Chapter 3: Assorted notions: navigational plots, and the measurement of areas and non-linear distances

Size: px
Start display at page:

Download "Chapter 3: Assorted notions: navigational plots, and the measurement of areas and non-linear distances"

Transcription

1 : navigational plots, and the measurement of areas and non-linear distances Introduction Before we leave the basic elements of maps to explore other topics it will be useful to consider briefly two further applications of these ideas. The first is navigation and the second relates to the special problems presented by the analysis of non-linear distances and areas bounded by curvilinear borders. Navigation Navigation, in the broadest sense, refers to the techniques used in getting around from place to place. When we travel anywhere, such as from home to University, we unconsciously follow a preprogrammed route in our brain that depends on us identifying various landmarks that we relate to a mental image of the area in which we live and work. Most of our navigation is of that sort. Frequently we use a road map for navigation, using its alphanumeric address system to move through unfamiliar areas of the city. Once again, this process of getting from A to B involves a series of linked steps in which map locations are matched up with the corresponding features on the ground. Navigation necessarily becomes more abstract, however, as the landmark features on the ground become fewer or more difficult to identify. Getting lost on a featureless plain or in a forested area really is quite easily done! In the extreme, navigation over open water often relies on the navigator's skill at linking courses between geographic coordinates and not places as such at all. Here navigation involves the accurate plotting of courses on a map or chart using distances and bearings. Obviously the exercise involves thorough familiarity with map scales, and the ability to efficiently switch back and forth between true bearings on the chart and the magnetic compass heading shown on the boat. Ultimately, of course, it also involves the fundamental skill of determining position at sea. This chapter is not designed to turn you into navigators but familiarity with the principles involved will give you a feel for the task. Navigation by 'dead reckoning' involves the conversion of speed and time to distance. For example, a boat cruising on a particular bearing at 15 km/hour for 2 hours clearly will travel 30 km on that course provided there are no currents or wind. If the point of departure is known the new position after 2 hours is easily plotted on the appropriate chart. In this regard it may be useful to note that, conventionally, a ship's speed is almost always specified in a unit termed a knot. A speed of one knot is one nautical mile per hour; a nautical mile is the distance on the earth's surface subtended by one minute of latitude (about 1854 metres or 6080 feet or 1.15 English miles); so one knot is 1.85 km/hour. A common mistake 32

2 3.1: Graphical resolution of ship movement and ocean-currents. Examples of a ship's heading and velocity as a resultant of its still-water motion and an ocean current. to be avoided is to refer to nautical speeds as so many 'knots per hour'. The unit knot is a speed and knots per hour, therefore, implies an acceleration! When currents, or to a lesser extent winds, are present along a vessel's course, the dead reckoning principle must be adjusted to accommodate their influence. When a current flows in the exact same direction as the vessel's course, the ship's speed with respect to the land will be its speed through the water plus the speed of the current. Conversely, an exactly opposing current must be subtracted from the vessel's speed through the water in order to determine its true speed with respect to the land. The effects of all other currents must be evaluated as the resultant of the ship's direction and speed and those of the current involved. Such an integration can be determined graphically as the vectorial resultant (diagonal) in a parallelogram of vectors; examples are illustrated in Figure 3.1. Measurement of non-linear distances Non-linear distances are not as readily determined as their linear counterparts. Although it is possible to measure distance along a curved line as the sum of a series of linked linear segments, this process is far too tedious for most applications. Certainly, it is unmanageable for calculating distances over a long and complex curved boundary. Yet curved or irregular lines invariably are what we face in dealing with the analysis of map data. As we noted in Chapter 1, curved lines can be measured by following them with a piece of string 33

3 and then stretching it out against the line scale on the map. Another method involves stepping off the line distance with dividers or marking the increments along the edge of a piece of paper as it is rotated along the line. Either method will produce an acceptable result if used carefully. Alternatively, a measurement wheel can be rolled along the curved line, the number of revolutions being proportional to the distance covered. It is important to recognize, however, that all of these methods involve generalization of the line in the sense that not every minute convolution is accounted for by counting some measurement increment, no matter how small it may be. In other words, the calculated line distance will always be less than the true distance. In some cases, this difference may be very important and the generalized distance may be quite misleading. For example, to use a familiar task, plotting the generalized distance along roads between two distant cities shown on a Provincial road map might lead us to derive a particular travel time that probably is significantly too short because not all the convolutions are shown in the road. Of course, for some purposes, knowing the generalized distance may be just as, or more, useful than knowing the actual distance. An example of the effect of the size of the measurement increment on the measured length of a convoluted line is shown in Figure : Length measurement in relation to measurement increment Many lines on maps, such as the trace of a tortuously meandering river, are distinctly irregular and convoluted and their measured length is significantly dependent on the size of increment (divider spacing) used to obtain the measurement. Here a trace A-B is seen to double in apparent length as the measurement increment varies between 12 and 2 mm. Note the extreme sensitivity to change at the fine end of the measurement-increment scale. This problem of the dependency of apparent lengths of non-linear curves on the measurement increment is particularly troublesome in relation to highly convoluted traces such as certain river courses and most coastlines. The problem also is encountered if the measurement increment is fixed but maps at 34

