Probability and Statistics 15% of EOC
|
|
- Ami Franklin
- 2 years ago
- Views:
Transcription
1 MGSE9-12.S.CP.1 1. Which of the following is true for A U B A: 2, 4, 6, 8 B: 5, 6, 7, 8, 9, 10 A. 6, 8 B. 2, 4, 6, 8 C. 2, 4, 5, 6, 6, 7, 8, 8, 9, 10 D. 2, 4, 5, 6, 7, 8, 9, This Venn diagram shows the names of students in Mr. Leary s class that own bicycles and skateboards. 3. Which of the following is true for A U B A: 2, 4, 6, 8 B: 5, 6, 7, 8, 9, 10 A. 2, 4 B. 2, 4, 6, 8 C. 2, 4, 5, 6, 6, 7, 8, 8, 9, 10 D. 2, 4, 5, 6, 7, 8, 9, A Venn Diagram has three main categories. How many total groups can be formed from the three main categories? A. 5 B. 6 C. 7 D. 8 MGSE9-12.S.CP.2 Find A B A. Amy, Gabe, Abi B. Brent, Juan, Tobi C. Joe, Mike, Linda, Rose D. Rya, Amy, Sarah 5. A model has 15 different shirts, 8 different hats, and 10 different pairs of pants to choose from. How many different outfits of 1 shirt, 1 hat, and 1 pair of pants are possible? A. 33 B. 99 C. 400 D. 1200
2 6. A café offers a daily sandwich special that allows customers to choose 1 from each of the following. 5 different types of bread 4 different types of meat 2 different types of cheese 3 different types of topping The manager of the café is considering adding 1 more topping. How many MORE sandwiches are possible if another topping is offered? A. 120 B. 160 C. 40 D Which situation describes INDEPENDENT events? A. A die is rolled, then it is rolled a second time. B. One card is chosen from a standard deck, it is set aside, then a second card is drawn. C. Tom chooses a letter of the alphabet, then Beth must choose a different letter from the alphabet. D. One student is chosen from Classroom A, then that student chooses one of his friends from Classroom A. 9. How many outcomes are there for the tree diagram below? 7. Which situation describes DEPENDENT events? A. A die is rolled, the outcome is recorded, then a coin is tossed. B. A die is rolled, the outcome is recorded, then the same die is rolled again. C. A spinner is spun once, the outcome is recorded, then it is spun again. D. A card is drawn from a deck, then a second card is drawn from the same deck. A. 2 B. 4 C. 8 D. 16
3 MGSE9-12.S.CP Kevin is trying to find a white sock in his drawer. He has 16 white socks, 4 brown socks, and 6 black socks. What is the probability that he pull out either a black or brown sock, puts it back, and then pulls out a white sock? MGSE9-12.S.CP.4 Use the two way frequency table to answer the following questions. Answers must be written in fraction, decimal, and percent. A. 9/13 B. 20/13 C. 40/169 D. 96/ If a die is rolled twice, what is the probability of rolling a 5 and then a 2? A. 1/36 B. 1/3 C. 1/6 D. 2/ Mary Katherine has a bag of 3 red apples, 5 yellow apples and 4 green apples. Mary takes a red apple out of the bag and does not replace it. What is the probability that the next apple she takes out is yellow? A. 5/44 B. 4/11 C. 5/12 D. 5/ What is the probability of selecting a student who plays team sports A B C D What is the relative frequency of a students selected does not play an instrument? A. 9/20 B. 5/20 C. 10/20 D. 7/ What is the difference between students who doe not play team sports and a those who do not play any instruments? A. 4/10 B. 1/20 C. 1/20 D. 1/20
4 MGSE9-12.S.CP If the probability that it rains tomorrow is 35%, what is the probability that it does NOT rain? A B C D The probability that a spinner lands on red is 4/5. What is the probability of the spinner NOT landing on red? A. 4/5 B. 2/5 C. 3/5 D. 1/5 MGSE9-12.S.CP The probability that it will rain tomorrow in Georgia is 30%. The probability that it will rain tomorrow in both Georgia and Alaska is 12%. If it rains tomorrow in Georgia, what is the probability that it will rain tomorrow in Alaska? A) 12% B) 18% C) 32% D) 40% 19. Assume that the following events are independent: The probability that a high school senior will go to college is The probability that a high school senior will go to college and live on campus is What is the probability that a high school senior will live on campus, given that the person will go to college? A B C D A random survey was conducted about gender and hair color. This table records the data. What is the probability that a randomly selected person has blonde hair, given that the person selected is male? A B C D. 0.63
5 21. Students responding to a poll were asked whether they were for or against a proposal to change the school mascot. 23. Consider the given Venn diagram. What is the probability that a randomly selected student at the school would be for the proposal given that the student was a girl? A. 18% B. 33% C. 40% D. 54% 22. A random survey was conducted to gather information about age and employment status. This table shows the data that were collected. What is A. ¼ B. 5/8 C. 2/3 D. 6/7 What is the probability that a randomly selected person surveyed has a job, given that the person is less than 18 years old? A. 8% B. 25% C. 36% D. 42%
