# AP Statistics Ch In-Class Practice (Probability)

Size: px
Start display at page:

Download "AP Statistics Ch In-Class Practice (Probability)"

Transcription

1 AP Statistics Ch In-Class Practice (Probability) #1a) A batter who had failed to get a hit in seven consecutive times at bat then hits a game-winning home run. When talking to reporters afterward, he says he was very confident that last time at bat because he knew he was due for a hit. Comment on his reasoning. b) You flip four coins 32 times. Are you guaranteed to get four heads twice? Explain. #2. For each of the following, list the sample space and tell whether you think the outcomes are equally likely: a) Roll two dice; record the sum of the numbers. b) A family has 3 children; record the genders in order of birth. c) Toss four coins; record the number of tails. d) Flip a coin until you get a head or 3 consecutive tails. #3. If a single die is rolled one time, find the probabilities of getting: a) a 4 b) an even number c) a number greater than 4 d) a number less than 7 e) a number greater than 0 #4. Abby, Barbara, Carla, Dan, and Ernie work in a firm s public relations office. Their employer must choose two of them to attend a conference in Chicago. To avoid unfairness, the choice will be made by drawing two names from a hat. a) List the sample space (write down all possible choices of two of the five names). For convenience, use only the first letter of their names. b) What is the probability of each of these choices? c) What is the probability that neither of the two men (Dan and Ernie) is chosen? #5. The American Red Cross says that 40% of the U.S. population has type A blood, 11% have type B blood, 4% have type AB blood, and the rest of the population has type O blood. If a person from the U.S. is chosen at random, what is the probability that they will have type O blood?

2 #6. If a single die is rolled one time, find the probabilities of getting: a) a number greater than 3 or an odd number. b) an even number or a 5. #7. In a statistics class there are 18 juniors and 10 seniors. 6 of the seniors are female, and 12 of the juniors are male. If a student is selected at random, find the probability of selecting: a) a junior or a female. b) a senior or a female. c) a junior or a senior. #8. A Gallup Poll in June 2004 asked 1005 U.S. adults how likely they were to read Bill Clinton s autobiography My Life. The table shows how they responded. If we select a person at random from this sample of 1005 adults, a) What is the probability that the person responded Will definitely not read it? b) What is the probability that the person will probably or definitely read it?

3 #9. If a single die is rolled one time, find the probability of getting a) an odd number. b) a number greater than 3 or an odd number. c) a number greater than 3 and an odd number. #10. A couple plans to have three children. Find the probability that the children are: a) all boys b) all girls c) two boys or two girls d) at least one child of each sex #11. Suppose that you have torn a tendon and are facing surgery to repair it. The orthopedic surgeon explains the risks to you. Infection occurs in 3% of such operations, the repair fails in 14%, and both infection and failure occurs together in 1%. What percent of these operations succeed and are free from infection? #12. Two cards are dealt, one after the other, from a shuffled 52-card deck Why is it wrong to say that the probability of getting two red cards is? What is the correct probability of this event?

4 #13. In building new homes, a contractor finds that the probability of a home buyer selecting a two-car garage is 0.70 and selecting a one-car garage is (Note that the builder will not build a three-car or larger garage). a) What is the probability that the buyer will select either a one-car or a two-car garage? b) What is the probability that the buyer will select no garage? c) What is the probability that the buyer will not want a two-car garage? #14. Researchers are interested in the relationship between cigarette smoking and lung cancer. Suppose an adult male is randomly selected from a particular population. Assume that the following table shows some probabilities involving the compound event that the individual does or does not smoke and the person is or is not diagnosed with cancer: Event Probability. smokes and gets cancer 0.05 smokes and does not get cancer 0.20 does not smoke and gets cancer 0.03 does not smoke and does not get cancer 0.72 a) Find the probability that the individual gets cancer, given that he is a smoker. b) Find the probability that the individual does not get cancer, given that he is a smoker. c) Find the probability that the individual gets cancer, given that he does not smoke. d) Find the probability that the individual does not get cancer, given that he does not smoke. #15. Parking for students at Central High School is very limited, and those who arrive late have to park illegally and take their chances of getting a ticket. Joey has determined that the probability that he has to park illegally and that he gets a parking ticket is.07. He has kept data from last year and found that because of his perpetual tardiness, the probability that he will have to park illegally is.25. Suppose that he arrived late once again this morning and had to park in a no-parking zone. Find the probability that Joey will get a parking ticket.