4 a variety of scales are considered. As the map scale becomes smaller the apparent length of coastlines significantly declines because of the effect of line generalization. For this reason, detailed morphometric analyses of the land surface from maps (or aerial photographs) should specify both the scale of the map and the measurement increment used to obtain the data. Measurement of areas The measurement of areas bounded by irregular or curved borders can be achieved in several ways. Areas bounded by linear segments simply can be subdivided into a series of regular shapes (squares, rectangles, and triangles) and their sub-areas summed to yield the total area (Figure 3.3B). Even areas enclosed by curved boundaries can be approximated by summing the sub-areas formed by a series of 'best-fit' or approximating linear segments (Figure 3.3A). The key to successful application of this method is to chose the minimum number of line segments which accurately approximate the curved boundary. Every area lying outside of the approximating segment is excluded and leads to underestimation of the total area. Such excluded areas therefore must be balanced elsewhere by equivalent included areas. Obviously the technique requires a little practice and often some trial and error line placement but the requisite skills are quite easily acquired in a short time and the method is accurate enough (±10%) for many purposes. You might note when applying this method that it is sometimes easier to compute the area of an irregular geometric shape by enclosing it in a rectangular envelope and subtracting from the area of the rectangle the sum of the areas of the external sub-areas (Figure 3.3C). 3.3: Area calculations based on the summation of component sub-areas A Approximating a curvilinear boundary with straight-line segments. B Internal division of an irregular geometric shape into regular sub-areas. C Using an external envelope to determine the area of an irregular geometric shape by subtraction. 35

5 The appropriate area calculations for the component sub-areas are: squares and rectangles: length x breadth triangles: length x perpendicular height 2 An alternative and easier means of measuring areas on maps is based on a spatial integrating instrument called a polar planimeter. This instrument, shown in Figure 3.4, consists of an articulated arm at one end of which is a fixed pivot and at the other a tracing point. At the articulation link are two rotating wheels which run on the map and record the tracer motion in the x-y directions; the two motions are mechanically integrated to provide a reading of the area on a small recording drum. The tracing point is used to follow the outline of the border in a clockwise direction from an arbitrary start-point, returning exactly to the same point to complete the trace. The mechanical integration of polar planimeters is never perfect, however, and the trace should be repeated two or three times from different start-points to provide an average area computation. If you are unsure of the units of area shown on the planimeter drum scale, a ready check can be made by tracing off one or more of the grid squares on the map. 3.4: The fixed-arm polar planimeter. 36

6 Unfortunately, polar planimeters are quite expensive and in many circumstances you may not have access to one. Thus, it is often necessary to rely on a simpler and more readily accessible techniques such as the sub-area method described above. Another rather more exotic method, noted here more for the sake of completeness than practicality, involves cutting out a tracing of the border made on special highly uniform paper and weighing it for conversion to a surface area. Obviously an accurate balance is needed to use this technique. When a polar planimeter is unavailable and the sub-areas method is too tedious (if too large an area bounded by a highly convoluted border is involved, for example) a far more commonly used technique is to estimate areas of irregular shapes by counting the squares of a superimposed grid. The technique of grid counting to determine irregular areas on maps is illustrated in Figure 3.5. Here the number of whole and partial grid squares enclosed by the area boundary are counted and summed. Partial grid squares are counted as half squares regardless of the actual proportion of the square included. It is assumed that, on average, the mean proportion for partial squares approaches 0.5 since larger proportional areas are balanced by smaller areas. In this example there are 23 whole grid squares and 45 partial squares for a total of 45.5 grid squares. The map grid has a one centimetre spacing and if the scale were 1:50 000, each grid square would represent m 2 (500 m x 500 m) or 0.25 km 2. Thus, the area within the irregular boundary shown in Figure 3.5 would be 45.5 x 0.25 km 2 = 11.4 km : Measurement of the area of an irregular map shape by the grid-square counting method. 37

7 Obviously this 'finite step' solution to approximating the irregular area becomes increasingly more accurate as the size of the grid square relative to the measured area declines. But so does the tedium of counting so many small grid squares also increase! Clearly some sensible compromise must be struck between effort and accuracy. It is difficult to provide guidelines here because much depends on the shape of the area being measured but a useful 'rule of thumb' is that one grid square should not represent more than about three per cent of the total area. In the example above the grid square area is about 2% of the area being measured. 38

8 39 Chapter 3: Assorted notions

As the Planimeter s Wheel Turns

As the Planimeter s Wheel Turns As the Planimeter s Wheel Turns December 30, 2004 A classic example of Green s Theorem in action is the planimeter, a device that measures the area enclosed by a curve. Most familiar may be the polar planimeter

More information

Robotics Links to ACARA

Robotics Links to ACARA MATHEMATICS Foundation Shape Sort, describe and name familiar two-dimensional shapes and three-dimensional objects in the environment. (ACMMG009) Sorting and describing squares, circles, triangles, rectangles,

More information

This Land Surveying course has been developed by. Failure & Damage Analysis, Inc. Earthwork

This Land Surveying course has been developed by. Failure & Damage Analysis, Inc.   Earthwork This Land Surveying course has been developed by Failure & Damage Analysis, Inc. www.discountpdh.com www.pepdh.com Earthwork CHAPTER 4 EARTHWORK Section I. PLANNING OF EARTHWORK OPERATIONS IMPORTANCE In

More information

Activity overview. Background. Concepts. Random Rectangles

Activity overview. Background. Concepts. Random Rectangles by: Bjørn Felsager Grade level: secondary (Years 9-12) Subject: mathematics Time required: 90 minutes Activity overview What variables characterize a rectangle? What kind of relationships exists between

More information

CONVERTING BEARINGS CONT. Grid to Magnetic subtract (GMS - grand ma sleeps) 1 BACK BEARINGS CONVERTING BEARINGS

CONVERTING BEARINGS CONT. Grid to Magnetic subtract (GMS - grand ma sleeps) 1 BACK BEARINGS CONVERTING BEARINGS CONVERTING BEARINGS CONT 2 Grid to Magnetic subtract (GMS - grand ma sleeps) ^Khd,YhE^>E h^dz>/ezdzd^z/' Es/'d/KE CONVERTING BEARINGS 1 BACK BEARINGS 3 Magnetic to Grid add (MGA - my great aunt) Back Bearings

