Chapter 6: Operational Amplifier (Op Amp)

Size: px
Start display at page:

Download "Chapter 6: Operational Amplifier (Op Amp)"

Transcription

1 Chapter 6: Operational Amplifier (Op Amp) 6.1 What is an Op Amp? 6.2 Ideal Op Amp 6.3 Nodal Analysis of Circuits with Op Amps 6.4 Configurations of Op Amp 6.5 Cascaded Op Amp 6.6 Op Amp Circuits & Linear Algebraic Eqs 6.7 Applications Digital to Analog Conerter Instrumentation Amplifier 6.8 Characteristics of Practical Op Amps 6.9 Summary 1

2 6.1 What is an Op Amp (1) An operational amplifier (op amp) is a integrated circuit (IC) composed of perhaps 30 BJTs and/or FETs, 10 resistors, and seeral capacitors. The functions like a oltage controlled oltage source. It is an actie circuit element designed to perform mathematical operations of addition, subtraction, multiplication, diision, differentiation and integration. Pin configuration Circuit symbol Powering the op amp 2

3 6.1 What is an Op Amp (2) (a) μa741 IC with has 8 connecting pins. (b) Correspondence btw circled pin numbers of the IC and the nodes. (c) An op amp, including power supplies + and -. (a) (b) (c)

4 6.1 What is an Op Amp (3) The equialent circuit of the non ideal op amp Op Amp output: o as a function of d d = 2 1 o = A d = A( 2 1 ) Typical ranges for op amp parameters Parameter Typical range Ideal alues Open loop gain, A 10 5 to 10 8 Input resistance, i 10 5 to Output resistance, o 10 to Supply oltage, V CC 5 to 24 V o o i i d () t S dt sat o sat 4

5 6.1 What is an Op Amp (4) Equialent circuit of the op amp: 5

6 6.2 Ideal Op Amp An ideal op amp has the following characteristics: 1. Infinite open loop gain, A 2. Infinite input resistance, i 3. Zero output resistance, o 0 Example: Determine the alue of i o. 6

7 6.3 Nodal Analysis of Circuits with Op Amps (1) Use node equations to analyze circuits containing ideal Op amps. There are 3 things to remember: 1. The node oltages at the input nodes of ideal op amps are equal. Thus, one of these two node oltages can be eliminated from the node equations can be eliminated from the node equations. 2. The currents in the input leads of an ideal op amp are zero. These currents are inoled in the KCL equations at the input nodes of the op amp. 3. The output current of the op amp is not zero. This current inoled in the KCL Equations at the output node of the operational amplifier. Applying KCL at this node adds another unknown to the node equations. If the output current of the op amp is not to be determined, then it is not necessary to apply KCL at the output node of the operational amplifier. 7

8 6.3 Nodal Analysis of Circuits with Op Amps (2) Example: Analysis of a Bridge Amplifier The operational amplifier and resistors, 5 and 6, are used to amplify the output of the bridge. As a consequence, 1 = 0 and i 1 = 0, determine the output oltage, o, in terms of the source oltage, s. (a) (b) (c) (d) (a) A bridge amplifier, including the bridge circuit. (b) The bridge circuit and (c) its Théenin equialent of the bridge. 8

9 6.3 Nodal Analysis of Circuits with Op Amps (3) First, notice that the node oltage a is gien by (using KVL) Because 1 = 0 and i 1 = 0, i a 1 oc t 1 Now, writing the node equation at node a a o a i Because a = oc and i 1 = 0, Soling for o, we hae a oc oc o oc o oc s

10 6.4 Configurations of Op amp (1) Inerting Amplifier: reerses the polarity of the input signal while amplifying it. Negatie feedback btw the inerting input ( i ) & output ( o ) i is connected to the inerting input ia 1 Equialent Noninerting circuit input is grounded To find the relationship btw i & o : By KCL at node 1, i 1 1o i1 i2 1 f for an ideal op amp since the noninerting terminal is grounded. f o i 1 Closed-loop oltage gain is A o i f Example: Find o & i in 1 if i = 0.5 V, 1 = 10 kω, & f = 25 kω. 1 10

