6) A) both; happy B) neither; not happy C) one; happy D) one; not happy


 Loraine Miles
 3 years ago
 Views:
Transcription
1 MATH PRACTICE TEST 2 Millersville University, Spring 202 Ron Umble, Instr. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find all natural number factors of the number. ) 0 A) 2, 5, 0,, 55, 0, 2, 5, 0,, 22, 0, 2,, 5, 0,, 22, 55, 0 D), 2, 5, 0,, 22, 55, 0 ) Give the prime factorization of the number. Use exponents when possible. 2) 8 A) D) 2 2) Find the number of divisors of the number. 3) 0 A) 2 0 D) 3) Determine whether the number is abundant or deficient. ) 3 A) Abundant Deficient ) Write the number as the sum of two primes. There may be more than one way to do this. 5) 28 A) , , , + 7 D) , + 5 5) For the following amicable pair, determine whether neither, one, or both of the members are happy, and whether the pair is a happy amicable pair. ) 79,750 and 88,730 ) A) both; happy neither; not happy one; happy D) one; not happy Find the greatest common factor of the numbers in the group. 7) 20, 90 A) 30 0 D) 5 7) 8) 2, 5, 98 A) 2 28 D) 7 8) Find the least common multiple of the numbers in the group. 9) 2, 9 A) D) 33 9) 0) 8, 2, 27 A) D) 29 0) Answer the question. ) Jack has 92 hot dogs and 7 hot dog buns. He wants to put the same number of hot dogs and hot dog buns on each tray. What is the greatest number of trays Jack can use to accomplish this? A) 2 D) 37 )
2 2) Planets A, B, and C orbit a certain star once every 3, 7, and 8 months, respectively. If the three planets are now in the same straight line, what is the smallest number of months that must pass before they line up again? A) 2 months 378 months 5 months D) 28 months 2) Solve the problem relating to the Fibonacci sequence. ) List the first seven terms of the Fibonacci sequence. A),, 2, 3, 5, 8,, 2, 3, 5, 8,, 2,, 3,, 7,, 8 D), 2,,, 0,, 2 ) ) F28 = 37,8, F30 = 832,00 Find F29. A) F29 =,9,85 F29 = 5,229 F29 =,3,29 D) F29 = 9,8 ) 5) If an 8inch wide rectangle is to approach the golden ratio, what should its length be? A) 0 in 2 in 5 in D) in 5) Solve the problem. ) Construct a product table showing all possible twodigit numbers using digits from the set {, 2,, 7}. ) A) D) ) A baseball manager has 0 players of the same ability. How many different 9 player starting lineups can he create? A) 32, ,28,800 D) 0 7) 8) A shirt company has designs, each of which can be made with short or long sleeves. There are color patterns available. How many different types of shirts are available from this company? A) 0 types 2 types 2 types D) 8 types 8) 9) How many ways can a president, vicepresident, secretary, and treasurer be chosen from a club with 9 members? Assume that no member can hold more than one office. A) D) 2 9) 20) There are members on a board of directors. If they must form a subcommittee of members, how many different subcommittees are possible? A) 28,5 7,0 2 D) 75 20) 2) Of the 2,598,90 different fivecard hands possible from a deck of 52 playing cards, how many would contain all clubs? A) 3,8,287 2,57 D) 3 2) 2
3 22) A group of five entertainers will be selected from a group of twenty entertainers that includes Small and Trout. In how many ways could the group of five include at least one of the entertainers Small and Trout? A) 28 ways 5,50 ways 858 ways D) 93 ways 22) 23) If a single card is drawn from a standard 52card deck, in how many ways could it be an ace or a spade? A) ways 7 ways way D) ways 23) 2) How many odd threedigit numbers can be written using digits from the set 2, 3,, 5, if no digit may be used more than once? A) 2 0 D) 8 2) 25) Suppose that fair coins are tossed. Find the numbers of ways of obtaining exactly 5 heads. A) 332,0 0 2 D) 27,720 25) Find the number of ways to get the following card combinations from a 52 card deck. 2) Two red cards and three black cards A),27,500 ways 22,500 ways,90,000 ways D) 85,000 ways 2) 27) A bag contains balls numbered through. What is the probability that a randomly selected ball has an even number? A) 2 D) 27) Solve the problem. 28) A computer printer allows for optional settings with a panel of four onoff switches in a row. How many different settings can be selected if no three adjacent switches can all be off? A) 2 D) 0 28) Give the probability that the spinner shown would land on the indicated color. 29) black 29) A) 3 2 D) 2 3 3