5 #16. Which of the following pairs of events A and B are disjoint? Which are independent? a) A single fair coin is tossed once. A= heads, B= tails. b) A single fair coin is tossed twice. A= tails 1 st flip, B= tails 2 nd flip. c) Two cards are drawn from a deck, with replacement. A= 1 st card is red, B= 2 nd card is red. d) Two cards are drawn from a deck, without replacement. A= 1 st card is red, B= 2 nd card is red. e) One card is drawn from a deck. A= Card is red, B= Card is a spade. f) One card is drawn from a deck. A= Card is a heart, B= Card is a 3. #17. Before the introduction of purple, M&M s color distribution was as follows: 20% yellow, 20% red, 10% each for orange, blue, and green, and the rest were brown. a) If you pick an M&M at random, what is the probability that it is brown? b) If you pick an M&M at random, what is the probability that it is yellow or orange? c) If you pick an M&M at random, what is the probability that it is not green? d) If you pick an M&M at random, what is the probability that it is striped? e) If you pick three M&M s in a row, what is the probability that they are all brown? f) If you pick three M&M s in a row, what is the probability that the third one is the first one that s red? g) If you pick three M&M s in a row, what is the probability that none are yellow? h) If you pick three M&M s in a row, what is the probability that at least one is green? #18. In the last problem, some answers depended on the assumption that the outcomes described were disjoint; that is, they could not both happen at the same time. Other answers depended on the assumption that the events were independent; that is, the occurrence of one doesn t affect the probability of the other. a) If you draw one M&M, are the events of getting a red one and getting an orange one disjoint or independent or neither? b) If you draw two M&Ms one after the other, are the events of getting a red on the first and a red on the second disjoint or independent or neither? c) Can disjoint events ever be independent? Explain.

6 #19. Real estate ads suggest that 64% of homes for sale have garages, 21% have swimming pools, and 17% have both features. What is the probability that a home for sale has: a) a pool or a garage? b) neither a pool nor a garage? c) a pool but no garage? #20. The table shows the political affiliation of American voters and their positions on the death penalty. a) Find the probability that a randomly chosen voter favors the death penalty? b) Find the probability that a Republican favors the death penalty? c) Find the probability that a voter who favors the death penalty is a Democrat? d) A candidate thinks she has a good chance of gaining the votes of anyone who is a Republican or in favor of the death penalty. What portion of the voters is that? #21. Given the table of positions on the death penalty from the last problem, are party affiliation and position on the death penalty independent? Explain. #22. You draw a card at random from a standard deck of 52 cards. Find each of the following conditional probabilities: a) The card is a heart, given that it is red. b) The card is red, given that it is a heart. c) The card is an ace, given that it is red. d) The card is a queen, given that it is a face card (jack, queen, or king).

7 #23. A junk box in your room contains a dozen old batteries, five of which are totally dead. You start picking batteries one at a time and testing them. Find the probability that: a) The first two you choose are both good. b) At least one of the first three works. c) The first four you pick all work. d) You have to pick 5 batteries in order to find one that works. #24. A private college report contains these statistics: 70% of incoming freshman attended public schools 75% of public school students who enroll as freshmen eventually graduate 90% of other freshman eventually graduate a) Is there any evidence that a freshman s chances to graduate may depend upon what kind of high school the student attended? Explain. b) What percentage of freshmen eventually graduate? c) What percentage of students who graduate from the college attended a public high school? #25. A university requires its biology majors to take a course called BioResearch. The prerequisite for this course is that students must have taken either a Statistics course or a Computer course. By the time they are juniors, 52% of the Biology majors have taken Statistics, 23% have had a Computer course, and 7% have done both. a) What percentage of the junior Biology majors are ineligible for BioResearch? b) What is the probability that a junior Biology major who has taken Statistics has also taken a Computer course. c) Are taking these two courses disjoint events? Explain. d) Are taking these two courses independent events? Explain.