11 6.4 Configurations of Op amp (2) Current to oltage conerter (trans resistance amplifier) PD is adopted to use an inerting current o i s 3 3 o 11 i 1 2 s 11

12 6.4 Configurations of Op amp (3) Noninerting Amplifier: designed to produce positie oltage gain. To find the relationship btw i & o : i connected to noninerting input terminal f 1 0 (short circuit) or (open circuit) o i By KCL at inerting terminal, i i2 f 1 2 i o 1 1 Voltage gain: A 1 1 o i f To isolate two cascaded stage: as oltage follower Has a ery high input impedance and 12 thus eliminate interstage loading f o i 1

13 6.4 Configurations of Op amp (4) Circuit 1 (a) before and (b) after circuit 2 is connected. (c) Preenting loading, using a oltage follower. A oltage diider (a) before and (b) after a 30 kω resistor is added. (c) A oltage follower is added to preent loading. 13

14 6.4 Configurations of Op amp (5) A common application of op amp is to scale a oltage, that is, to multiply a oltage by a constant, K, so that o Kin The input oltage, in, is proided by an ideal oltage source. The output oltage, o, is the element oltage of a 100 kω resistor. Circuits that perform this operation are usually called amplifiers. The constant K is called the gain of the amplifier. There are four cases to consider: (b) K = -5 (< 0), (c) K = 5 (> 1), (d) K = 1, and (e) K = 0.8 (0 < K < 1). (a) (b) (c) (d) (e) 14

15 6.4 Configurations of Op amp (6) Example: calculate the output oltage o. 15

16 6.4 Configurations of Op amp (7) Summing Amplifier: combines seeral inputs and produces an output that is the weighted sum of the inputs. Example: calculate o & i o. To find the relationship btw i & o : By KCL at node a, i i1i2 i3 But i, i, i, i a 1 a 2 a 3 a a o f 0o f f f

17 6.4 Configurations of Op amp (8) Differential Amplifier: amplifies the difference between two inputs but rejects any signals common to the two inputs. Example: Design an op amp circuit with 1 & 2 such that o = By KCL at node a, 1a a o 2 2 o 1a By KCL at node b, 0 2 b b 4 b (1 1/ 2) 2 But a b o 2 1 1(1 3/ 4) 1 To reject a signal common to the two inputs, o 0 when 1 2, if To become a subtractor, o , if

18 6.4 Configurations of Op amp (9) 18

19 6.4 Configurations of Op amp (10) 19

20 6.5 Cascaded Op Amp (1) Cascaded Connection: a head to tail arrangement of two or more op amp circuits such that the output of one is the input of the next. Op amp circuits hae the adantage that they can be cascaded without changing input output relationships. This is due to the fact that each (ideal) op amp circuit has i & o 0. Note that to design an actual op amp circuit must ensure that the load due to the next stage in the cascade does not saturate the op amp. Oerall gain: 20

21 6.5 Cascaded Op Amp (2) Example : If 1 = 1 V & 2 = 2 V, find o 21

Chapter Goal. Zulfiqar Ali

Chapter Goal. Zulfiqar Ali Chapter Goal Understand behaior and characteristics of ideal differential and op amps. Demonstrate circuit analysis techniques for ideal op amps. Characterize inerting, non-inerting, summing and instrumentation

More information

An electronic unit that behaves like a voltagecontrolled

An electronic unit that behaves like a voltagecontrolled 1 An electronic unit that behaves like a voltagecontrolled voltage source. An active circuit element that amplifies, sums, subtracts, multiply, divide, differentiate or integrates a signal 2 A typical