6 MGSE9-12.S.CP This spinner is divided into 12 congruent sections numbered 1 through A high school cross-country team consists of 6 freshmen, 5 sophomores, 4 juniors, and 5 seniors. The coach randomly chooses one of the runners to hand out race numbers. What is the probability that the chosen runner is a junior or senior? A) A student will spin the arrow on the spinner one time. What is the probability that the arrow will stop on a number that is a multiple of 3 or 4? A) B) B) C) D) 26. A group of students participated in snow activities over winter break. The table shows the numbers of girls and boys and which type of snow activities they participated in. C) D) What is the value of A) 35% B) 41% C) 85% D) 90%
7 27. The total number of full-time and part-time employees at a store is 50. Each employee works either the morning shift or the afternoon shift. More information about the employees is given below. 28. Tenth-grade student will have to sign up for a health elective. A survey of a group of tenth-grade student asked which elective they would most like to take. 15 employees are part-time 28 employees are males 30 employees work the morning shift 6 male employees work part-time 12 male employees work the morning shift The names of each of the 50 employees are written on separate cards. The cards are shuffled and placed into a container. If one card is selected at random from all 50 cards in the container, what is the probability that the employee is part-time or male? Show your work and explain your answer. A. 65% B. 74% C. 82% D. 89% MGSE9-12.S.CP Which of the following events are independent given P(A), P(B), and P(A and B)? A. P(A) = 0.25; P(B) = 0.25; P(A and B) = 0.5 B. P(A) = 0.3; P(B) = 0.15; P(A and B) = C..P(A) = 0.08; P(B) = 0.4; P(A and B) = 0.12 D. P(A) = 0.16; P(B) = 0.24; P(A and B) = 0.32
8 MGSE9-12.S.CP Eight tiles are in a bag shown. Jack will reach into the bag and select a tile without looking. What is the probability that he selected a tile with an N on it? MGSE9-12.S.CP Hank is deciding what type of vehicle he is going to purchase. He has narrowed his preferences down to 2 vehicle types, 2 colors, and 2 types of interior. According to the tree diagram how many combinations exist? 31. A bag contains tiles that each have a letter on them. The letters spell the word ELEPHANT. A tile is chosen at random. What is the probability that the tile chosen has a vowel on it? A) B) C) A. 6 B. 7 C. 8 D Mark flips a coin twice. How many outcomes are in the sample space? A. 1 B. 2 C. 3 D. 4 D)
9 MGSE9-12.S.CP Jim spins a spinner with colors red, blue, yellow, purple, green, and orange. Jim also flips a coin. What is the probability that Jim spins a primary color (red, blue, yellow) and flips a head? 36. Fiona interviewed her 30 classmates on whether or not they had a sibling and if they have assigned chores at home. She displayed her results in the two-way table shown. Which category had the highest relative frequency? A. ½ B. 1/3 C. ¼ D. 1/6 35. There are 3 white marbles and 7 blue marbles in a bag. Jamie will randomly pick two marbles out of the bag without replacing the first one. What is the probability of Jamie picking a white marble and then a blue marble? A. 1/15 B. 21/100 A. Have Chores B. Do Not Have Chores C. Have a Sibling D. Only Child MGSE9-12.S.CP A school baseball team has 65 players. What is the probability that a randomly chosen player is a junior or a right-handed batter? C. 7/15 D. 7/30 MGSE9-12.S.CP.4 A. 11/65 B. 14/65 C. 16/65 D. 51/65
10 38. Using the information from problem 37, what is the probability of selecting a freshman or left-handed batters? 40. A school baseball team has 65 players. What is the probability that a randomly chosen player is a junior given that a right-handed batter was selected? A B C D MGSE9-12.S.CP.6 A. 24% B. 29% C. 33% D. 45% 39. Suppose 67% of all teenagers own a laptop and 29% of all teenagers own a laptop and a tablet. What is the probability that a teenager owns a tablet given that the teenager owns a laptop? A. 29% B. 36% C. 43% D. 19%
Name: Class: Date: ID: A
Class: Date: Chapter 0 review. A lunch menu consists of different kinds of sandwiches, different kinds of soup, and 6 different drinks. How many choices are there for ordering a sandwich, a bowl of soup,
Use this information to answer the following questions.