4 Solve the problem. 30) The table shows the number of college students who prefer a given pizza topping. 30) toppings freshman sophomore junior senior cheese 2 28 meat 2 28 veggie 2 28 Find the empirical probability that a randomly selected student prefers cheese toppings. A) D) ) A bag contains 7 red marbles, 2 blue marbles, and 3 green marbles. What is the probability that a randomly selected marble is blue? A) 2 7 D) 9 2 3) 32) Two fair sided dice are rolled. What is the probability that the sum of the two numbers on the dice is greater than 0? A) 5 D) ) 33) A class consists of 2 women and 58 men. If a student is randomly selected, what is the probability that the student is a woman? A) D) 2 33) 3) A card is drawn at random from a wellshuffled deck of 52 cards. What is the probability of drawing a face card or a red card? A) D) ) Find the indicated probability. 35) A card is drawn at random from a standard 52 card deck. Find the probability that the card is not a queen. A) 2 3 D) 35) Solve the problem. 3) 3) What are the odds in favor of spinning an A on this spinner? A) 3:5 :2 :2 D) 2:
5 37) 37) What are the odds against drawing a number greater than 2 from these cards? A) 2:5 3:2 2:3 D) 5:2 38) If the probability that an identified hurricane will make a direct hit on a certain stretch of beach is 0.0, what are the odds against a direct hit? A) to 0 9 to 0to D) 8 to 38) 39) Two distinct even numbers are selected at random from the first ten even numbers greater than zero. What is the probability that the sum is 30? 39) A) D) 5 Find the probability of the following card hands from a 52 card deck. In poker, aces are either high or low. A bridge hand is made up of cards. 0) In poker, a full house (3 cards of one value, 2 of another value) 0) A) D) 0.00 ) A fair die is rolled. What is the probability of rolling a 3 or a? A) 3 3 D) 2 ) 2) A card is drawn at random from a wellshuffled deck of 52 cards. What is the probability of drawing a face card or a red card? A) D) ) Find the indicated probability. 3) The age distribution of students at a community college is given below. 3) Age (years) Number of students (f) Under Over A student from the community college is selected at random. Find the probability that the student is between 2 and 35 inclusive. Round approximations to three decimal places. A) D) 0.98 ) A card is drawn at random from a standard 52 card deck. Find the probability that the card is not a queen. A) 2 D) 3 ) 5
6 5) The table below shows the soft drink preferences of people in three age groups. 5) cola root beer lemonlime under 2 years of age between 2 and over 0 years of age If one of the 255 subjects is randomly selected, find the probability that the person is over 0 years of age. A) D) 3 5 ) If a fair coin is tossed three times, find the probability of getting heads on the first toss and tails on the second and third tosses. ) A) D) Find the indicated probability. 7) An unprepared student makes random guesses for the ten truefalse questions on a quiz. Find the probability that there is at least one correct answer. A) D) ) Find the conditional probability. 8) Suppose one cards is selected at random from an ordinary deck of 52 playing cards without replacement, then a second card is selected. Let 8) A = event a queen is selected B = event a diamond is selected. Determine P(B A). A) 52 D) 2 9) If a single fair die is rolled, find the probability that the number rolled is 5 given that it is odd. 9) A) D) 3 50) If two fair dice are rolled, find the probability that the sum is given that the roll is a ʺdoubleʺ. 50) A) 5 D) 3
7 Answer Key Testname: MATH00 PRACTICETEST2 SPRING202 ) D 2) A 3) A ) A 5) C ) B 7) A 8) B 9) A 0) D ) B 2) A ) A ) B 5) D ) C 7) C 8) D 9) C 20) D 2) B 22) D 23) A 2) B 25) C 2) D 27) B 28) B 29) A 30) A 3) C 32) B 33) D 3) D 35) A 3) A 37) C 38) B 39) B 0) D ) A 2) D 3) C ) B 5) B ) B 7) D 8) C 9) D 50) C 7
Convert the Egyptian numeral to HinduArabic form. 1) A) 3067 B) 3670 C) 3607 D) 367
MATH 100  PRACTICE EXAM 2 Millersville University, Spring 2011 Ron Umble, Instr. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Convert the Egyptian
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
MATH 00  PRACTICE EXAM 3 Millersville University, Fall 008 Ron Umble, Instr. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. For the given question,
More informationMATH CALCULUS & STATISTICS/BUSN  PRACTICE EXAM #1  SPRING DR. DAVID BRIDGE
MATH 205  CALCULUS & STATISTICS/BUSN  PRACTICE EXAM #  SPRING 2006  DR. DAVID BRIDGE TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. Tell whether the statement is
More informationFALL 2012 MATH 1324 REVIEW EXAM 4
FALL 01 MATH 134 REVIEW EXAM 4 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Write the sample space for the given experiment. 1) An ordinary die
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Mathematical Ideas Chapter 2 Review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ) In one town, 2% of all voters are Democrats. If two voters
More informationName (Place your name here and on the Scantron form.)
