. Zeitner Fraunhofer Institut für Angewandte Optik und Feinmechanik Jena Printing on Stones Map of Munich Stone Print Contact Printing light

More information

Optics Laboratory Spring Semester 2017 University of Portland

Optics Laboratory Spring Semester 2017 University of Portland Optics Laboratory Spring Semester 2017 University of Portland Laser Safety Warning: The HeNe laser can cause permanent damage to your vision. Never look directly into the laser tube or at a reflection

More information

CHAPTER 9 POSITION SENSITIVE PHOTOMULTIPLIER TUBES

CHAPTER 9 POSITION SENSITIVE PHOTOMULTIPLIER TUBES CHAPTER 9 POSITION SENSITIVE PHOTOMULTIPLIER TUBES The current multiplication mechanism offered by dynodes makes photomultiplier tubes ideal for low-light-level measurement. As explained earlier, there

More information

Wir schaffen Wissen heute für morgen

Wir schaffen Wissen heute für morgen Analyzing Wavefront and Spectrum of Hard X-ray Free-Electron Laser Radiation SLS (since 2001) Wir schaffen Wissen heute für morgen PSI: SLAC: SACLA: EuroXFEL: C. David, S. Rutishauser, P. Karvinen, I.

More information

k λ NA Resolution of optical systems depends on the wavelength visible light λ = 500 nm Extreme ultra-violet and soft x-ray light λ = 1-50 nm

k λ NA Resolution of optical systems depends on the wavelength visible light λ = 500 nm Extreme ultra-violet and soft x-ray light λ = 1-50 nm Resolution of optical systems depends on the wavelength visible light λ = 500 nm Spatial Resolution = k λ NA EUV and SXR microscopy can potentially resolve full-field images with 10-100x smaller features

More information

Shintake Monitor Nanometer Beam Size Measurement and Beam Tuning

Shintake Monitor Nanometer Beam Size Measurement and Beam Tuning Shintake Monitor Nanometer Beam Size Measurement and Beam Tuning Technology and Instrumentation in Particle Physics 2011 Chicago, June 11 Jacqueline Yan, M.Oroku, Y. Yamaguchi T. Yamanaka, Y. Kamiya, T.

More information

Converging and Diverging Surfaces. Lenses. Converging Surface

Converging and Diverging Surfaces. Lenses. Converging Surface Lenses Sandy Skoglund 2 Converging and Diverging s AIR Converging If the surface is convex, it is a converging surface in the sense that the parallel rays bend toward each other after passing through the

More information

Research Article Fabrication and Performance Test of Fresnel Zone Plate with 35 nm Outermost Zone Width in Hard X-Ray Region

Research Article Fabrication and Performance Test of Fresnel Zone Plate with 35 nm Outermost Zone Width in Hard X-Ray Region Hindawi Publishing Corporation X-Ray Optics and Instrumentation Volume 2010, Article ID 824387, 6 pages doi:10.1155/2010/824387 Research Article Fabrication and Performance Test of Fresnel Zone Plate with

More information

Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG

Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG C. Schnitzler a, S. Hambuecker a, O. Ruebenach a, V. Sinhoff a, G. Steckman b, L. West b, C. Wessling c, D. Hoffmann

More information

LOS 1 LASER OPTICS SET

LOS 1 LASER OPTICS SET LOS 1 LASER OPTICS SET Contents 1 Introduction 3 2 Light interference 5 2.1 Light interference on a thin glass plate 6 2.2 Michelson s interferometer 7 3 Light diffraction 13 3.1 Light diffraction on a

More information

VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES

VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES Shortly after the experimental confirmation of the wave properties of the electron, it was suggested that the electron could be used to examine objects

More information

Cr, Co, Cu, Mo, Ag (others on request) Mean Reflectivity: R > 70%

Cr, Co, Cu, Mo, Ag (others on request) Mean Reflectivity: R > 70% PARALLEL BEAM X-RAY OPTICS y Mirror length L Θ = f(x) b p/2 λ = 2d eff (x) sin Θ(x) eff x m Parallel beam width b=f(p,λ,l,,l,x m ) x Fabrication of high precision 6 mm parallel beam optics both on prefigured

More information

FIRST INDIRECT X-RAY IMAGING TESTS WITH AN 88-mm DIAMETER SINGLE CRYSTAL

FIRST INDIRECT X-RAY IMAGING TESTS WITH AN 88-mm DIAMETER SINGLE CRYSTAL FERMILAB-CONF-16-641-AD-E ACCEPTED FIRST INDIRECT X-RAY IMAGING TESTS WITH AN 88-mm DIAMETER SINGLE CRYSTAL A.H. Lumpkin 1 and A.T. Macrander 2 1 Fermi National Accelerator Laboratory, Batavia, IL 60510

More information

Optical Design of. Microscopes. George H. Seward. Tutorial Texts in Optical Engineering Volume TT88. SPIE PRESS Bellingham, Washington USA

Optical Design of. Microscopes. George H. Seward. Tutorial Texts in Optical Engineering Volume TT88. SPIE PRESS Bellingham, Washington USA Optical Design of Microscopes George H. Seward Tutorial Texts in Optical Engineering Volume TT88 SPIE PRESS Bellingham, Washington USA Preface xiii Chapter 1 Optical Design Concepts /1 1.1 A Value Proposition

More information

Coherent Laser Measurement and Control Beam Diagnostics

Coherent Laser Measurement and Control Beam Diagnostics Coherent Laser Measurement and Control M 2 Propagation Analyzer Measurement and display of CW laser divergence, M 2 (or k) and astigmatism sizes 0.2 mm to 25 mm Wavelengths from 220 nm to 15 µm Determination