1 Lisa drew a token out of the bag, recorded the result, and then put the token back into the bag. She did this 30 times and recorded the results in a bar graph. Use this information to answer the following
MAT104: Fundamentals of Mathematics II Counting Techniques Class Exercises Solutions
MAT104: Fundamentals of Mathematics II Counting Techniques Class Exercises Solutions 1. Appetizers: Salads: Entrées: Desserts: 2. Letters: (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U,
Name: Class: Date: 6. An event occurs, on average, every 6 out of 17 times during a simulation. The experimental probability of this event is 11
Class: Date: Sample Mastery # Multiple Choice Identify the choice that best completes the statement or answers the question.. One repetition of an experiment is known as a(n) random variable expected value
What is the probability Jordan will pick a red marble out of the bag and land on the red section when spinning the spinner?
Name: Class: Date: Question #1 Jordan has a bag of marbles and a spinner. The bag of marbles has 10 marbles in it, 6 of which are red. The spinner is divided into 4 equal sections: blue, green, red, and
NAME DATE PERIOD. Study Guide and Intervention
9-1 Section Title The probability of a simple event is a ratio that compares the number of favorable outcomes to the number of possible outcomes. Outcomes occur at random if each outcome occurs by chance.
Chapter 10 Practice Test Probability
Name: Class: Date: ID: A Chapter 0 Practice Test Probability Multiple Choice Identify the choice that best completes the statement or answers the question. Describe the likelihood of the event given its
ALL FRACTIONS SHOULD BE IN SIMPLEST TERMS
Math 7 Probability Test Review Name: Date Hour Directions: Read each question carefully. Answer each question completely. ALL FRACTIONS SHOULD BE IN SIMPLEST TERMS! Show all your work for full credit!
4.1 Sample Spaces and Events
4.1 Sample Spaces and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment is called an
Unit 7 Central Tendency and Probability
Name: Block: 7.1 Central Tendency 7.2 Introduction to Probability 7.3 Independent Events 7.4 Dependent Events 7.1 Central Tendency A central tendency is a central or value in a data set. We will look at
A. 15 B. 24 C. 45 D. 54
A spinner is divided into 8 equal sections. Lara spins the spinner 120 times. It lands on purple 30 times. How many more times does Lara need to spin the spinner and have it land on purple for the relative
INDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2
INDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2 WARM UP Students in a mathematics class pick a card from a standard deck of 52 cards, record the suit, and return the card to the deck. The results
Answer each of the following problems. Make sure to show your work.
Answer each of the following problems. Make sure to show your work. 1. A board game requires each player to roll a die. The player with the highest number wins. If a player wants to calculate his or her
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Statistics Homework Ch 5 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) A coin is tossed. Find the probability
Probability: introduction
May 6, 2009 Probability: introduction page 1 Probability: introduction Probability is the part of mathematics that deals with the chance or the likelihood that things will happen The probability of an
This unit will help you work out probability and use experimental probability and frequency trees. Key points
Get started Probability This unit will help you work out probability and use experimental probability and frequency trees. AO Fluency check There are 0 marbles in a bag. 9 of the marbles are red, 7 are
Unit 19 Probability Review
. What is sample space? All possible outcomes Unit 9 Probability Review 9. I can use the Fundamental Counting Principle to count the number of ways an event can happen. 2. What is the difference between
, -the of all of a probability experiment. consists of outcomes. (b) List the elements of the event consisting of a number that is greater than 4.