MATH 053  CALCULUS & STATISTICS/BUSN  CRN 0398  EXAM #  WEDNESDAY, FEB 09  DR. BRIDGE Name (Place your name here and on the Scantron form.) MULTIPLE CHOICE. Choose the one alternative that best completes
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Statistics Homework Ch 5 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) A coin is tossed. Find the probability
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
6. Practice Problems Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the probability. ) A bag contains red marbles, blue marbles, and 8
More informationC) 1 4. Find the indicated probability. 2) A die with 12 sides is rolled. What is the probability of rolling a number less than 11?
Chapter Probability Practice STA03, Broward College Answer the question. ) On a multiple choice test with four possible answers (like this question), what is the probability of answering a question correctly
More informationSHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
MATH 1324 Review for Test 3 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Find the value(s) of the function on the given feasible region. 1) Find the
More informationMATH CALCULUS & STATISTICS/BUSN  PRACTICE EXAM #1  SPRING DR. DAVID BRIDGE
MATH 205  CALCULUS & STATISTICS/BUSN  PRACTICE EXAM #1  SPRING 2009  DR. DAVID BRIDGE TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. Tell whether the statement is
More informationDetermine whether the given events are disjoint. 4) Being over 30 and being in college 4) A) No B) Yes
Math 34 Test #4 Review Fall 06 Name Tell whether the statement is true or false. ) 3 {x x is an even counting number} ) A) True False Decide whether the statement is true or false. ) {5, 0, 5, 0} {5, 5}
More informationUse Venn diagrams to determine whether the following statements are equal for all sets A and B. 2) A' B', A B Answer: not equal
Test Prep Name Let U = {q, r, s, t, u, v, w, x, y, z} A = {q, s, u, w, y} B = {q, s, y, z} C = {v, w, x, y, z} Determine the following. ) (A' C) B' {r, t, v, w, x} Use Venn diagrams to determine whether
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Study Guide for Test III (MATH 1630) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the number of subsets of the set. 1) {x x is an even
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
6.1 Practice Problems Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Answer the question. 1) The probability of rolling an even number on a
More information6. In how many different ways can you answer 10 multiplechoice questions if each question has five choices?
PreCalculus Section 4.1 Multiplication, Addition, and Complement 1. Evaluate each of the following: a. 5! b. 6! c. 7! d. 0! 2. Evaluate each of the following: a. 10! b. 20! 9! 18! 3. In how many different
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) 1 6
Math 300 Exam 4 Review (Chapter 11) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Give the probability that the spinner shown would land on
More information4.1 Sample Spaces and Events
4.1 Sample Spaces and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment is called an
More information4.3 Rules of Probability
4.3 Rules of Probability If a probability distribution is not uniform, to find the probability of a given event, add up the probabilities of all the individual outcomes that make up the event. Example:
More informationMost of the time we deal with theoretical probability. Experimental probability uses actual data that has been collected.