More information

Circuit produces an amplified negative version of v IN = R R R

Circuit produces an amplified negative version of v IN = R R R Inerting Amplifier Circuit produces an amplified negatie ersion of i = i, = 2 0 = 2 OUT OUT = 2 Example: Calculate OUT / and I for = 0.5V Solution: A V OUT 2 = = = 0 kω = 0 kω i 05. V = = = kω 05. ma

More information

Chapter 11 Operational Amplifiers and Applications

Chapter 11 Operational Amplifiers and Applications Chapter Operational Amplifiers and Applications Chapter Goals Understand the magic of negatie feedback and the characteristics of ideal op amps. Understand the conditions for non-ideal op amp behaior so

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits Reiew of Op-Amps Sections of Chapters 9 & 14 A. Kruger Op-Amp Reiew-1 Real-World Op-Amp In earlier courses, op-amp were often considered ideal Infinite input resistance Infinite

More information

ECE:3410 Electronic Circuits

ECE:3410 Electronic Circuits ECE:3410 Electronic Circuits Reiew of Op-Amps Sections of Chapters 9 & 14 A. Kruger Op-Amp Reiew-1 Real-World Op-Amp In earlier courses, op-amp were often considered ideal Infinite input resistance Infinite

More information

Electronic Instrumentation Experiment 6 -- Digital Switching

Electronic Instrumentation Experiment 6 -- Digital Switching 1 Electronic Instrumentation Experiment 6 -- Digital Switching Part A: Transistor Switches Part B: Comparators and Schmitt Triggers Part C: Digital Switching Part D: Switching a elay Part A: Transistors

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:04 Electronic Circuits Lecture -5 eiew of Op-Amps Sections of Chapters 9 & 4 A. Kruger Op-Amp eiew- eal-world Op-Amp In earlier courses, op-amp were often considered ideal Infinite input resistance

More information

CHAPTER SIX SOLUTIONS

CHAPTER SIX SOLUTIONS CHAPTE SIX SOLUTIONS. The first step is to perform a simple source transformation, so that a 0.5-V source in series with a 50-Ω resistor is connected to the inerting pin of the ideal op amp. 00 50 Then,

More information

Operational Amplifiers

Operational Amplifiers CHAPTER 5 Operational Amplifiers Operational amplifiers (or Op Amp) is an active circuit element that can perform mathematical operations between signals (e.g., amplify, sum, subtract, multiply, divide,

More information

ES250: Electrical Science. HW6: The Operational Amplifier

ES250: Electrical Science. HW6: The Operational Amplifier ES250: Electrical Science HW6: The Operational Amplifier Introduction This chapter introduces the operational amplifier or op amp We will learn how to analyze and design circuits that contain op amps,

More information

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C8 Summing and differential amplifiers with OpAmp

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C8 Summing and differential amplifiers with OpAmp ELECTNIC DEVICES Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C8 Summing and differential amplifiers with pamp C8 Summing and differential amplifs w/ pamp Contents Summing amplifiers with pamp Inerting

More information

UNIT I. Operational Amplifiers

UNIT I. Operational Amplifiers UNIT I Operational Amplifiers Operational Amplifier: The operational amplifier is a direct-coupled high gain amplifier. It is a versatile multi-terminal device that can be used to amplify dc as well as

More information

Operational Amplifiers

Operational Amplifiers Fundamentals of op-amp Operation modes Golden rules of op-amp Op-amp circuits Inverting & non-inverting amplifier Unity follower, integrator & differentiator Introduction An operational amplifier, or op-amp,

More information

Chapter 3: Operational Amplifiers

Chapter 3: Operational Amplifiers Chapter 3: Operational Amplifiers 1 OPERATIONAL AMPLIFIERS Having learned the basic laws and theorems for circuit analysis, we are now ready to study an active circuit element of paramount importance:

More information

Operational Amplifiers (Op Amps)

Operational Amplifiers (Op Amps) Operational Amplifiers (Op Amps) Introduction * An operational amplifier is modeled as a voltage controlled voltage source. * An operational amplifier has a very high input impedance and a very high gain.