More information

Photo Scale The photo scale and representative fraction may be calculated as follows: PS = f / H Variables: PS - Photo Scale, f - camera focal

Photo Scale The photo scale and representative fraction may be calculated as follows: PS = f / H Variables: PS - Photo Scale, f - camera focal Scale Scale is the ratio of a distance on an aerial photograph to that same distance on the ground in the real world. It can be expressed in unit equivalents like 1 inch = 1,000 feet (or 12,000 inches)

More information

MEASURING SHAPES M.K. HOME TUITION. Mathematics Revision Guides. Level: GCSE Foundation Tier

MEASURING SHAPES M.K. HOME TUITION. Mathematics Revision Guides. Level: GCSE Foundation Tier Mathematics Revision Guides Measuring Shapes Page 1 of 17 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Foundation Tier MEASURING SHAPES Version: 2.2 Date: 16-11-2015 Mathematics Revision Guides

More information

Mapping The Study Area

Mapping The Study Area While on the beach you will need to take some measurements to show where the study area is relative to the rest of the world and to show what is inside the study area. Once the measurements have been taken,

More information

UNIT 10 PERIMETER AND AREA

UNIT 10 PERIMETER AND AREA UNIT 10 PERIMETER AND AREA INTRODUCTION In this Unit, we will define basic geometric shapes and use definitions to categorize geometric figures. Then we will use the ideas of measuring length and area

More information

Important Questions. Surveying Unit-II. Surveying & Leveling. Syllabus

Important Questions. Surveying Unit-II. Surveying & Leveling. Syllabus Surveying Unit-II Important Questions Define Surveying and Leveling Differentiate between Surveying and Leveling. Explain fundamental Principles of Surveying. Explain Plain and Diagonal Scale. What is

More information

SESSION THREE AREA MEASUREMENT AND FORMULAS

SESSION THREE AREA MEASUREMENT AND FORMULAS SESSION THREE AREA MEASUREMENT AND FORMULAS Outcomes Understand the concept of area of a figure Be able to find the area of a rectangle and understand the formula base times height Be able to find the

More information

6.00 Trigonometry Geometry/Circles Basics for the ACT. Name Period Date

6.00 Trigonometry Geometry/Circles Basics for the ACT. Name Period Date 6.00 Trigonometry Geometry/Circles Basics for the ACT Name Period Date Perimeter and Area of Triangles and Rectangles The perimeter is the continuous line forming the boundary of a closed geometric figure.

More information

THE PLEASURES OF MATHEMATICS

THE PLEASURES OF MATHEMATICS THE PLEASURES OF MATHEMATICS F. W. Niedenfuhr, Professor of Engineering Mechanics at Ohio State University, lures the amateur scientist into an encounter with integral calculus IT MAY COME as something

More information

Copyrighted Material. Copyrighted Material. Copyrighted. Copyrighted. Material

Copyrighted Material. Copyrighted Material. Copyrighted. Copyrighted. Material Engineering Graphics ORTHOGRAPHIC PROJECTION People who work with drawings develop the ability to look at lines on paper or on a computer screen and "see" the shapes of the objects the lines represent.

More information

THE ELECTRONIC CHART DISPLAY AND INFORMATION SYSTEM (ECDIS) IN CHINA

THE ELECTRONIC CHART DISPLAY AND INFORMATION SYSTEM (ECDIS) IN CHINA International Hydrographic 'Review, Monaco, LXIX(2), September 1992 THE ELECTRONIC CHART DISPLAY AND INFORMATION SYSTEM (ECDIS) IN CHINA by The Research Group on ECDIS 1 Abstract This paper presents a

More information

THINGS TO DO WITH A GEOBOARD

THINGS TO DO WITH A GEOBOARD THINGS TO DO WITH A GEOBOARD The following list of suggestions is indicative of exercises and examples that can be worked on the geoboard. Simpler, as well as, more difficult suggestions can easily be

More information

Engineering Graphics UNIVERSITY OF TEXAS RIO GRANDE VALLEY JAZMIN LEY HISTORY OF ENGINEERING GRAPHICS GEOMETRIC CONSTRUCTION & SOLID MODELING

Engineering Graphics UNIVERSITY OF TEXAS RIO GRANDE VALLEY JAZMIN LEY HISTORY OF ENGINEERING GRAPHICS GEOMETRIC CONSTRUCTION & SOLID MODELING Engineering Graphics UNIVERSITY OF TEXAS RIO GRANDE VALLEY JAZMIN LEY HISTORY OF ENGINEERING GRAPHICS GEOMETRIC CONSTRUCTION & SOLID MODELING Overview History of Engineering Graphics: Sketching, Tools,

More information

The Measurement of LENGTH

The Measurement of LENGTH The Measurement of LENGTH What is Measuring? MEASUREMENT To measure, according to The Concise Oxford Dictionary is to ascertain extent or quantity of (thing) by comparison with fixed unit or with object

More information

UNITED STATES MARINE CORPS FIELD MEDICAL TRAINING BATTALION Camp Lejeune, NC

UNITED STATES MARINE CORPS FIELD MEDICAL TRAINING BATTALION Camp Lejeune, NC UNITED STATES MARINE CORPS FIELD MEDICAL TRAINING BATTALION Camp Lejeune, NC 28542-0042 FMST 206 Land Navigation TERMINAL LEARNING OBJECTIVE 1. Given a military topographic map, protractor, and objective,

More information

1 st Subject: 2D Geometric Shape Construction and Division

1 st Subject: 2D Geometric Shape Construction and Division Joint Beginning and Intermediate Engineering Graphics 2 nd Week 1st Meeting Lecture Notes Instructor: Edward N. Locke Topic: Geometric Construction 1 st Subject: 2D Geometric Shape Construction and Division