AFM Unit 7 Day 3 Notes Theoretical vs. Experimental Probability Name Date Definitions: Experiment: process that gives a definite result Outcomes: results Sample space: set of all possible outcomes Event:
More informationMath 1313 Section 6.2 Definition of Probability
Math 1313 Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability
More informationSHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Math 1324 Test 3 Review Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Insert " " or " " in the blank to make the statement true. 1) {18, 27, 32}
More information7.1 Experiments, Sample Spaces, and Events
7.1 Experiments, Sample Spaces, and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment
More informationChapter 1: Sets and Probability
Chapter 1: Sets and Probability Section 1.31.5 Recap: Sample Spaces and Events An is an activity that has observable results. An is the result of an experiment. Example 1 Examples of experiments: Flipping
More informationMATH CALCULUS & STATISTICS/BUSN  PRACTICE EXAM #1  SPRING DR. DAVID BRIDGE
MATH 2053  CALCULUS & STATISTICS/BUSN  PRACTICE EXAM #1  SPRING 2009  DR. DAVID BRIDGE MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the
More information1. An office building contains 27 floors and has 37 offices on each floor. How many offices are in the building?
1. An office building contains 27 floors and has 37 offices on each floor. How many offices are in the building? 2. A particular brand of shirt comes in 12 colors, has a male version and a female version,
More informationTEST A CHAPTER 11, PROBABILITY
TEST A CHAPTER 11, PROBABILITY 1. Two fair dice are rolled. Find the probability that the sum turning up is 9, given that the first die turns up an even number. 2. Two fair dice are rolled. Find the probability
More informationChapter 16. Probability. For important terms and definitions refer NCERT text book. (6) NCERT text book page 386 question no.
Chapter 16 Probability For important terms and definitions refer NCERT text book. Type I Concept : sample space (1)NCERT text book page 386 question no. 1 (*) (2) NCERT text book page 386 question no.
More information3 The multiplication rule/miscellaneous counting problems
Practice for Exam 1 1 Axioms of probability, disjoint and independent events 1. Suppose P (A) = 0.4, P (B) = 0.5. (a) If A and B are independent, what is P (A B)? What is P (A B)? (b) If A and B are disjoint,
More informationSection 5.4 Permutations and Combinations
Section 5.4 Permutations and Combinations Definition: nfactorial For any natural number n, n! n( n 1)( n 2) 3 2 1. 0! = 1 A combination of a set is arranging the elements of the set without regard to
More informationSection 7.1 Experiments, Sample Spaces, and Events
Section 7.1 Experiments, Sample Spaces, and Events Experiments An experiment is an activity with observable results. 1. Which of the follow are experiments? (a) Going into a room and turning on a light.
More informationUnit 9: Probability Assignments
Unit 9: Probability Assignments #1: Basic Probability In each of exercises 1 & 2, find the probability that the spinner shown would land on (a) red, (b) yellow, (c) blue. 1. 2. Y B B Y B R Y Y B R 3. Suppose
More informationSection 5.4 Permutations and Combinations
Section 5.4 Permutations and Combinations Definition: nfactorial For any natural number n, n! = n( n 1)( n 2) 3 2 1. 0! = 1 A combination of a set is arranging the elements of the set without regard to
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
More 9.9.3 Practice Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Answer the question. ) In how many ways can you answer the questions on
More informationProbability. The MEnTe Program Math Enrichment through Technology. Title V East Los Angeles College
Probability The MEnTe Program Math Enrichment through Technology Title V East Los Angeles College 2003 East Los Angeles College. All rights reserved. Topics Introduction Empirical Probability Theoretical
More informationChapter 11: Probability and Counting Techniques
Chapter 11: Probability and Counting Techniques Diana Pell Section 11.3: Basic Concepts of Probability Definition 1. A sample space is a set of all possible outcomes of an experiment. Exercise 1. An experiment
More informationChapterwise questions. Probability. 1. Two coins are tossed simultaneously. Find the probability of getting exactly one tail.