More information

CHAPTER 2 OPERATIONAL AMPLIFIERS

CHAPTER 2 OPERATIONAL AMPLIFIERS CHPTE PETNL MPLFES Chapter utline. The deal p mp. The nerting Configuration. The Noninerting Configuration. Difference mplifiers.5 ntegrators and Differentiators.6 DC mperfections.7 Effect of Finite pen

More information

Elektronika (TKE 4012)

Elektronika (TKE 4012) Operational Amplifier & aplikasinya Elektronika (TKE 40) Eka Maulana maulana.lecture.ub.ac.id Op Amp Op Amp is short for operational amplifier Amplifiers proide gains in oltage or current Op amps can conert

More information

Week 7: Common-Collector Amplifier, MOS Field Effect Transistor

Week 7: Common-Collector Amplifier, MOS Field Effect Transistor EE 2110A Electronic Circuits Week 7: Common-Collector Amplifier, MOS Field Effect Transistor ecture 07-1 Topics to coer Common-Collector Amplifier MOS Field Effect Transistor Physical Operation and I-V

More information

Amplifiers with Negative Feedback

Amplifiers with Negative Feedback 13 Amplifiers with Negatie Feedback 335 Amplifiers with Negatie Feedback 13.1 Feedback 13.2 Principles of Negatie Voltage Feedback In Amplifiers 13.3 Gain of Negatie Voltage Feedback Amplifier 13.4 Adantages

More information

Operational amplifiers

Operational amplifiers Operational amplifiers Bởi: Sy Hien Dinh INTRODUCTION Having learned the basic laws and theorems for circuit analysis, we are now ready to study an active circuit element of paramount importance: the operational

More information

Revision: June 11, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: June 11, E Main Suite D Pullman, WA (509) Voice and Fax Reision: June 11, 2010 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Oeriew In preious chapters, we hae seen that it is possible to characterize a circuit consisting of sources and

More information

Operational Amplifiers

Operational Amplifiers Basic Electronics Syllabus: Introduction to : Ideal OPAMP, Inverting and Non Inverting OPAMP circuits, OPAMP applications: voltage follower, addition, subtraction, integration, differentiation; Numerical

More information

EIT/FE Exam EE Review 2 nd Session Prof. Richard Spencer. Transformer

EIT/FE Exam EE Review 2 nd Session Prof. Richard Spencer. Transformer EIT/FE Exam EE eiew 2 nd ession Prof. ichard pencer Transformer Assume two coils are wound on the same core and that it has low reluctance (high permeability) If a current flows in one of the windings,

More information

EECE251 Circuit Analysis I Set 5: Operational Amplifiers

EECE251 Circuit Analysis I Set 5: Operational Amplifiers EECE251 Circuit Analysis I Set 5: Operational Amplifiers Shahriar Mirabbasi Department of Electrical and Computer Engineering University of British Columbia shahriar@ece.ubc.ca 1 Amplifiers There are various

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Spring 2008 Sean Lynch Lambros Samouris Tom Groshans History of Op Amps Non Named for their originally intended functions: performing mathematical operations and amplification Addition

More information

Lesson number one. Operational Amplifier Basics

Lesson number one. Operational Amplifier Basics What About Lesson number one Operational Amplifier Basics As well as resistors and capacitors, Operational Amplifiers, or Op-amps as they are more commonly called, are one of the basic building blocks

More information

Linear Voltage Regulators

Linear Voltage Regulators 8/6/ inearoltageegulators(oeriew).doc / 8/6/ inearoltageegulators(oeriew).doc / inear oltage egulators The schematic below shows a pretty darn good design for a linear regulator. t has good regulation,

More information

Course Outline. 4. Chapter 5: MOS Field Effect Transistors (MOSFET) 5. Chapter 6: Bipolar Junction Transistors (BJT)