8 #26. Suppose that 23% of adults smoke cigarettes. It s known that 57% of smokers and 13% of nonsmokers develop a certain lung condition by age 60. a) Explain how these statistics indicate that lung condition and smoking are not independent. b) What is the probability that a randomly selected 60 year old has this lung condition? c) What is the probability that someone with the lung condition was a smoker? #27. Challenge problem (requires advanced counting strategies): In a game of poker, you are dealt 5 cards at random from a standard deck of 52 cards. What is the probability that your hand is a full house (a full house consists of a pair of cards and three-of-a-kind of a different card).

9

10

11

12

13

14

15

16

### 4.1 Sample Spaces and Events

4.1 Sample Spaces and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment is called an

### 7.1 Experiments, Sample Spaces, and Events

7.1 Experiments, Sample Spaces, and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Statistics Homework Ch 5 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) A coin is tossed. Find the probability

### Name: Class: Date: 6. An event occurs, on average, every 6 out of 17 times during a simulation. The experimental probability of this event is 11

Class: Date: Sample Mastery # Multiple Choice Identify the choice that best completes the statement or answers the question.. One repetition of an experiment is known as a(n) random variable expected value

### Probability and Counting Techniques

Probability and Counting Techniques Diana Pell (Multiplication Principle) Suppose that a task consists of t choices performed consecutively. Suppose that choice 1 can be performed in m 1 ways; for each

### Conditional Probability Worksheet

Conditional Probability Worksheet P( A and B) P(A B) = P( B) Exercises 3-6, compute the conditional probabilities P( AB) and P( B A ) 3. P A = 0.7, P B = 0.4, P A B = 0.25 4. P A = 0.45, P B = 0.8, P A

### Review of Probability

Review of Probability 1) What is probability? ( ) Consider the following two problems: Select 2 cards from a standard deck of 52 cards with replacement. What is the probability of obtaining two kings?

### Conditional Probability Worksheet

Conditional Probability Worksheet EXAMPLE 4. Drug Testing and Conditional Probability Suppose that a company claims it has a test that is 95% effective in determining whether an athlete is using a steroid.

### Unit 9: Probability Assignments

Unit 9: Probability Assignments #1: Basic Probability In each of exercises 1 & 2, find the probability that the spinner shown would land on (a) red, (b) yellow, (c) blue. 1. 2. Y B B Y B R Y Y B R 3. Suppose

### 4.3 Rules of Probability

4.3 Rules of Probability If a probability distribution is not uniform, to find the probability of a given event, add up the probabilities of all the individual outcomes that make up the event. Example:

### Section 7.1 Experiments, Sample Spaces, and Events

Section 7.1 Experiments, Sample Spaces, and Events Experiments An experiment is an activity with observable results. 1. Which of the follow are experiments? (a) Going into a room and turning on a light.

### Chapter 1: Sets and Probability

Chapter 1: Sets and Probability Section 1.3-1.5 Recap: Sample Spaces and Events An is an activity that has observable results. An is the result of an experiment. Example 1 Examples of experiments: Flipping

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Mathematical Ideas Chapter 2 Review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ) In one town, 2% of all voters are Democrats. If two voters

### Probability. The Bag Model

Probability The Bag Model Imagine a bag (or box) containing balls of various kinds having various colors for example. Assume that a certain fraction p of these balls are of type A. This means N = total

### Normal Distribution Lecture Notes Continued

Normal Distribution Lecture Notes Continued 1. Two Outcome Situations Situation: Two outcomes (for against; heads tails; yes no) p = percent in favor q = percent opposed Written as decimals p + q = 1 Why?

### 3 The multiplication rule/miscellaneous counting problems

Practice for Exam 1 1 Axioms of probability, disjoint and independent events 1. Suppose P (A) = 0.4, P (B) = 0.5. (a) If A and B are independent, what is P (A B)? What is P (A B)? (b) If A and B are disjoint,

### Fundamentals of Probability

Fundamentals of Probability Introduction Probability is the likelihood that an event will occur under a set of given conditions. The probability of an event occurring has a value between 0 and 1. An impossible

### (a) Suppose you flip a coin and roll a die. Are the events obtain a head and roll a 5 dependent or independent events?