More information

Overview of performance and improvements to fixed exit double crystal monochromators at Diamond. Andrew Dent, Physical Science Coordinator, DLS

Overview of performance and improvements to fixed exit double crystal monochromators at Diamond. Andrew Dent, Physical Science Coordinator, DLS Overview of performance and improvements to fixed exit double crystal monochromators at Diamond Andrew Dent, Physical Science Coordinator, DLS Overview Diffraction limit Geometric magnification Source

More information

PHYS 241 FINAL EXAM December 11, 2006

PHYS 241 FINAL EXAM December 11, 2006 1. (5 points) Light of wavelength λ is normally incident on a diffraction grating, G. On the screen S, the central line is at P and the first order line is at Q, as shown. The distance between adjacent

More information

Imaging Systems Laboratory II. Laboratory 8: The Michelson Interferometer / Diffraction April 30 & May 02, 2002

Imaging Systems Laboratory II. Laboratory 8: The Michelson Interferometer / Diffraction April 30 & May 02, 2002 1051-232 Imaging Systems Laboratory II Laboratory 8: The Michelson Interferometer / Diffraction April 30 & May 02, 2002 Abstract. In the last lab, you saw that coherent light from two different locations

More information

Diffraction. Interference with more than 2 beams. Diffraction gratings. Diffraction by an aperture. Diffraction of a laser beam

Diffraction. Interference with more than 2 beams. Diffraction gratings. Diffraction by an aperture. Diffraction of a laser beam Diffraction Interference with more than 2 beams 3, 4, 5 beams Large number of beams Diffraction gratings Equation Uses Diffraction by an aperture Huygen s principle again, Fresnel zones, Arago s spot Qualitative

More information

axy of refractive X-ray multilenses. Application of the parabolic wave equation to the simulation = + (1)

axy of refractive X-ray multilenses. Application of the parabolic wave equation to the simulation = + (1) Application of the parabolic wave equation to the simulation of refractive X-ray multilenses. A.V.pOpOya, I.V.Suloeva, and axy A.V.Vinogradov*a, OPTICS GROUP, P.N.Lebedev Physical Institute, 11794 Moscow,

More information

Titelfoto. Advanced Laser Beam Shaping - for Optimized Process Results and Quality Inspection in the PV Production - Maja Thies.

Titelfoto. Advanced Laser Beam Shaping - for Optimized Process Results and Quality Inspection in the PV Production - Maja Thies. 2010 LIMO Lissotschenko Mikrooptik GmbH www.limo.de Titelfoto Advanced Laser Beam Shaping - for Optimized Process Results and Quality Inspection in the PV Production - Maja Thies Photonics Key Technology

More information

Fast, Two-Dimensional Optical Beamscanning by Wavelength Switching T. K. Chan, E. Myslivets, J. E. Ford

Fast, Two-Dimensional Optical Beamscanning by Wavelength Switching T. K. Chan, E. Myslivets, J. E. Ford Photonics Systems Integration Lab University of California San Diego Jacobs School of Engineering Fast, Two-Dimensional Optical Beamscanning by Wavelength Switching T. K. Chan, E. Myslivets, J. E. Ford

More information

Optics and Lasers. Matt Young. Including Fibers and Optical Waveguides

Optics and Lasers. Matt Young. Including Fibers and Optical Waveguides Matt Young Optics and Lasers Including Fibers and Optical Waveguides Fourth Revised Edition With 188 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Contents

More information

Development of software for design, optimization and operation of X-ray compound refractive lens systems

Development of software for design, optimization and operation of X-ray compound refractive lens systems DESY Summer student programme 2014 Hamburg, July 22 September 11 Development of software for design, optimization and operation of X-ray compound refractive lens systems Roman Kirtaev Moscow Institute

More information

Observational Astronomy

Observational Astronomy Observational Astronomy Instruments The telescope- instruments combination forms a tightly coupled system: Telescope = collecting photons and forming an image Instruments = registering and analyzing the

More information

CREATING ROUND AND SQUARE FLATTOP LASER SPOTS IN MICROPROCESSING SYSTEMS WITH SCANNING OPTICS Paper M305

CREATING ROUND AND SQUARE FLATTOP LASER SPOTS IN MICROPROCESSING SYSTEMS WITH SCANNING OPTICS Paper M305 CREATING ROUND AND SQUARE FLATTOP LASER SPOTS IN MICROPROCESSING SYSTEMS WITH SCANNING OPTICS Paper M305 Alexander Laskin, Vadim Laskin AdlOptica Optical Systems GmbH, Rudower Chaussee 29, 12489 Berlin,

More information

Talbot- Lau interferometry with a non- binary phase grating for non-destructive testing

Talbot- Lau interferometry with a non- binary phase grating for non-destructive testing 19 th World Conference on Non-Destructive Testing 2016 Talbot- Lau interferometry with a non- binary phase grating for non-destructive testing Yury SHASHEV 1, Andreas KUPSCH 1, Axel LANGE 1, Ralf BRITZKE

More information

Chapter Ray and Wave Optics

Chapter Ray and Wave Optics 109 Chapter Ray and Wave Optics 1. An astronomical telescope has a large aperture to [2002] reduce spherical aberration have high resolution increase span of observation have low dispersion. 2. If two

More information

Large aperture tunable ultra narrow band Fabry-Perot-Bragg filter

Large aperture tunable ultra narrow band Fabry-Perot-Bragg filter Large aperture tunable ultra narrow band Fabry-Perot-Bragg filter Julien Lumeau *, Vadim Smirnov, Fabien Lemarchand 3, Michel Lequime 3 and Leonid B. Glebov School of Optics/CREOL, University of Central

More information