Course Outline. 4. Chapter 5: MOS Field Effect Transistors (MOSFET) 5. Chapter 6: Bipolar Junction Transistors (BJT) Course Outline 1. Chapter 1: Signals and Amplifiers 1 2. Chapter 3: Semiconductors 3. Chapter 4: Diodes 4. Chapter 5: MOS Field Effect Transistors (MOSFET) 5. Chapter 6: Bipolar Junction Transistors (BJT)

More information

Prof. Paolo Colantonio a.a

Prof. Paolo Colantonio a.a Pro. Paolo Colantonio a.a. 03 4 Operational ampliiers (op amps) are among the most widely used building blocks in electronics they are integrated circuits (ICs) oten DIL (or DIP) or SMT (or SMD) DIL (or

More information

MOSFET Common Source Amplifier

MOSFET Common Source Amplifier Microelectronic Circuits MOSFET Common Source Amplifier Slide 1 Small nal Model The definition of Transconductance g m i D S S S k n W L O The definition of output resistance r o DS I The definition of

More information

L02 Operational Amplifiers Applications 1

L02 Operational Amplifiers Applications 1 L02 Operational Amplifiers Applications 1 Chapter 9 Ideal Operational Amplifiers and Op-Amp Circuits Donald A. Neamen (2009). Microelectronics: Circuit Analysis and Design, 4th Edition, Mc-Graw-Hill Prepared

More information

Chapter 6: Converter circuits

Chapter 6: Converter circuits hapter 6. onerter ircuits 6.. ircuit manipulations 6.. A short list of conerters 6.3. Transformer isolation 6.4. onerter ealuation and design 6.5. Summary of key points Where do the boost, buck-boost,

More information

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C9 Applications with OpAmp - 1

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C9 Applications with OpAmp - 1 ELECTONIC DEVICES Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C9 Applications with OpAmp - C9 Applications with OpAmp - Contents Voltage domain conersion circuits Capacitiely coupled amplifiers Op-amp

More information

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Linear Integrated Circuits Applications

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Linear Integrated Circuits Applications About the Tutorial Linear Integrated Circuits are solid state analog devices that can operate over a continuous range of input signals. Theoretically, they are characterized by an infinite number of operating

More information

Homework Assignment 03

Homework Assignment 03 Homework Assignment 03 Question 1 (Short Takes), 2 points each unless otherwise noted. 1. Two 0.68 μf capacitors are connected in series across a 10 khz sine wave signal source. The total capacitive reactance

More information

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C10 Applications with OpAmp - 2

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C10 Applications with OpAmp - 2 ELECNC DEVCE Assist. prof. Laura-Nicoleta VANCU, Ph.D. C10 Applications with pamp - 2 Contents Half-wae and full-wae precision rectifiers Precision peak detectors Current sources Logarithmic and exponential

More information

Homework Assignment 06

Homework Assignment 06 Homework Assignment 06 Question 1 (Short Takes) One point each unless otherwise indicated. 1. Consider the current mirror below, and neglect base currents. What is? Answer: 2. In the current mirrors below,

More information

VOLTAGE COMPARATORS WITH OPERATIONAL AMPLIFIERS - HYSTERESIS COMPARATORS

VOLTAGE COMPARATORS WITH OPERATIONAL AMPLIFIERS - HYSTERESIS COMPARATORS OLTAGE COMPAATOS WTH OPEATONAL AMPLFES - HYSTEESS COMPAATOS. OBJECTES a) Determining the oltage transfer characteristics (TC) for hysteresis comparators. b) Determining the output oltage in accordance

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers From: http://ume.gatech.edu/mechatroni cs_course/opamp_f11.ppt What is an Op-Amp? The Surface An Operational Amplifier (Op-Amp) is an integrated circuit that uses external voltage

More information

ELG 2135 ELECTRONICS I FOURTH CHAPTER : BIPOLAR JUNCTION TRANSISTORS

ELG 2135 ELECTRONICS I FOURTH CHAPTER : BIPOLAR JUNCTION TRANSISTORS ELG 2135 ELECTRONICS I FOURTH CHAPTER : BIPOLAR JUNCTION TRANSISTORS Session WINTER 2003 Dr M. YAGOUB Fourth Chapter: Bipolar Junction Transistors IV - 2 _ Haing studied the junction diode, which is the