More information

VECTOR LAB: III) Mini Lab, use a ruler and graph paper to simulate a walking journey and answer the questions

VECTOR LAB: III) Mini Lab, use a ruler and graph paper to simulate a walking journey and answer the questions NAME: DATE VECTOR LAB: Do each section with a group of 1 or 2 or individually, as appropriate. As usual, each person in the group should be working together with the others, taking down any data or notes

More information

Summer Solutions Common Core Mathematics 4. Common Core. Mathematics. Help Pages

Summer Solutions Common Core Mathematics 4. Common Core. Mathematics. Help Pages 4 Common Core Mathematics 63 Vocabulary Acute angle an angle measuring less than 90 Area the amount of space within a polygon; area is always measured in square units (feet 2, meters 2, ) Congruent figures

More information

The Compensating Polar Planimeter

The Compensating Polar Planimeter The Compensating Polar Planimeter Description of a polar planimeter Standard operation The neutral circle How a compensating polar planimeter compensates Show and tell: actual planimeters References (Far

More information

Land Navigation / Map Reading

Land Navigation / Map Reading Land Navigation / Map Reading What is the Field Manual for map reading and land navigation? FM 3-25.26 What are the basic colors of a map, and what does each color represent? Black - Indicates cultural

More information

Phasor. Phasor Diagram of a Sinusoidal Waveform

Phasor. Phasor Diagram of a Sinusoidal Waveform Phasor A phasor is a vector that has an arrow head at one end which signifies partly the maximum value of the vector quantity ( V or I ) and partly the end of the vector that rotates. Generally, vectors

More information

Chapter 6 Navigation and Field Mapping

Chapter 6 Navigation and Field Mapping Chapter 6 Navigation and Field Mapping In this chapter you will learn about: Orienting maps Measuring a bearing on a map Plotting points on a map using latitude/longitude Plotting points on a map using

More information

Mathematics Background

Mathematics Background For a more robust teacher experience, please visit Teacher Place at mathdashboard.com/cmp3 The Measurement Process While this Unit does not focus on the global aspects of what it means to measure, it does

More information

CHAPTER 5 CONCEPTS OF ALTERNATING CURRENT

CHAPTER 5 CONCEPTS OF ALTERNATING CURRENT CHAPTER 5 CONCEPTS OF ALTERNATING CURRENT INTRODUCTION Thus far this text has dealt with direct current (DC); that is, current that does not change direction. However, a coil rotating in a magnetic field

More information

Everyday Math Assessment Opportunities Grade 4 MMR = Mental Math Reflex, TLG = Teacher s Lesson Guide, SL = Study Link. Unit 1

Everyday Math Assessment Opportunities Grade 4 MMR = Mental Math Reflex, TLG = Teacher s Lesson Guide, SL = Study Link. Unit 1 = Mental Math Reflex, TLG = Teacher s Lesson Guide, SL = Study Link Unit 1 1a B Use a compass and straightedge to 1.8 1.8 p. 12 & 13 construct geometric figures. p. 22 & 23 p. 8 #2 & 3 1b Identify properties

More information

Lesson 5: The Area of Polygons Through Composition and Decomposition

Lesson 5: The Area of Polygons Through Composition and Decomposition Lesson 5: The Area of Polygons Through Composition and Decomposition Student Outcomes Students show the area formula for the region bounded by a polygon by decomposing the region into triangles and other

More information

learning about tangram shapes

learning about tangram shapes Introduction A Tangram is an ancient puzzle, invented in China and consisting of a square divided into seven geometric shapes: Two large right triangles One medium right triangle Tangram Two small right

More information

We will study all three methods, but first let's review a few basic points about units of measurement.

We will study all three methods, but first let's review a few basic points about units of measurement. WELCOME Many pay items are computed on the basis of area measurements, items such as base, surfacing, sidewalks, ditch pavement, slope pavement, and Performance turf. This chapter will describe methods

More information

Question bank. Unit 1: Introduction

Question bank. Unit 1: Introduction Question bank Unit 1: Introduction 1. Define surveying. 2. State the objects of surveying 3. State and explain the principle of surveying 4. State and explain the classification of surveying 5. Differentiate

More information

appendix f: slope density

appendix f: slope density CONTENTS: F-2 Statement of Purpose F-3 Discussion of Slope F-4 Description of Slope Density The Foothill Modified Slope Density The Foothill Modified 1/2 Acre slope density The 5 20 slope density F-7 How

More information

The Grade 6 Common Core State Standards for Geometry specify that students should

The Grade 6 Common Core State Standards for Geometry specify that students should The focus for students in geometry at this level is reasoning about area, surface area, and volume. Students also learn to work with visual tools for representing shapes, such as graphs in the coordinate

More information

Mensuration. Chapter Introduction Perimeter

Mensuration. Chapter Introduction Perimeter Mensuration Chapter 10 10.1 Introduction When we talk about some plane figures as shown below we think of their regions and their boundaries. We need some measures to compare them. We look into these now.