Probability 1. Two coins are tossed simultaneously. Find the probability of getting exactly one tail. 2. 26 cards marked with English letters A to Z (one letter on each card) are shuffled well. If one
More informationMATH 215 DISCRETE MATHEMATICS INSTRUCTOR: P. WENG
MATH DISCRETE MATHEMATICS INSTRUCTOR: P. WENG Counting and Probability Suggested Problems Basic Counting Skills, InclusionExclusion, and Complement. (a An office building contains 7 floors and has 7 offices
More informationReview. Natural Numbers: Whole Numbers: Integers: Rational Numbers: Outline Sec Comparing Rational Numbers
FOUNDATIONS Outline Sec. 31 Gallo Name: Date: Review Natural Numbers: Whole Numbers: Integers: Rational Numbers: Comparing Rational Numbers Fractions: A way of representing a division of a whole into
More informationProbability and Counting Techniques
Probability and Counting Techniques Diana Pell (Multiplication Principle) Suppose that a task consists of t choices performed consecutively. Suppose that choice 1 can be performed in m 1 ways; for each
More informationChapter 8: Probability: The Mathematics of Chance
Chapter 8: Probability: The Mathematics of Chance FreeResponse 1. A spinner with regions numbered 1 to 4 is spun and a coin is tossed. Both the number spun and whether the coin lands heads or tails is
More informationUnit 7 Central Tendency and Probability
Name: Block: 7.1 Central Tendency 7.2 Introduction to Probability 7.3 Independent Events 7.4 Dependent Events 7.1 Central Tendency A central tendency is a central or value in a data set. We will look at
More informationMAT 17: Introduction to Mathematics Final Exam Review Packet. B. Use the following definitions to write the indicated set for each exercise below:
MAT 17: Introduction to Mathematics Final Exam Review Packet A. Using set notation, rewrite each set definition below as the specific collection of elements described enclosed in braces. Use the following
More informationMATH CALCULUS & STATISTICS/BUSN  PRACTICE EXAM #2  FALL DR. DAVID BRIDGE
MATH 2053  CALCULUS & STATISTICS/BUSN  PRACTICE EXAM #2  FALL 2009  DR. DAVID BRIDGE MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the
More informationKey Concepts. Theoretical Probability. Terminology. Lesson 111
Key Concepts Theoretical Probability Lesson  Objective Teach students the terminology used in probability theory, and how to make calculations pertaining to experiments where all outcomes are equally
More informationConditional Probability Worksheet
Conditional Probability Worksheet EXAMPLE 4. Drug Testing and Conditional Probability Suppose that a company claims it has a test that is 95% effective in determining whether an athlete is using a steroid.
More informationConditional Probability Worksheet
Conditional Probability Worksheet P( A and B) P(A B) = P( B) Exercises 36, compute the conditional probabilities P( AB) and P( B A ) 3. P A = 0.7, P B = 0.4, P A B = 0.25 4. P A = 0.45, P B = 0.8, P A
More informationATHS FC Math Department Al Ain Remedial worksheet. Lesson 10.4 (Ellipses)
ATHS FC Math Department Al Ain Remedial worksheet Section Name ID Date Lesson Marks Lesson 10.4 (Ellipses) 10.4, 10.5, 0.4, 0.5 and 0.6 Intervention Plan Page 1 of 19 Gr 12 core c 2 = a 2 b 2 Question
More informationMath 166: Topics in Contemporary Mathematics II
Math 166: Topics in Contemporary Mathematics II Xin Ma Texas A&M University September 30, 2017 Xin Ma (TAMU) Math 166 September 30, 2017 1 / 11 Last Time Factorials For any natural number n, we define
More informationPROBABILITY Case of cards
WORKSHEET NO1 PROBABILITY Case of cards WORKSHEET NO2 Case of two die Case of coins WORKSHEET NO3 1) Fill in the blanks: A. The probability of an impossible event is B. The probability of a sure
More informationThe point value of each problem is in the lefthand margin. You must show your work to receive any credit, except on problems 1 & 2. Work neatly.
Introduction to Statistics Math 1040 Sample Exam II Chapters 57 4 Problem Pages 4 Formula/Table Pages Time Limit: 90 Minutes 1 No Scratch Paper Calculator Allowed: Scientific Name: The point value of
More informationChapter 11: Probability and Counting Techniques
Chapter 11: Probability and Counting Techniques Diana Pell Section 11.1: The Fundamental Counting Principle Exercise 1. How many different twoletter words (including nonsense words) can be formed when
More informationApril 10, ex) Draw a tree diagram of this situation.