Unit 6 Probability Name: Date: Hour: Multiplication Rule of Probability By the end of this lesson, you will be able to Understand Independence Use the Multiplication Rule for independent events Independent

### Math 227 Elementary Statistics. Bluman 5 th edition

Math 227 Elementary Statistics Bluman 5 th edition CHAPTER 4 Probability and Counting Rules 2 Objectives Determine sample spaces and find the probability of an event using classical probability or empirical

### I. WHAT IS PROBABILITY?

C HAPTER 3 PROAILITY Random Experiments I. WHAT IS PROAILITY? The weatherman on 10 o clock news program states that there is a 20% chance that it will snow tomorrow, a 65% chance that it will rain and

### Algebra 2 Notes Section 10.1: Apply the Counting Principle and Permutations

Algebra 2 Notes Section 10.1: Apply the Counting Principle and Permutations Objective(s): Vocabulary: I. Fundamental Counting Principle: Two Events: Three or more Events: II. Permutation: (top of p. 684)

### Math 1313 Section 6.2 Definition of Probability

Math 1313 Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability

### PROBABILITY. 1. Introduction. Candidates should able to:

PROBABILITY Candidates should able to: evaluate probabilities in simple cases by means of enumeration of equiprobable elementary events (e.g for the total score when two fair dice are thrown), or by calculation

### Instructions: Choose the best answer and shade in the corresponding letter on the answer sheet provided. Be sure to include your name and student ID.

Math 3201 Unit 3 Probability Test 1 Unit Test Name: Part 1 Selected Response: Instructions: Choose the best answer and shade in the corresponding letter on the answer sheet provided. Be sure to include

### Probability: introduction

May 6, 2009 Probability: introduction page 1 Probability: introduction Probability is the part of mathematics that deals with the chance or the likelihood that things will happen The probability of an

### Name: Date: Interim 1-3 ACT Aspire, Pro-Core, and AIR Practice Site Statistics and Probability Int Math 2

1. Standard: S.ID.C.7: The graph below models a constant decrease in annual licorice sales for Licorice Company, Inc., from 1998 through 2000. The points have been connected to illustrate the trend. Which

### C) 1 4. Find the indicated probability. 2) A die with 12 sides is rolled. What is the probability of rolling a number less than 11?

Chapter Probability Practice STA03, Broward College Answer the question. ) On a multiple choice test with four possible answers (like this question), what is the probability of answering a question correctly

### Probability. Ms. Weinstein Probability & Statistics

Probability Ms. Weinstein Probability & Statistics Definitions Sample Space The sample space, S, of a random phenomenon is the set of all possible outcomes. Event An event is a set of outcomes of a random

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) 1 6

Math 300 Exam 4 Review (Chapter 11) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Give the probability that the spinner shown would land on

### , -the of all of a probability experiment. consists of outcomes. (b) List the elements of the event consisting of a number that is greater than 4.

4-1 Sample Spaces and Probability as a general concept can be defined as the chance of an event occurring. In addition to being used in games of chance, probability is used in the fields of,, and forecasting,

### Name: Section: Date:

WORKSHEET 5: PROBABILITY Name: Section: Date: Answer the following problems and show computations on the blank spaces provided. 1. In a class there are 14 boys and 16 girls. What is the probability of

### heads 1/2 1/6 roll a die sum on 2 dice 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 1, 2, 3, 4, 5, 6 heads tails 3/36 = 1/12 toss a coin trial: an occurrence

trial: an occurrence roll a die toss a coin sum on 2 dice sample space: all the things that could happen in each trial 1, 2, 3, 4, 5, 6 heads tails 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 example of an outcome:

### Here are two situations involving chance:

Obstacle Courses 1. Introduction. Here are two situations involving chance: (i) Someone rolls a die three times. (People usually roll dice in pairs, so dice is more common than die, the singular form.)