More information

Appendix 10 Business City Centre Zone building in relation to boundary

Appendix 10 Business City Centre Zone building in relation to boundary Appendix 10 Business City Centre Zone building in relation to boundary The following explanation is divided into two parts: Part 1. A preliminary explanation of the nature of the indicator system and why

More information

M.V.S.R. ENGINEERING COLLEGE, NADERGUL HYDERABAD B.E. I/IV I - Internal Examinations (November 2014)

M.V.S.R. ENGINEERING COLLEGE, NADERGUL HYDERABAD B.E. I/IV I - Internal Examinations (November 2014) Sub: Engineering Graphics Branches: Civil (1&2), IT-2 Time: 1 Hr 15 Mins Max. Marks: 40 Note: Answer All questions from Part-A and any Two from Part B. Assume any missing data suitably. 1. Mention any

More information

SECTION 3. Housing. FAppendix F SLOPE DENSITY

SECTION 3. Housing. FAppendix F SLOPE DENSITY SECTION 3 Housing FAppendix F SLOPE DENSITY C-2 Housing Commission Attachment B Appendix F Slope Density STATEMENT OF PURPOSE This appendix has been prepared with the intent of acquainting the general

More information

Lecture # 7 Coordinate systems and georeferencing

Lecture # 7 Coordinate systems and georeferencing Lecture # 7 Coordinate systems and georeferencing Coordinate Systems Coordinate reference on a plane Coordinate reference on a sphere Coordinate reference on a plane Coordinates are a convenient way of

More information

Georgia Department of Education

Georgia Department of Education Fourth Grade 4.NOP.1 Multiplication and division; Find the factor pairs for a given whole number less than or equal to 100; recognize prime numbers as numbers greater than 1 with exactly one factor pair.

More information

W1GHZ W1GHZ W1GHZ W1GHZ W1GHZ W1GHZ W1GHZ W1GHZ

W1GHZ W1GHZ W1GHZ W1GHZ W1GHZ W1GHZ W1GHZ W1GHZ Online Online Online Online Online Online (ex-n1bwt) (ex-n1bwt) (ex-n1bwt) (ex-n1bwt) (ex-n1bwt) (ex-n1bwt) (ex-n1bwt) Online (ex-n1bwt) W1GHZ W1GHZ Microwave Antenna Book Antenna BookOnline W1GHZ W1GHZ

More information

Essentials of Navigation

Essentials of Navigation Essentials of Navigation Latitudes & Longitudes, GPS, and more For Race Officers and Mark Boat Operators by Ed Bottrell eztrap Developer Glen Haven, Nova Scotia CANADA v13 email: info@bottrell.ca Website:

More information

AREA See the Math Notes box in Lesson for more information about area.

AREA See the Math Notes box in Lesson for more information about area. AREA..1.. After measuring various angles, students look at measurement in more familiar situations, those of length and area on a flat surface. Students develop methods and formulas for calculating the

More information

Year 5 Maths Assessment Guidance - NUMBER Working towards expectations. Meeting expectations 1 Entering Year 5

Year 5 Maths Assessment Guidance - NUMBER Working towards expectations. Meeting expectations 1 Entering Year 5 5.1.a.1 Count forwards and backwards with positive and negative whole numbers, including through zero (^) 5.1.a.2 Count forwards or backwards in steps of powers of 10 for any given number to 1 000 000

More information

3.3. You wouldn t think that grasshoppers could be dangerous. But they can damage

3.3. You wouldn t think that grasshoppers could be dangerous. But they can damage Grasshoppers Everywhere! Area and Perimeter of Parallelograms on the Coordinate Plane. LEARNING GOALS In this lesson, you will: Determine the perimeter of parallelograms on a coordinate plane. Determine

More information

REFLECTIONS AND STANDING WAVE RATIO

REFLECTIONS AND STANDING WAVE RATIO Page 1 of 9 THE SMITH CHART.In the last section we looked at the properties of two particular lengths of resonant transmission lines: half and quarter wavelength lines. It is possible to compute the impedance

More information

RESOLUTION A.820(19) adopted on 23 November 1995 PERFORMANCE STANDARDS FOR NAVIGATIONAL RADAR EQUIPMENT FOR HIGH-SPEED CRAFT

RESOLUTION A.820(19) adopted on 23 November 1995 PERFORMANCE STANDARDS FOR NAVIGATIONAL RADAR EQUIPMENT FOR HIGH-SPEED CRAFT INTERNATIONAL MARITIME ORGANIZATION A 19/Res. 820 15 December 1995 Original: ENGLISH ASSEMBLY 19th session Agenda item 10 NOT TO BE REMOVED \ FROM THE IMO LIBRARY RESOLUTION A.820(19) adopted on 23 November

More information

Contextualised task 39 Fun with Flags. Task 1: From fractions to ratios

Contextualised task 39 Fun with Flags. Task 1: From fractions to ratios Contextualised task 39 Fun with Flags Teaching notes This task focuses on the mathematical specification of s. Students will first consider the of Wales, and then of the UK. They will see that there are

More information

1 Write the proportion of each shape that is coloured, as a fraction in its simplest form.

1 Write the proportion of each shape that is coloured, as a fraction in its simplest form. 1 Write the proportion of each shape that is coloured, as a fraction in its simplest form. a b c d e f 2 For each shape in question 1, write the proportion that is coloured as a ratio, coloured : all tiles

More information

Geometric Dimensioning and Tolerancing

Geometric Dimensioning and Tolerancing Geometric Dimensioning and Tolerancing (Known as GDT) What is GDT Helps ensure interchangeability of parts. Use is dictated by function and relationship of the part feature. It does not take the place

More information

Title: Oct 9 8:27 AM (1 of 30)

Title: Oct 9 8:27 AM (1 of 30) Applied Max and Min (Optimization) 1. If you have 100 feet of fencing and you want to enclose a rectangular area up against a long, straight wall, what is the largest area you can enclose? Title: Oct 9

More information

Chapter 10 Navigation

Chapter 10 Navigation Chapter 10 Navigation Table of Contents VHF Omnidirectional Range (VOR) VOR Orientation Course Determination VOR Airways VOR Receiver Check Points Automatic Direction Finder (ADF) Global Positioning System