April 10, 2014 121 Fundamental Counting Principle & Multiplying Probabilities 1. Outcome  the result of a single trial. 2. Sample Space  the set of all possible outcomes 3. Independent Events  when
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Practice for Final Exam Name Identify the following variable as either qualitative or quantitative and explain why. 1) The number of people on a jury A) Qualitative because it is not a measurement or a
More informationMath 1342 Exam 2 Review
Math 1342 Exam 2 Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) If a sportscaster makes an educated guess as to how well a team will do this
More informationFinite Math B, Chapter 8 Test Review Name
Finite Math B, Chapter 8 Test Review Name Evaluate the factorial. 1) 6! A) 720 B) 120 C) 360 D) 1440 Evaluate the permutation. 2) P( 10, 5) A) 10 B) 30,240 C) 1 D) 720 3) P( 12, 8) A) 19,958,400 B) C)
More informationName: Class: Date: 6. An event occurs, on average, every 6 out of 17 times during a simulation. The experimental probability of this event is 11
Class: Date: Sample Mastery # Multiple Choice Identify the choice that best completes the statement or answers the question.. One repetition of an experiment is known as a(n) random variable expected value
More informationMath 227 Elementary Statistics. Bluman 5 th edition
Math 227 Elementary Statistics Bluman 5 th edition CHAPTER 4 Probability and Counting Rules 2 Objectives Determine sample spaces and find the probability of an event using classical probability or empirical
More informationSection 11.4: Tree Diagrams, Tables, and Sample Spaces
Section 11.4: Tree Diagrams, Tables, and Sample Spaces Diana Pell Exercise 1. Use a tree diagram to find the sample space for the genders of three children in a family. Exercise 2. (You Try!) A soda machine
More informationName: Exam 1. September 14, 2017
Department of Mathematics University of Notre Dame Math 10120 Finite Math Fall 2017 Name: Instructors: Basit & Migliore Exam 1 September 14, 2017 This exam is in two parts on 9 pages and contains 14 problems
More information2.5 Sample Spaces Having Equally Likely Outcomes
Sample Spaces Having Equally Likely Outcomes 3 Sample Spaces Having Equally Likely Outcomes Recall that we had a simple example (fair dice) before on equallylikely sample spaces Since they will appear
More informationINDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2
INDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2 WARM UP Students in a mathematics class pick a card from a standard deck of 52 cards, record the suit, and return the card to the deck. The results
More informationa) 2, 4, 8, 14, 22, b) 1, 5, 6, 10, 11, c) 3, 9, 21, 39, 63, d) 3, 0, 6, 15, 27, e) 3, 8, 13, 18, 23,
Prealculus Midterm Exam Review Name:. Which of the following is an arithmetic sequence?,, 8,,, b),, 6, 0,, c), 9,, 9, 6, d), 0, 6,, 7, e), 8,, 8,,. What is a rule for the nth term of the arithmetic sequence
More information3 The multiplication rule/miscellaneous counting problems
Practice for Exam 1 1 Axioms of probability, disjoint and independent events 1 Suppose P (A 0, P (B 05 (a If A and B are independent, what is P (A B? What is P (A B? (b If A and B are disjoint, what is
More informationWeek in Review #5 ( , 3.1)
Math 166 WeekinReview  S. Nite 10/6/2012 Page 1 of 5 Week in Review #5 (2.32.4, 3.1) n( E) In general, the probability of an event is P ( E) =. n( S) Distinguishable Permutations Given a set of n objects
More informationCompound Events. Identify events as simple or compound.
11.1 Compound Events Lesson Objectives Understand compound events. Represent compound events. Vocabulary compound event possibility diagram simple event tree diagram Understand Compound Events. A compound
More informationPage 1 of 22. Website: Mobile:
Exercise 15.1 Question 1: Complete the following statements: (i) Probability of an event E + Probability of the event not E =. (ii) The probability of an event that cannot happen is. Such as event is called.
More informationQuiz 2 Review  on Notebook Paper Are You Ready For Your Last Quiz In Honors Math II??