### Probability as a general concept can be defined as the chance of an event occurring.

3. Probability In this chapter, you will learn about probability its meaning, how it is computed, and how to evaluate it in terms of the likelihood of an event actually happening. Probability as a general

### Such a description is the basis for a probability model. Here is the basic vocabulary we use.

5.2.1 Probability Models When we toss a coin, we can t know the outcome in advance. What do we know? We are willing to say that the outcome will be either heads or tails. We believe that each of these

### A. 15 B. 24 C. 45 D. 54

A spinner is divided into 8 equal sections. Lara spins the spinner 120 times. It lands on purple 30 times. How many more times does Lara need to spin the spinner and have it land on purple for the relative

### MAT104: Fundamentals of Mathematics II Counting Techniques Class Exercises Solutions

MAT104: Fundamentals of Mathematics II Counting Techniques Class Exercises Solutions 1. Appetizers: Salads: Entrées: Desserts: 2. Letters: (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U,

### TEST A CHAPTER 11, PROBABILITY

TEST A CHAPTER 11, PROBABILITY 1. Two fair dice are rolled. Find the probability that the sum turning up is 9, given that the first die turns up an even number. 2. Two fair dice are rolled. Find the probability

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Study Guide for Test III (MATH 1630) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the number of subsets of the set. 1) {x x is an even

### Exam III Review Problems

c Kathryn Bollinger and Benjamin Aurispa, November 10, 2011 1 Exam III Review Problems Fall 2011 Note: Not every topic is covered in this review. Please also take a look at the previous Week-in-Reviews

### Empirical (or statistical) probability) is based on. The empirical probability of an event E is the frequency of event E.

Probability and Statistics Chapter 3 Notes Section 3-1 I. Probability Experiments. A. When weather forecasters say There is a 90% chance of rain tomorrow, or a doctor says There is a 35% chance of a successful

### 3 The multiplication rule/miscellaneous counting problems

Practice for Exam 1 1 Axioms of probability, disjoint and independent events 1 Suppose P (A 0, P (B 05 (a If A and B are independent, what is P (A B? What is P (A B? (b If A and B are disjoint, what is

### Math 4610, Problems to be Worked in Class

Math 4610, Problems to be Worked in Class Bring this handout to class always! You will need it. If you wish to use an expanded version of this handout with space to write solutions, you can download one

### Probability - Chapter 4

Probability - Chapter 4 In this chapter, you will learn about probability its meaning, how it is computed, and how to evaluate it in terms of the likelihood of an event actually happening. A cynical person

### 1. Let X be a continuous random variable such that its density function is 8 < k(x 2 +1), 0 <x<1 f(x) = 0, elsewhere.

Lebanese American University Spring 2006 Byblos Date: 3/03/2006 Duration: h 20. Let X be a continuous random variable such that its density function is 8 < k(x 2 +), 0

### 1) If P(E) is the probability that an event will occur, then which of the following is true? (1) 0 P(E) 1 (3) 0 P(E) 1 (2) 0 P(E) 1 (4) 0 P(E) 1

Algebra 2 Review for Unit 14 Test Name: 1) If P(E) is the probability that an event will occur, then which of the following is true? (1) 0 P(E) 1 (3) 0 P(E) 1 (2) 0 P(E) 1 (4) 0 P(E) 1 2) From a standard

### Chapter 4: Probability and Counting Rules

Chapter 4: Probability and Counting Rules Before we can move from descriptive statistics to inferential statistics, we need to have some understanding of probability: Ch4: Probability and Counting Rules

### 2 A fair coin is flipped 8 times. What is the probability of getting more heads than tails? A. 1 2 B E. NOTA

For all questions, answer E. "NOTA" means none of the above answers is correct. Calculator use NO calculators will be permitted on any test other than the Statistics topic test. The word "deck" refers

### SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Chapter 3: Practice SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. ) A study of 000 randomly selected flights of a major

### Chapter 11: Probability and Counting Techniques

Chapter 11: Probability and Counting Techniques Diana Pell Section 11.3: Basic Concepts of Probability Definition 1. A sample space is a set of all possible outcomes of an experiment. Exercise 1. An experiment

### Probability Test Review Math 2. a. What is? b. What is? c. ( ) d. ( )

Probability Test Review Math 2 Name 1. Use the following venn diagram to answer the question: Event A: Odd Numbers Event B: Numbers greater than 10 a. What is? b. What is? c. ( ) d. ( ) 2. In Jason's homeroom

### Probability Homework

Probability Homework Section P 1. A pair of fair dice are tossed. What is the conditional probability that the two dice are the same given that the sum equals 8? 2. A die is tossed. a) Find the probability