More information

1: Assemblage & Hierarchy

1: Assemblage & Hierarchy What: 1: Assemblage & Hierarchy 2 compositional sequences o abstract, line compositions based on a 9 square grid o one symmetrical o one asymmetrical Step 1: Collage Step 2: Additional lines Step 3: Hierarchy

More information

DOUBLE PROPORTION MADE COMPLEX

DOUBLE PROPORTION MADE COMPLEX DOUBLE PROPORTION MADE COMPLEX Jerry L. Wahl Branch of Cadastral Surveys Bureau of Land Management California State Office 2800 Cottage Way, E-2841 Sacramento, California 95825 ABSTRACT Our ever increasing

More information

Engineering Fundamentals and Problem Solving, 6e

Engineering Fundamentals and Problem Solving, 6e Engineering Fundamentals and Problem Solving, 6e Chapter 5 Representation of Technical Information Chapter Objectives 1. Recognize the importance of collecting, recording, plotting, and interpreting technical

More information

Elizabeth City State University Elizabeth City, North Carolina27909 STATE REGIONAL MATHEMATICS CONTEST COMPREHENSIVE TEST BOOKLET

Elizabeth City State University Elizabeth City, North Carolina27909 STATE REGIONAL MATHEMATICS CONTEST COMPREHENSIVE TEST BOOKLET Elizabeth City State University Elizabeth City, North Carolina27909 2014 STATE REGIONAL MATHEMATICS CONTEST COMPREHENSIVE TEST BOOKLET Directions: Each problem in this test is followed by five suggested

More information

First Lab - Sept 1st Ivan Babic CS484

First Lab - Sept 1st Ivan Babic CS484 This was a very interesting lab that made me think about good, simple and accurate model for measurement. By every new value I was entering on the paper it was more and more clear to me that a good, simple

More information

33-2 Satellite Takeoff Tutorial--Flat Roof Satellite Takeoff Tutorial--Flat Roof

33-2 Satellite Takeoff Tutorial--Flat Roof Satellite Takeoff Tutorial--Flat Roof 33-2 Satellite Takeoff Tutorial--Flat Roof Satellite Takeoff Tutorial--Flat Roof A RoofLogic Digitizer license upgrades RoofCAD so that you have the ability to digitize paper plans, electronic plans and

More information

Year 5. Mathematics A booklet for parents

Year 5. Mathematics A booklet for parents Year 5 Mathematics A booklet for parents About the statements These statements show some of the things most children should be able to do by the end of Year 5. A statement might be harder than it seems,

More information

08/10/2013. Marine Positioning Systems Surface and Underwater Positioning. egm502 seafloor mapping

08/10/2013. Marine Positioning Systems Surface and Underwater Positioning. egm502 seafloor mapping egm502 seafloor mapping lecture 8 navigation and positioning Marine Positioning Systems Surface and Underwater Positioning All observations at sea need to be related to a geographical position. To precisely

More information

UNIT 5a STANDARD ORTHOGRAPHIC VIEW DRAWINGS

UNIT 5a STANDARD ORTHOGRAPHIC VIEW DRAWINGS UNIT 5a STANDARD ORTHOGRAPHIC VIEW DRAWINGS 5.1 Introduction Orthographic views are 2D images of a 3D object obtained by viewing it from different orthogonal directions. Six principal views are possible

More information

THE SINUSOIDAL WAVEFORM

THE SINUSOIDAL WAVEFORM Chapter 11 THE SINUSOIDAL WAVEFORM The sinusoidal waveform or sine wave is the fundamental type of alternating current (ac) and alternating voltage. It is also referred to as a sinusoidal wave or, simply,

More information

Problem of the Month: Between the Lines

Problem of the Month: Between the Lines Problem of the Month: Between the Lines Overview: In the Problem of the Month Between the Lines, students use polygons to solve problems involving area. The mathematical topics that underlie this POM are

More information

Year 6 Maths Assessment Guidance - NUMBER Meeting expectations 3 Working Within Year 6 4 Secure within Year 6

Year 6 Maths Assessment Guidance - NUMBER Meeting expectations 3 Working Within Year 6 4 Secure within Year 6 6.1.a.1 Calculate intervals across zero (^) 6.1.a.2 Consolidate counting forwards or backwards in steps of powers of 10 for any given number to 1 000 000 (+) 6.1.a.3 Consolidate counting in multiples of

More information

Lesson 8: Surveying the Forest

Lesson 8: Surveying the Forest Lesson 8: Surveying the Forest TEACHER: SCHOOL: GRADE LEVEL: 9-12 TASKS/COMPETENCIES ANR8046.172 Set up and operate a transit level and rod. ANR8046.173 Read a rod and a level to calculate slope. ANR8046.174

More information

Department of Civil and Environmental Engineering

Department of Civil and Environmental Engineering Department of Civil and Environmental Engineering CEE213L Surveying & Introduction to GIS Lab SURVEYING LABORATORY NORTH SOUTH UNIVERSITY Center of Excellence in Higher Education The First Private University

More information

Name Date Class Practice A. 5. Look around your classroom. Describe a geometric pattern you see.

Name Date Class Practice A. 5. Look around your classroom. Describe a geometric pattern you see. Practice A Geometric Patterns Identify a possible pattern. Use the pattern to draw the next figure. 5. Look around your classroom. Describe a geometric pattern you see. 6. Use squares to create a geometric

More information

36. Global Positioning System

36. Global Positioning System 36. Introduction to the Global Positioning System (GPS) Why do we need GPS? Position: a basic need safe sea travel, crowed skies, resource management, legal questions Positioning: a challenging job local

More information

What You ll Learn. Why It s Important. You see geometric figures all around you.