4-1 Sample Spaces and Probability as a general concept can be defined as the chance of an event occurring. In addition to being used in games of chance, probability is used in the fields of,, and forecasting,
FALL 2012 MATH 1324 REVIEW EXAM 4
FALL 01 MATH 134 REVIEW EXAM 4 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Write the sample space for the given experiment. 1) An ordinary die
Probability Essential Math 12 Mr. Morin
Probability Essential Math 12 Mr. Morin Name: Slot: Introduction Probability and Odds Single Event Probability and Odds Two and Multiple Event Experimental and Theoretical Probability Expected Value (Expected
Bell Work. Warm-Up Exercises. Two six-sided dice are rolled. Find the probability of each sum or 7
Warm-Up Exercises Two six-sided dice are rolled. Find the probability of each sum. 1. 7 Bell Work 2. 5 or 7 3. You toss a coin 3 times. What is the probability of getting 3 heads? Warm-Up Notes Exercises
Probability Review Questions
Probability Review Questions Short Answer 1. State whether the following events are mutually exclusive and explain your reasoning. Selecting a prime number or selecting an even number from a set of 10
2. The figure shows the face of a spinner. The numbers are all equally likely to occur.
MYP IB Review 9 Probability Name: Date: 1. For a carnival game, a jar contains 20 blue marbles and 80 red marbles. 1. Children take turns randomly selecting a marble from the jar. If a blue marble is chosen,
Unit 11 Probability. Round 1 Round 2 Round 3 Round 4
Study Notes 11.1 Intro to Probability Unit 11 Probability Many events can t be predicted with total certainty. The best thing we can do is say how likely they are to happen, using the idea of probability.
Unit 1 Day 1: Sample Spaces and Subsets. Define: Sample Space. Define: Intersection of two sets (A B) Define: Union of two sets (A B)
Unit 1 Day 1: Sample Spaces and Subsets Students will be able to (SWBAT) describe events as subsets of sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions,
Instructions: Choose the best answer and shade in the corresponding letter on the answer sheet provided. Be sure to include your name and student ID.
Math 3201 Unit 3 Probability Test 1 Unit Test Name: Part 1 Selected Response: Instructions: Choose the best answer and shade in the corresponding letter on the answer sheet provided. Be sure to include
7.1 Experiments, Sample Spaces, and Events
7.1 Experiments, Sample Spaces, and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment
Algebra 1B notes and problems May 14, 2009 Independent events page 1
May 14, 009 Independent events page 1 Independent events In the last lesson we were finding the probability that a 1st event happens and a nd event happens by multiplying two probabilities For all the
Independent Events. If we were to flip a coin, each time we flip that coin the chance of it landing on heads or tails will always remain the same.
Independent Events Independent events are events that you can do repeated trials and each trial doesn t have an effect on the outcome of the next trial. If we were to flip a coin, each time we flip that
Math 1 Unit 4 Mid-Unit Review Chances of Winning
Math 1 Unit 4 Mid-Unit Review Chances of Winning Name My child studied for the Unit 4 Mid-Unit Test. I am aware that tests are worth 40% of my child s grade. Parent Signature MM1D1 a. Apply the addition
Instructions: Choose the best answer and shade the corresponding space on the answer sheet provide. Be sure to include your name and student numbers.