### Probability and Statistics 15% of EOC

MGSE9-12.S.CP.1 1. Which of the following is true for A U B A: 2, 4, 6, 8 B: 5, 6, 7, 8, 9, 10 A. 6, 8 B. 2, 4, 6, 8 C. 2, 4, 5, 6, 6, 7, 8, 8, 9, 10 D. 2, 4, 5, 6, 7, 8, 9, 10 2. This Venn diagram shows

### Mutually Exclusive Events Algebra 1

Name: Mutually Exclusive Events Algebra 1 Date: Mutually exclusive events are two events which have no outcomes in common. The probability that these two events would occur at the same time is zero. Exercise

### There is no class tomorrow! Have a good weekend! Scores will be posted in Compass early Friday morning J

STATISTICS 100 EXAM 3 Fall 2016 PRINT NAME (Last name) (First name) *NETID CIRCLE SECTION: L1 12:30pm L2 3:30pm Online MWF 12pm Write answers in appropriate blanks. When no blanks are provided CIRCLE your

### Exam 2 Review (Sections Covered: 3.1, 3.3, , 7.1) 1. Write a system of linear inequalities that describes the shaded region.

Exam 2 Review (Sections Covered: 3.1, 3.3, 6.1-6.4, 7.1) 1. Write a system of linear inequalities that describes the shaded region. 5x + 2y 30 x + 2y 12 x 0 y 0 2. Write a system of linear inequalities

### Section Introduction to Sets

Section 1.1 - Introduction to Sets Definition: A set is a well-defined collection of objects usually denoted by uppercase letters. Definition: The elements, or members, of a set are denoted by lowercase

### 1. An office building contains 27 floors and has 37 offices on each floor. How many offices are in the building?

1. An office building contains 27 floors and has 37 offices on each floor. How many offices are in the building? 2. A particular brand of shirt comes in 12 colors, has a male version and a female version,

### MATH 215 DISCRETE MATHEMATICS INSTRUCTOR: P. WENG

MATH DISCRETE MATHEMATICS INSTRUCTOR: P. WENG Counting and Probability Suggested Problems Basic Counting Skills, Inclusion-Exclusion, and Complement. (a An office building contains 7 floors and has 7 offices

### Probability is often written as a simplified fraction, but it can also be written as a decimal or percent.

CHAPTER 1: PROBABILITY 1. Introduction to Probability L EARNING TARGET: I CAN DETERMINE THE PROBABILITY OF AN EVENT. What s the probability of flipping heads on a coin? Theoretically, it is 1/2 1 way to

### Probability and Randomness. Day 1

Probability and Randomness Day 1 Randomness and Probability The mathematics of chance is called. The probability of any outcome of a chance process is a number between that describes the proportion of

### Section 11.4: Tree Diagrams, Tables, and Sample Spaces

Section 11.4: Tree Diagrams, Tables, and Sample Spaces Diana Pell Exercise 1. Use a tree diagram to find the sample space for the genders of three children in a family. Exercise 2. (You Try!) A soda machine

### Section 6.1 #16. Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Section 6.1 #16 What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? page 1 Section 6.1 #38 Two events E 1 and E 2 are called independent if p(e 1

### Chapter 4. Probability and Counting Rules. McGraw-Hill, Bluman, 7 th ed, Chapter 4

Chapter 4 Probability and Counting Rules McGraw-Hill, Bluman, 7 th ed, Chapter 4 Chapter 4 Overview Introduction 4-1 Sample Spaces and Probability 4-2 Addition Rules for Probability 4-3 Multiplication

### A).4,.4,.2 B).4,.6,.4 C).3,.3,.3 D).5,.3, -.2 E) None of these are legitimate

AP Statistics Probabilities Test Part 1 Name: 1. A randomly selected student is asked to respond to yes, no, or maybe to the question, Do you intend to vote in the next election? The sample space is {yes,

### Key Concepts. Theoretical Probability. Terminology. Lesson 11-1

Key Concepts Theoretical Probability Lesson - Objective Teach students the terminology used in probability theory, and how to make calculations pertaining to experiments where all outcomes are equally

### Chapter 6: Probability and Simulation. The study of randomness

Chapter 6: Probability and Simulation The study of randomness Introduction Probability is the study of chance. 6.1 focuses on simulation since actual observations are often not feasible. When we produce

### The Teachers Circle Mar. 20, 2012 HOW TO GAMBLE IF YOU MUST (I ll bet you \$5 that if you give me \$10, I ll give you \$20.)