Quiz 2 Review  on Notebook Paper Are You Ready For Your Last Quiz In Honors Math II?? Some things to Know, Memorize, AND Understand how to use are n What are the formulas? Pr ncr Fill in the notation
More informationLesson 3 Dependent and Independent Events
Lesson 3 Dependent and Independent Events When working with 2 separate events, we must first consider if the first event affects the second event. Situation 1 Situation 2 Drawing two cards from a deck
More informationUnit 19 Probability Review
. What is sample space? All possible outcomes Unit 9 Probability Review 9. I can use the Fundamental Counting Principle to count the number of ways an event can happen. 2. What is the difference between
More informationSection The Multiplication Principle and Permutations
Section 2.1  The Multiplication Principle and Permutations Example 1: A yogurt shop has 4 flavors (chocolate, vanilla, strawberry, and blueberry) and three sizes (small, medium, and large). How many different
More informationProbability Test Review Math 2. a. What is? b. What is? c. ( ) d. ( )
Probability Test Review Math 2 Name 1. Use the following venn diagram to answer the question: Event A: Odd Numbers Event B: Numbers greater than 10 a. What is? b. What is? c. ( ) d. ( ) 2. In Jason's homeroom
More informationChapter 10 Practice Test Probability
Name: Class: Date: ID: A Chapter 0 Practice Test Probability Multiple Choice Identify the choice that best completes the statement or answers the question. Describe the likelihood of the event given its
More informationName: Probability, Part 1 March 4, 2013
1) Assuming all sections are equal in size, what is the probability of the spinner below stopping on a blue section? Write the probability as a fraction. 2) A bag contains 3 red marbles, 4 blue marbles,
More informationProbability Review before Quiz. Unit 6 Day 6 Probability
Probability Review before Quiz Unit 6 Day 6 Probability Warmup: Day 6 1. A committee is to be formed consisting of 1 freshman, 1 sophomore, 2 juniors, and 2 seniors. How many ways can this committee be
More information136 Probabilities of Mutually Exclusive Events
Determine whether the events are mutually exclusive or not mutually exclusive. Explain your reasoning. 1. drawing a card from a standard deck and getting a jack or a club The jack of clubs is an outcome
More information1324 Test 1 Review Page 1 of 10
1324 Test 1 Review Page 1 of 10 Review for Exam 1 Math 1324 TTh Chapters 7, 8 Problems 110: Determine whether the statement is true or false. 1. {5} {4,5, 7}. 2. {4,5,7}. 3. {4,5} {4,5,7}. 4. {4,5} {4,5,7}
More informationSHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Math 1342 Practice Test 2 Ch 4 & 5 Name 1) Nanette must pass through three doors as she walks from her company's foyer to her office. Each of these doors may be locked or unlocked. 1) List the outcomes
More informationMath Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5.
Math 166 Spring 2007 c Heather Ramsey Page 1 Math 166  Exam 2 Review NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Section 7.1  Experiments, Sample Spaces,
More informationMath Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5.
Math 166 Spring 2007 c Heather Ramsey Page 1 Math 166  Exam 2 Review NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Section 7.1  Experiments, Sample Spaces,
More informationSection Introduction to Sets
Section 1.1  Introduction to Sets Definition: A set is a welldefined collection of objects usually denoted by uppercase letters. Definition: The elements, or members, of a set are denoted by lowercase
More informationIntermediate Math Circles November 1, 2017 Probability I
Intermediate Math Circles November 1, 2017 Probability I Probability is the study of uncertain events or outcomes. Games of chance that involve rolling dice or dealing cards are one obvious area of application.
More information05 Adding Probabilities. 1. CARNIVAL GAMES A spinner has sections of equal size. The table shows the results of several spins.