Math 3201 Unit 3 Probability Assignment 1 Unit Assignment Name: Part 1 Selected Response: Instructions: Choose the best answer and shade the corresponding space on the answer sheet provide. Be sure to
Math 7, Unit 5: Probability - NOTES
Math 7, Unit 5: Probability - NOTES NVACS 7. SP.C.5 - Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers
Mutually Exclusive Events Algebra 1
Name: Mutually Exclusive Events Algebra 1 Date: Mutually exclusive events are two events which have no outcomes in common. The probability that these two events would occur at the same time is zero. Exercise
Chapter 13 Test Review
1. The tree diagrams below show the sample space of choosing a cushion cover or a bedspread in silk or in cotton in red, orange, or green. Write the number of possible outcomes. A 6 B 10 C 12 D 4 Find
Use Venn diagrams to determine whether the following statements are equal for all sets A and B. 2) A' B', A B Answer: not equal
Test Prep Name Let U = {q, r, s, t, u, v, w, x, y, z} A = {q, s, u, w, y} B = {q, s, y, z} C = {v, w, x, y, z} Determine the following. ) (A' C) B' {r, t, v, w, x} Use Venn diagrams to determine whether
Name Date Class. 2. dime. 3. nickel. 6. randomly drawing 1 of the 4 S s from a bag of 100 Scrabble tiles
Name Date Class Practice A Tina has 3 quarters, 1 dime, and 6 nickels in her pocket. Find the probability of randomly drawing each of the following coins. Write your answer as a fraction, as a decimal,
Chapter 1 - Set Theory
Midterm review Math 3201 Name: Chapter 1 - Set Theory Part 1: Multiple Choice : 1) U = {hockey, basketball, golf, tennis, volleyball, soccer}. If B = {sports that use a ball}, which element would be in
Math 7 Notes - Unit 7B (Chapter 11) Probability
Math 7 Notes - Unit 7B (Chapter 11) Probability Probability Syllabus Objective: (7.2)The student will determine the theoretical probability of an event. Syllabus Objective: (7.4)The student will compare
AP Statistics Ch In-Class Practice (Probability)
AP Statistics Ch 14-15 In-Class Practice (Probability) #1a) A batter who had failed to get a hit in seven consecutive times at bat then hits a game-winning home run. When talking to reporters afterward,
Fundamental Counting Principle
Lesson 88 Probability with Combinatorics HL2 Math - Santowski Fundamental Counting Principle Fundamental Counting Principle can be used determine the number of possible outcomes when there are two or more
Part 1: I can express probability as a fraction, decimal, and percent
Name: Pattern: Part 1: I can express probability as a fraction, decimal, and percent For #1 to #4, state the probability of each outcome. Write each answer as a) a fraction b) a decimal c) a percent Example:
Probability Review before Quiz. Unit 6 Day 6 Probability
Probability Review before Quiz Unit 6 Day 6 Probability Warm-up: Day 6 1. A committee is to be formed consisting of 1 freshman, 1 sophomore, 2 juniors, and 2 seniors. How many ways can this committee be
Lesson 3: Chance Experiments with Equally Likely Outcomes
Lesson : Chance Experiments with Equally Likely Outcomes Classwork Example 1 Jamal, a 7 th grader, wants to design a game that involves tossing paper cups. Jamal tosses a paper cup five times and records
Chapter 3: PROBABILITY
Chapter 3 Math 3201 1 3.1 Exploring Probability: P(event) = Chapter 3: PROBABILITY number of outcomes favourable to the event total number of outcomes in the sample space An event is any collection of
MATH STUDENT BOOK. 7th Grade Unit 6
MATH STUDENT BOOK 7th Grade Unit 6 Unit 6 Probability and Graphing Math 706 Probability and Graphing Introduction 3 1. Probability 5 Theoretical Probability 5 Experimental Probability 13 Sample Space 20
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Study Guide for Test III (MATH 1630) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the number of subsets of the set. 1) {x x is an even
A 20% B 25% C 50% D 80% 2. Which spinner has a greater likelihood of landing on 5 rather than 3?
1. At a middle school, 1 of the students have a cell phone. If a student is chosen at 5 random, what is the probability the student does not have a cell phone? A 20% B 25% C 50% D 80% 2. Which spinner
Notes #45 Probability as a Fraction, Decimal, and Percent. As a result of what I learn today, I will be able to
Notes #45 Probability as a Fraction, Decimal, and Percent As a result of what I learn today, I will be able to Probabilities can be written in three ways:,, and. Probability is a of how an event is to.
MATH-8 SOL8.12 Probability CW Exam not valid for Paper Pencil Test Sessions
MTH- SOL. Probability W Exam not valid for Paper Pencil Test Sessions [Exam I:NFP0 box contains five cards lettered,,,,. If one card is selected at random from the box and NOT replaced, what is the probability
1. Theoretical probability is what should happen (based on math), while probability is what actually happens.
Name: Date: / / QUIZ DAY! Fill-in-the-Blanks: 1. Theoretical probability is what should happen (based on math), while probability is what actually happens. 2. As the number of trials increase, the experimental
Math 7 Notes - Unit 11 Probability
Math 7 Notes - Unit 11 Probability Probability Syllabus Objective: (7.2)The student will determine the theoretical probability of an event. Syllabus Objective: (7.4)The student will compare theoretical
Probabilities of Simple Independent Events
Probabilities of Simple Independent Events Focus on After this lesson, you will be able to solve probability problems involving two independent events In the fairytale Goldilocks and the Three Bears, Goldilocks
2. Heather tosses a coin and then rolls a number cube labeled 1 through 6. Which set represents S, the sample space for this experiment?