The Teachers Circle Mar. 2, 22 HOW TO GAMBLE IF YOU MUST (I ll bet you \$ that if you give me \$, I ll give you \$2.) Instructor: Paul Zeitz (zeitzp@usfca.edu) Basic Laws and Definitions of Probability If

### 1 2-step and other basic conditional probability problems

Name M362K Exam 2 Instructions: Show all of your work. You do not have to simplify your answers. No calculators allowed. 1 2-step and other basic conditional probability problems 1. Suppose A, B, C are

### Review Questions on Ch4 and Ch5

Review Questions on Ch4 and Ch5 1. Find the mean of the distribution shown. x 1 2 P(x) 0.40 0.60 A) 1.60 B) 0.87 C) 1.33 D) 1.09 2. A married couple has three children, find the probability they are all

### Study Island Statistics and Probability

Study Island Statistics and Probability Copyright 2014 Edmentum - All rights reserved. 1. An experiment is broken up into two parts. In the first part of the experiment, a six-sided die is rolled. In the

### Most of the time we deal with theoretical probability. Experimental probability uses actual data that has been collected.

AFM Unit 7 Day 3 Notes Theoretical vs. Experimental Probability Name Date Definitions: Experiment: process that gives a definite result Outcomes: results Sample space: set of all possible outcomes Event:

### 1. How to identify the sample space of a probability experiment and how to identify simple events

Statistics Chapter 3 Name: 3.1 Basic Concepts of Probability Learning objectives: 1. How to identify the sample space of a probability experiment and how to identify simple events 2. How to use the Fundamental

### 1. How many subsets are there for the set of cards in a standard playing card deck? How many subsets are there of size 8?

Math 1711-A Summer 2016 Final Review 1 August 2016 Time Limit: 170 Minutes Name: 1. How many subsets are there for the set of cards in a standard playing card deck? How many subsets are there of size 8?

### Mathematical Foundations HW 5 By 11:59pm, 12 Dec, 2015

1 Probability Axioms Let A,B,C be three arbitrary events. Find the probability of exactly one of these events occuring. Sample space S: {ABC, AB, AC, BC, A, B, C, }, and S = 8. P(A or B or C) = 3 8. note:

### Math 147 Elementary Probability/Statistics I Additional Exercises on Chapter 4: Probability

Math 147 Elementary Probability/Statistics I Additional Exercises on Chapter 4: Probability Student Name: Find the indicated probability. 1) If you flip a coin three times, the possible outcomes are HHH

### Stat210 WorkSheet#2 Chapter#2

1. When rolling a die 5 times, the number of elements of the sample space equals.(ans.=7,776) 2. If an experiment consists of throwing a die and then drawing a letter at random from the English alphabet,

### XXII Probability. 4. The odds of being accepted in Mathematics at McGill University are 3 to 8. Find the probability of being accepted.

MATHEMATICS 20-BNJ-05 Topics in Mathematics Martin Huard Winter 204 XXII Probability. Find the sample space S along with n S. a) The face cards are removed from a regular deck and then card is selected

### 1 2-step and other basic conditional probability problems

Name M362K Exam 2 Instructions: Show all of your work. You do not have to simplify your answers. No calculators allowed. 1 2-step and other basic conditional probability problems 1. Suppose A, B, C are

### Lesson 3 Dependent and Independent Events

Lesson 3 Dependent and Independent Events When working with 2 separate events, we must first consider if the first event affects the second event. Situation 1 Situation 2 Drawing two cards from a deck

### Def: The intersection of A and B is the set of all elements common to both set A and set B

Def: Sample Space the set of all possible outcomes Def: Element an item in the set Ex: The number "3" is an element of the "rolling a die" sample space Main concept write in Interactive Notebook Intersection:

### Class XII Chapter 13 Probability Maths. Exercise 13.1

Exercise 13.1 Question 1: Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E F) = 0.2, find P (E F) and P(F E). It is given that P(E) = 0.6, P(F) = 0.3, and P(E F) = 0.2 Question 2:

### Determine whether the given events are disjoint. 4) Being over 30 and being in college 4) A) No B) Yes

Math 34 Test #4 Review Fall 06 Name Tell whether the statement is true or false. ) 3 {x x is an even counting number} ) A) True False Decide whether the statement is true or false. ) {5, 0, 5, 0} {5, 5}

### Example 1. An urn contains 100 marbles: 60 blue marbles and 40 red marbles. A marble is drawn from the urn, what is the probability that the marble

Example 1. An urn contains 100 marbles: 60 blue marbles and 40 red marbles. A marble is drawn from the urn, what is the probability that the marble is blue? Assumption: Each marble is just as likely to

### Section 5.4 Permutations and Combinations

Section 5.4 Permutations and Combinations Definition: n-factorial For any natural number n, n! n( n 1)( n 2) 3 2 1. 0! = 1 A combination of a set is arranging the elements of the set without regard to

### Bell Work. Warm-Up Exercises. Two six-sided dice are rolled. Find the probability of each sum or 7

Warm-Up Exercises Two six-sided dice are rolled. Find the probability of each sum. 1. 7 Bell Work 2. 5 or 7 3. You toss a coin 3 times. What is the probability of getting 3 heads? Warm-Up Notes Exercises

### 6. In how many different ways can you answer 10 multiple-choice questions if each question has five choices?

Pre-Calculus Section 4.1 Multiplication, Addition, and Complement 1. Evaluate each of the following: a. 5! b. 6! c. 7! d. 0! 2. Evaluate each of the following: a. 10! b. 20! 9! 18! 3. In how many different

### INDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2

INDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2 WARM UP Students in a mathematics class pick a card from a standard deck of 52 cards, record the suit, and return the card to the deck. The results

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

6. Practice Problems Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the probability. ) A bag contains red marbles, blue marbles, and 8

### If you roll a die, what is the probability you get a four OR a five? What is the General Education Statistics

If you roll a die, what is the probability you get a four OR a five? What is the General Education Statistics probability that you get neither? Class Notes The Addition Rule (for OR events) and Complements

### x y

1. Find the mean of the following numbers: ans: 26.25 3, 8, 15, 23, 35, 37, 41, 48 2. Find the median of the following numbers: ans: 24 8, 15, 2, 23, 41, 83, 91, 112, 17, 25 3. Find the sample standard

### Intermediate Math Circles November 1, 2017 Probability I

Intermediate Math Circles November 1, 2017 Probability I Probability is the study of uncertain events or outcomes. Games of chance that involve rolling dice or dealing cards are one obvious area of application.

### a) Getting 10 +/- 2 head in 20 tosses is the same probability as getting +/- heads in 320 tosses

Question 1 pertains to tossing a fair coin (8 pts.) Fill in the blanks with the correct numbers to make the 2 scenarios equally likely: a) Getting 10 +/- 2 head in 20 tosses is the same probability as

### Module 4 Project Maths Development Team Draft (Version 2)

5 Week Modular Course in Statistics & Probability Strand 1 Module 4 Set Theory and Probability It is often said that the three basic rules of probability are: 1. Draw a picture 2. Draw a picture 3. Draw

### The study of probability is concerned with the likelihood of events occurring. Many situations can be analyzed using a simplified model of probability

The study of probability is concerned with the likelihood of events occurring Like combinatorics, the origins of probability theory can be traced back to the study of gambling games Still a popular branch

### Unit 1 Day 1: Sample Spaces and Subsets. Define: Sample Space. Define: Intersection of two sets (A B) Define: Union of two sets (A B)

Unit 1 Day 1: Sample Spaces and Subsets Students will be able to (SWBAT) describe events as subsets of sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions,

### Section 5.4 Permutations and Combinations

Section 5.4 Permutations and Combinations Definition: n-factorial For any natural number n, n! = n( n 1)( n 2) 3 2 1. 0! = 1 A combination of a set is arranging the elements of the set without regard to

### Section 7.2 Definition of Probability

Section 7.2 Definition of Probability Question: Suppose we have an experiment that consists of flipping a fair 2-sided coin and observing if the coin lands on heads or tails? From section 7.1 weshouldknowthatthereare