What You ll Learn. Why It s Important. You see geometric figures all around you. You see geometric figures all around you. Look at these pictures. Identify a figure. What would you need to know to find the area of that figure? What would you need to know to find the perimeter of the

More information

2006 Pascal Contest (Grade 9)

2006 Pascal Contest (Grade 9) Canadian Mathematics Competition An activity of the Centre for Education in Mathematics and Computing, University of Waterloo, Waterloo, Ontario 2006 Pascal Contest (Grade 9) Wednesday, February 22, 2006

More information

Appendix III Graphs in the Introductory Physics Laboratory

Appendix III Graphs in the Introductory Physics Laboratory Appendix III Graphs in the Introductory Physics Laboratory 1. Introduction One of the purposes of the introductory physics laboratory is to train the student in the presentation and analysis of experimental

More information

INSTITUTE OF AERONAUTICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 043 MECHANICAL ENGINEERING TUTORIAL QUESTION BANK : ENGINEERING DRAWING : A10301 : I - B. Tech : Common

More information

Use the and buttons on the right to go line by line, or move the slider bar in the middle for a quick canning.

Use the and buttons on the right to go line by line, or move the slider bar in the middle for a quick canning. How To Use The IntelliQuilter Help System The user manual is at your fingertips at all times. Extensive help messages will explain what to do on each screen. If a help message does not fit fully in the

More information

S1/2 Checklist S1/2 Checklist. Whole Numbers. No. Skill Done CfE Code(s) 1 Know that a whole number is a normal counting

S1/2 Checklist S1/2 Checklist. Whole Numbers. No. Skill Done CfE Code(s) 1 Know that a whole number is a normal counting Whole Numbers 1 Know that a whole number is a normal counting MNU 0-0a number such as 0, 1,, 3, 4, Count past 10 MNU 0-03a 3 Know why place value is important MNU 1-0a 4 Know that approximating means to

More information

Determining MTF with a Slant Edge Target ABSTRACT AND INTRODUCTION

Determining MTF with a Slant Edge Target ABSTRACT AND INTRODUCTION Determining MTF with a Slant Edge Target Douglas A. Kerr Issue 2 October 13, 2010 ABSTRACT AND INTRODUCTION The modulation transfer function (MTF) of a photographic lens tells us how effectively the lens

More information

VGLA COE Organizer Mathematics 4

VGLA COE Organizer Mathematics 4 4.1 The Student will identify the place value for each digit in a whole number expressed through millions a) orally and in writing; b) compare two whole numbers expressed through millions, using symbols

More information

Contents. PART 1 Unit 1: Number Sense: Numbers to 10. Unit 2: Number Sense: Numbers to 20. Unit 3: Patterns and Algebra: Repeating Patterns

Contents. PART 1 Unit 1: Number Sense: Numbers to 10. Unit 2: Number Sense: Numbers to 20. Unit 3: Patterns and Algebra: Repeating Patterns Contents PART 1 Unit 1: Number Sense: Numbers to 10 NS2-1 Counting and Matching 1 NS2-2 One-to-One Correspondence 3 NS2-3 More, Fewer, and Less 5 NS2-4 How Many More? 7 NS2-5 Reading Number Words to Ten

More information

Surveying & Measurement. Detail Survey Topographic Surveying

Surveying & Measurement. Detail Survey Topographic Surveying Surveying & Measurement Detail Survey Topographic Surveying Introduction Mapping surveys are made to determine the relief of the earth s surface and locate critical points on it. to determine the locations

More information

Earth Sciences 089G Short Practical Assignment #4 Working in Three Dimensions

Earth Sciences 089G Short Practical Assignment #4 Working in Three Dimensions Earth Sciences 089G Short Practical Assignment #4 Working in Three Dimensions Introduction Maps are 2-D representations of 3-D features, the developers of topographic maps needed to devise a method for

More information

CH 10 INTRO TO GEOMETRY

CH 10 INTRO TO GEOMETRY 59 CH 10 INTRO TO GEOMETRY Introduction G eo: Greek for earth, and metros: Greek for measure. These roots are the origin of the word geometry, which literally means earth measurement. The study of geometry

More information

Lesson 5: Area of Composite Shape Subject: Math Unit: Area Time needed: 60 minutes Grade: 6 th Date: 2 nd

Lesson 5: Area of Composite Shape Subject: Math Unit: Area Time needed: 60 minutes Grade: 6 th Date: 2 nd Lesson 5: Area of Composite Shape Subject: Math Unit: Area Time needed: 60 minutes Grade: 6 th Date: 2 nd Materials, Texts Needed, or advanced preparation: Lap tops or computer with Geogebra if possible

More information

Deep Sea Salvage Operations

Deep Sea Salvage Operations Deep Sea Salvage Operations Dr. Alok K. Verma & Ameya Erande Lean Institute - ODU 1 Deep Sea Salvage - Description of Module Shipwrecks are salvaged world wide for accident investigation, antique exploration

More information

Geometry. Practice Pack

Geometry. Practice Pack Geometry Practice Pack WALCH PUBLISHING Table of Contents Unit 1: Lines and Angles Practice 1.1 What Is Geometry?........................ 1 Practice 1.2 What Is Geometry?........................ 2 Practice

More information

MIT ATHLETICS. LOGO STANDARD GUIDELINES

MIT ATHLETICS. LOGO STANDARD GUIDELINES MIT ATHLETICS. LOGO STANDARD GUIDELINES LOGO STANDARD GUIDELINES: TABLE OF CONTENTS Copyright...03 Introduction...04 Our Colors...05 Our Font...06 Primary Mark Full Color...07 Grayscale and Black & White...08