1. Jane flipped a coin and rolled a number cube with sides labeled 1 through 6. What is the probability the coin will show heads and the number cube will show the number 4? A B C D 1 6 1 8 1 10 1 12 2.
10-8 Probability of Compound Events
Use any method to find the total number of outcomes in each situation. 6. Nathan has 4 t-shirts, 4 pairs of shorts, and 2 pairs of flip-flops. Use the Fundamental Counting Principle to find the number
Lesson 17.1 Assignment
Lesson 17.1 Assignment Name Date Is It Better to Guess? Using Models for Probability Charlie got a new board game. 1. The game came with the spinner shown. 6 7 9 2 3 4 a. List the sample space for using
Outcomes: The outcomes of this experiment are yellow, blue, red and green.
(Adapted from http://www.mathgoodies.com/) 1. Sample Space The sample space of an experiment is the set of all possible outcomes of that experiment. The sum of the probabilities of the distinct outcomes
MATH-7 SOL Review 7.9 and Probability and FCP Exam not valid for Paper Pencil Test Sessions
MATH-7 SOL Review 7.9 and 7.0 - Probability and FCP Exam not valid for Paper Pencil Test Sessions [Exam ID:LV0BM Directions: Click on a box to choose the number you want to select. You must select all
Quiz 2 Review - on Notebook Paper Are You Ready For Your Last Quiz In Honors Math II??
Quiz 2 Review - on Notebook Paper Are You Ready For Your Last Quiz In Honors Math II?? Some things to Know, Memorize, AND Understand how to use are n What are the formulas? Pr ncr Fill in the notation
Math 227 Elementary Statistics. Bluman 5 th edition
Math 227 Elementary Statistics Bluman 5 th edition CHAPTER 4 Probability and Counting Rules 2 Objectives Determine sample spaces and find the probability of an event using classical probability or empirical
10.2 Theoretical Probability and its Complement
warm-up after 10.1 1. A traveler can choose from 3 airlines, 5 hotels and 4 rental car companies. How many arrangements of these services are possible? 2. Your school yearbook has an editor and assistant
Theoretical or Experimental Probability? Are the following situations examples of theoretical or experimental probability?
Name:Date:_/_/ Theoretical or Experimental Probability? Are the following situations examples of theoretical or experimental probability? 1. Finding the probability that Jeffrey will get an odd number
Chapter 1: Sets and Probability
Chapter 1: Sets and Probability Section 1.3-1.5 Recap: Sample Spaces and Events An is an activity that has observable results. An is the result of an experiment. Example 1 Examples of experiments: Flipping
2 C. 1 D. 2 4 D. 5 3 C. 25 D. 2
Discrete Math Exam Review Name:. A bag contains oranges, grapefruits, and tangerine. A piece of fruit is chosen from the bag at random. What is the probability that a grapefruit will be chosen from the
A single die is rolled twice. Find the probability of getting two numbers whose sum is greater than 10.
A single die is rolled twice. Find the probability of getting two numbers whose sum is greater than 10. 1 12 The biology faculty at a college consists of 4 professors, 12 associate professors, 13 assistant
Probability. Sometimes we know that an event cannot happen, for example, we cannot fly to the sun. We say the event is impossible
Probability Sometimes we know that an event cannot happen, for example, we cannot fly to the sun. We say the event is impossible Impossible In summer, it doesn t rain much in Cape Town, so on a chosen
Math 3201 Midterm Chapter 3
Math 3201 Midterm Chapter 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which expression correctly describes the experimental probability P(B), where
Unit 7 - Probability Review
Name: Date:. The table below shows the number of colored marbles Maury has in his collection. Color Marble Collection Number of Marbles Purple 5 Blue 4 Red 9 Green 2 If Maury picks a marble without looking,
This Probability Packet Belongs to:
This Probability Packet Belongs to: 1 2 Station #1: M & M s 1. What is the sample space of your bag of M&M s? 2. Find the theoretical probability of the M&M s in your bag. Then, place the candy back into
Probability of Independent and Dependent Events
706 Practice A Probability of In and ependent Events ecide whether each set of events is or. Explain your answer.. A student spins a spinner and rolls a number cube.. A student picks a raffle ticket from
Name: Period: Date: 7 th Pre-AP: Probability Review and Mini-Review for Exam
Name: Period: Date: 7 th Pre-AP: Probability Review and Mini-Review for Exam 4. Mrs. Bartilotta s mathematics class has 7 girls and 3 boys. She will randomly choose two students to do a problem in front
6) A) both; happy B) neither; not happy C) one; happy D) one; not happy
MATH 00 -- PRACTICE TEST 2 Millersville University, Spring 202 Ron Umble, Instr. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find all natural
Algebra 2 Notes Section 10.1: Apply the Counting Principle and Permutations
Algebra 2 Notes Section 10.1: Apply the Counting Principle and Permutations Objective(s): Vocabulary: I. Fundamental Counting Principle: Two Events: Three or more Events: II. Permutation: (top of p. 684)
LC OL Probability. ARNMaths.weebly.com. As part of Leaving Certificate Ordinary Level Math you should be able to complete the following.