1. CARNIVAL GAMES A spinner has sections of equal size. The table shows the results of several spins. d. a. Copy the table and add a column to show the experimental probability of the spinner landing on
More informationName Date. Sample Spaces and Probability For use with Exploration 12.1
. Sample Spaces and Probability For use with Exploration. Essential Question How can you list the possible outcomes in the sample space of an experiment? The sample space of an experiment is the set of
More informationMath 1070 Sample Exam 1
University of Connecticut Department of Mathematics Math 1070 Sample Exam 1 Exam 1 will cover sections 4.14.7 and 5.15.4. This sample exam is intended to be used as one of several resources to help you
More informationCHAPTER 9  COUNTING PRINCIPLES AND PROBABILITY
CHAPTER 9  COUNTING PRINCIPLES AND PROBABILITY Probability is the Probability is used in many realworld fields, such as insurance, medical research, law enforcement, and political science. Objectives:
More informationChapter 13 Test Review
1. The tree diagrams below show the sample space of choosing a cushion cover or a bedspread in silk or in cotton in red, orange, or green. Write the number of possible outcomes. A 6 B 10 C 12 D 4 Find
More informationProbability WarmUp 2
Probability WarmUp 2 Directions Solve to the best of your ability. (1) Write out the sample space (all possible outcomes) for the following situation: A dice is rolled and then a color is chosen, blue
More informationName: Class: Date: ID: A
Class: Date: Chapter 0 review. A lunch menu consists of different kinds of sandwiches, different kinds of soup, and 6 different drinks. How many choices are there for ordering a sandwich, a bowl of soup,
More informationProbability: introduction
May 6, 2009 Probability: introduction page 1 Probability: introduction Probability is the part of mathematics that deals with the chance or the likelihood that things will happen The probability of an
More information2 C. 1 D. 2 4 D. 5 3 C. 25 D. 2
Discrete Math Exam Review Name:. A bag contains oranges, grapefruits, and tangerine. A piece of fruit is chosen from the bag at random. What is the probability that a grapefruit will be chosen from the
More information, the of all of a probability experiment. consists of outcomes. (b) List the elements of the event consisting of a number that is greater than 4.
41 Sample Spaces and Probability as a general concept can be defined as the chance of an event occurring. In addition to being used in games of chance, probability is used in the fields of,, and forecasting,
More informationContemporary Mathematics Math 1030 Sample Exam I Chapters Time Limit: 90 Minutes No Scratch Paper Calculator Allowed: Scientific
Contemporary Mathematics Math 1030 Sample Exam I Chapters 1315 Time Limit: 90 Minutes No Scratch Paper Calculator Allowed: Scientific Name: The point value of each problem is in the lefthand margin.
More informationSection 6.1 #16. Question: What is the probability that a fivecard poker hand contains a flush, that is, five cards of the same suit?
Section 6.1 #16 What is the probability that a fivecard poker hand contains a flush, that is, five cards of the same suit? page 1 Section 6.1 #38 Two events E 1 and E 2 are called independent if p(e 1
More informationFundamental Counting Principle
Lesson 88 Probability with Combinatorics HL2 Math  Santowski Fundamental Counting Principle Fundamental Counting Principle can be used determine the number of possible outcomes when there are two or more
More informationMAT104: Fundamentals of Mathematics II Counting Techniques Class Exercises Solutions
MAT104: Fundamentals of Mathematics II Counting Techniques Class Exercises Solutions 1. Appetizers: Salads: Entrées: Desserts: 2. Letters: (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U,
More informationPROBABILITY. 1. Introduction. Candidates should able to:
PROBABILITY Candidates should able to: evaluate probabilities in simple cases by means of enumeration of equiprobable elementary events (e.g for the total score when two fair dice are thrown), or by calculation
More informationName: 1. Match the word with the definition (1 point each  no partial credit!)
Chapter 12 Exam Name: Answer the questions in the spaces provided. If you run out of room, show your work on a separate paper clearly numbered and attached to this exam. SHOW ALL YOUR WORK!!! Remember
More informationExam III Review Problems
c Kathryn Bollinger and Benjamin Aurispa, November 10, 2011 1 Exam III Review Problems Fall 2011 Note: Not every topic is covered in this review. Please also take a look at the previous WeekinReviews
More informationProbability QUESTIONS Principles of Math 12  Probability Practice Exam 1
Probability QUESTIONS Principles of Math  Probability Practice Exam www.math.com Principles of Math : Probability Practice Exam Use this sheet to record your answers:... 4... 4... 4.. 6. 4.. 6. 7..
More information