More information

THIS CIRCULAR LETTER REQUIRES YOU TO VOTE. IHB File No. S3/8151/CHRIS CIRCULAR LETTER 93/ November 2008

THIS CIRCULAR LETTER REQUIRES YOU TO VOTE. IHB File No. S3/8151/CHRIS CIRCULAR LETTER 93/ November 2008 THIS CIRCULAR LETTER REQUIRES YOU TO VOTE IHB File No. S3/8151/CHRIS CIRCULAR LETTER 93/2008 17 November 2008 REVIEW OF IHO TECHNICAL RESOLUTIONS BY THE COMMITTEE ON HYDROGRAPHIC REQUIREMENTS FOR INFORMATION

More information

Feedback Devices. By John Mazurkiewicz. Baldor Electric

Feedback Devices. By John Mazurkiewicz. Baldor Electric Feedback Devices By John Mazurkiewicz Baldor Electric Closed loop systems use feedback signals for stabilization, speed and position information. There are a variety of devices to provide this data, such

More information

GstarCAD Mechanical 2015 Help

GstarCAD Mechanical 2015 Help 1 Chapter 1 GstarCAD Mechanical 2015 Introduction Abstract GstarCAD Mechanical 2015 drafting/design software, covers all fields of mechanical design. It supplies the latest standard parts library, symbols

More information

CHAPTER 3 MARGINAL INFORMATION AND SYMBOLS

CHAPTER 3 MARGINAL INFORMATION AND SYMBOLS CHAPTER 3 MARGINAL INFORMATION AND SYMBOLS A map could be compared to any piece of equipment, in that before it is placed into operation the user must read the instructions. It is important that you, as

More information

Similarity and Ratios

Similarity and Ratios " Similarity and Ratios You can enhance a report or story by adding photographs, drawings, or diagrams. Once you place a graphic in an electronic document, you can enlarge, reduce, or move it. In most

More information

Worksheet 10 Memorandum: Construction of Geometric Figures. Grade 9 Mathematics

Worksheet 10 Memorandum: Construction of Geometric Figures. Grade 9 Mathematics Worksheet 10 Memorandum: Construction of Geometric Figures Grade 9 Mathematics For each of the answers below, we give the steps to complete the task given. We ve used the following resources if you would

More information

Math + 4 (Red) SEMESTER 1. { Pg. 1 } Unit 1: Whole Number Sense. Unit 2: Whole Number Operations. Unit 3: Applications of Operations

Math + 4 (Red) SEMESTER 1.  { Pg. 1 } Unit 1: Whole Number Sense. Unit 2: Whole Number Operations. Unit 3: Applications of Operations Math + 4 (Red) This research-based course focuses on computational fluency, conceptual understanding, and problem-solving. The engaging course features new graphics, learning tools, and games; adaptive

More information

Look carefully at the dimensions on each shape and find the perimeter. Express your answers in cm: 3 cm. Length, Perimeter and Area

Look carefully at the dimensions on each shape and find the perimeter. Express your answers in cm: 3 cm. Length, Perimeter and Area Perimeter measure perimeters Perimeter is the length around a shape. The word originates from Greek and literally means around measure. The boundary of this shape is the perimeter. Choose classroom objects.

More information

Electromagnetic Induction

Electromagnetic Induction Chapter 16 Electromagnetic Induction In This Chapter: Electromagnetic Induction Faraday s Law Lenz s Law The Transformer Self-Inductance Inductors in Combination Energy of a Current-Carrying Inductor Electromagnetic

More information

Solving Problems. PS1 Use and apply mathematics to solve problems, communicate and reason Year 1. Activities. PS1.1 Number stories 1.

Solving Problems. PS1 Use and apply mathematics to solve problems, communicate and reason Year 1. Activities. PS1.1 Number stories 1. PS1 Use and apply mathematics to solve problems, communicate and reason Year 1 PS1.1 Number stories 1 PS1.2 Difference arithmagons PS1.3 Changing orders PS1.4 Making shapes PS1.5 Odd or even? PS1.6 Odd

More information

CHAPTER 8 AERIAL PHOTOGRAPHS

CHAPTER 8 AERIAL PHOTOGRAPHS CHAPTER 8 AERIAL PHOTOGRAPHS An aerial photograph is any photograph taken from an airborne vehicle (aircraft, drones, balloons, satellites, and so forth). The aerial photograph has many uses in military

More information

Shape sensing for computer aided below-knee prosthetic socket design

Shape sensing for computer aided below-knee prosthetic socket design Prosthetics and Orthotics International, 1985, 9, 12-16 Shape sensing for computer aided below-knee prosthetic socket design G. R. FERNIE, G. GRIGGS, S. BARTLETT and K. LUNAU West Park Research, Department

More information

Details of Play Each player counts out a number of his/her armies for initial deployment, according to the number of players in the game.

Details of Play Each player counts out a number of his/her armies for initial deployment, according to the number of players in the game. RISK Risk is a fascinating game of strategy in which a player can conquer the world. Once you are familiar with the rules, it is not a difficult game to play, but there are a number of unusual features

More information

Bakiss Hiyana binti Abu Bakar JKE, POLISAS BHAB

Bakiss Hiyana binti Abu Bakar JKE, POLISAS BHAB 1 Bakiss Hiyana binti Abu Bakar JKE, POLISAS 1. Explain AC circuit concept and their analysis using AC circuit law. 2. Apply the knowledge of AC circuit in solving problem related to AC electrical circuit.

More information

1. If one side of a regular hexagon is 2 inches, what is the perimeter of the hexagon?

1. If one side of a regular hexagon is 2 inches, what is the perimeter of the hexagon? Geometry Grade 4 1. If one side of a regular hexagon is 2 inches, what is the perimeter of the hexagon? 2. If your room is twelve feet wide and twenty feet long, what is the perimeter of your room? 3.

More information