A Ryan LC OL Probability ARNMaths.weebly.com Learning Outcomes As part of Leaving Certificate Ordinary Level Math you should be able to complete the following. Counting List outcomes of an experiment Apply
Name Date Class. Identify the sample space and the outcome shown for each experiment. 1. spinning a spinner
Name Date Class 0.5 Practice B Experimental Probability Identify the sample space and the outcome shown for each experiment.. spinning a spinner 2. tossing two coins Write impossible, unlikely, as likely
FAVORITE MEALS NUMBER OF PEOPLE Hamburger and French fries 17 Spaghetti 8 Chili 12 Vegetarian delight 3
Probability 1. Destiny surveyed customers in a restaurant to find out their favorite meal. The results of the survey are shown in the table. One person in the restaurant will be picked at random. Based
12.1 Practice A. Name Date. In Exercises 1 and 2, find the number of possible outcomes in the sample space. Then list the possible outcomes.
Name Date 12.1 Practice A In Exercises 1 and 2, find the number of possible outcomes in the sample space. Then list the possible outcomes. 1. You flip three coins. 2. A clown has three purple balloons
Statistics and Probability
Statistics and Probability Name Find the probability of the event. 1) If a single die is tossed once, find the probability of the following event. An even number. A) 1 6 B) 1 2 C) 3 D) 1 3 The pictograph
Order the fractions from least to greatest. Use Benchmark Fractions to help you. First try to decide which is greater than ½ and which is less than ½
Outcome G Order the fractions from least to greatest 4 1 7 4 5 3 9 5 8 5 7 10 Use Benchmark Fractions to help you. First try to decide which is greater than ½ and which is less than ½ Likelihood Certain
#2. A coin is tossed 40 times and lands on heads 21 times. What is the experimental probability of the coin landing on tails?
1 Pre-AP Geometry Chapter 14 Test Review Standards/Goals: A.1.f.: I can find the probability of a simple event. F.1.c.: I can use area to solve problems involving geometric probability. S.CP.1: I can define
Compound Probability. A to determine the likelihood of two events occurring at the. ***Events can be classified as independent or dependent events.
Probability 68B A to determine the likelihood of two events occurring at the. ***Events can be classified as independent or dependent events. Independent Events are events in which the result of event
Study Island Statistics and Probability
Study Island Statistics and Probability Copyright 2014 Edmentum - All rights reserved. 1. An experiment is broken up into two parts. In the first part of the experiment, a six-sided die is rolled. In the
Name Date. Sample Spaces and Probability For use with Exploration 12.1
. Sample Spaces and Probability For use with Exploration. Essential Question How can you list the possible outcomes in the sample space of an experiment? The sample space of an experiment is the set of
COMPOUND EVENTS. Judo Math Inc.
COMPOUND EVENTS Judo Math Inc. 7 th grade Statistics Discipline: Black Belt Training Order of Mastery: Compound Events 1. What are compound events? 2. Using organized Lists (7SP8) 3. Using tables (7SP8)
A. 5 B. 15 C. 17 D. 20 E. 29 A. 676,000 B. 650,000 C. 468,000 D. 26,000 E. 18,720
Practice Quiz Counting and Probability. There are 0 students in Mary s homeroom. Of these students, are studying Spanish, 0 are studying Latin, and are studying both languages. How many students are studying
ATHS FC Math Department Al Ain Remedial worksheet. Lesson 10.4 (Ellipses)
ATHS FC Math Department Al Ain Remedial worksheet Section Name ID Date Lesson Marks Lesson 10.4 (Ellipses) 10.4, 10.5, 0.4, 0.5 and 0.6 Intervention Plan Page 1 of 19 Gr 12 core c 2 = a 2 b 2 Question
2. Complete the congruence statements based on the corresponding sides of the congruent triangles.
Name Practice Quiz (6.4 6.8 & 11.9) 1. Name the corresponding sides and the corresponding angles. D DF D F 2. omplete the congruence statements based on the corresponding sides of the congruent triangles.
CHAPTER 9 - COUNTING PRINCIPLES AND PROBABILITY
CHAPTER 9 - COUNTING PRINCIPLES AND PROBABILITY Probability is the Probability is used in many real-world fields, such as insurance, medical research, law enforcement, and political science. Objectives:
5 Elementary Probability Theory
5 Elementary Probability Theory 5.1 What is Probability? The Basics We begin by defining some terms. Random Experiment: any activity with a random (unpredictable) result that can be measured. Trial: one
Most of the time we deal with theoretical probability. Experimental probability uses actual data that has been collected.
AFM Unit 7 Day 3 Notes Theoretical vs. Experimental Probability Name Date Definitions: Experiment: process that gives a definite result Outcomes: results Sample space: set of all possible outcomes Event:
Study Guide Probability SOL s 6.16, 7.9, & 7.10
Study Guide Probability SOL s 6.16, 7.9, & 7.10 What do I need to know for the upcoming assessment? Find the probability of simple events; Determine if compound events are independent or dependent; Find
Section 11.4: Tree Diagrams, Tables, and Sample Spaces
Section 11.4: Tree Diagrams, Tables, and Sample Spaces Diana Pell Exercise 1. Use a tree diagram to find the sample space for the genders of three children in a family. Exercise 2. (You Try!) A soda machine
SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Math 1324 Test 3 Review Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Insert " " or " " in the blank to make the statement true. 1) {18, 27, 32}
Practice 9-1. Probability
Practice 9-1 Probability You spin a spinner numbered 1 through 10. Each outcome is equally likely. Find the probabilities below as a fraction, decimal, and percent. 1. P(9) 2. P(even) 3. P(number 4. P(multiple
7A: I can identify and count the outcomes of an experiment and calculate the theoretical probability of an event.
Geometry ^ t2r0`1c8p QKnuPtha\ esnohfftxwaacrger ililjcs.\ D callklw Jr^iSgDhgtTsD FraeKszerr_vPesdV. Assignment Name ID: 1 Date Period 7A: I can identify and count the outcomes of an experiment and calculate
When a number cube is rolled once, the possible numbers that could show face up are
C3 Chapter 12 Understanding Probability Essential question: How can you describe the likelihood of an event? Example 1 Likelihood of an Event When a number cube is rolled once, the possible numbers that
Conditional Probability Worksheet
Conditional Probability Worksheet EXAMPLE 4. Drug Testing and Conditional Probability Suppose that a company claims it has a test that is 95% effective in determining whether an athlete is using a steroid.
Probability. Probabilty Impossibe Unlikely Equally Likely Likely Certain
PROBABILITY Probability The likelihood or chance of an event occurring If an event is IMPOSSIBLE its probability is ZERO If an event is CERTAIN its probability is ONE So all probabilities lie between 0
Lesson Lesson 3.7 ~ Theoretical Probability
Theoretical Probability Lesson.7 EXPLORE! sum of two number cubes Step : Copy and complete the chart below. It shows the possible outcomes of one number cube across the top, and a second down the left
Conditional Probability Worksheet
Conditional Probability Worksheet P( A and B) P(A B) = P( B) Exercises 3-6, compute the conditional probabilities P( AB) and P( B A ) 3. P A = 0.7, P B = 0.4, P A B = 0.25 4. P A = 0.45, P B = 0.8, P A
Basic Probability. Let! = # 8 # < 13, # N -,., and / are the subsets of! such that - = multiples of four. = factors of 24 / = square numbers
Basic Probability Let! = # 8 # < 13, # N -,., and / are the subsets of! such that - = multiples of four. = factors of 24 / = square numbers (a) List the elements of!. (b) (i) Draw a Venn diagram to show