More information

6. The Operational Amplifier

6. The Operational Amplifier 1 6. The Operational Amplifier This chapter introduces a new component which, although technically nonlinear, can be treated effectively with linear models This element known as the operational amplifier

More information

EEEE 381 Electronics I

EEEE 381 Electronics I EEEE 381 Electronics I Lab #5: Two-Stage CMOS Op-Amp Oeriew In this lab we will expand on the work done in Lab #4, which introduced the actiely-loaded differential pair. A second stage that is comprised

More information

Experiments #7. Operational Amplifier part 1

Experiments #7. Operational Amplifier part 1 Experiments #7 Operational Amplifier part 1 1) Objectives: The objective of this lab is to study operational amplifier (op amp) and its applications. We will be simulating and building some basic op-amp

More information

Electromechanical Systems and Mechatronics Signal Conditioning: Lecture 3

Electromechanical Systems and Mechatronics Signal Conditioning: Lecture 3 Electromechanical ystems and Mechatronics ignal Conditioning: Lecture 3 ignal Conditioning Processes The Operational Amplifier Filtering Digital ignals Multiplexers Data Acquisition Digital ignal Processing

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 8 NETWORK ANALYSIS OBJECTIVES The purpose of this experiment is to mathematically analyze a circuit

More information

ELEC207 LINEAR INTEGRATED CIRCUITS

ELEC207 LINEAR INTEGRATED CIRCUITS Concept of VIRTUAL SHORT For feedback amplifiers constructed with op-amps, the two op-amp terminals will always be approximately equal (V + = V - ) This condition in op-amp feedback amplifiers is known

More information

Indigenous Design of Electronic Circuit for Electrocardiograph

Indigenous Design of Electronic Circuit for Electrocardiograph Indigenous Design of Electronic Circuit for Electrocardiograph Raman Gupta 1, Sandeep Singh 2, Kashish Garg 3, Shruti Jain 4 U.G student, Department of Electronics and Communication Engineering,Jaypee

More information

UNIVERSITY OF UTAH ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT AMPLIFIER FREQUENCY RESPONSE

UNIVERSITY OF UTAH ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT AMPLIFIER FREQUENCY RESPONSE UNISITY OF UTAH LTIAL AND OMPUT NGINING DPATMNT 30 LABOATOY XPIMNT NO. AMPLIFI FQUNY SPONS Objecties This experiment will demonstrate the frequency and time domain response of a single-stage common emitter

More information

Chapter 5 Bipolar Amplifiers. EE105 - Spring 2007 Microelectronic Devices and Circuits. Bipolar Amplifiers. Voltage Amplifier

Chapter 5 Bipolar Amplifiers. EE105 - Spring 2007 Microelectronic Devices and Circuits. Bipolar Amplifiers. Voltage Amplifier EE05 - Spring 2007 Microelectronic Deices and ircuits hapter 5 Bipolar mplifiers 5. General onsiderations 5.2 Operating Point nalysis and Design 5.3 Bipolar mplifier Topologies 5.4 Summary and dditional

More information

Lecture 1. EE 215 Electronic Devices & Circuits. Semiconductor Devices: Diodes. The Ideal Diode

Lecture 1. EE 215 Electronic Devices & Circuits. Semiconductor Devices: Diodes. The Ideal Diode Lecture 1 EE 215 Electronic Deices & Circuits Asst Prof Muhammad Anis Chaudhary EE 215 Electronic Deices & Circuits Credit Hours: 3 1 Course Book: Adel S. Sedra and Kenneth C. Smith, Microelectronic Circuits,

More information

EE 3305 Lab I Revised July 18, 2003

EE 3305 Lab I Revised July 18, 2003 Operational Amplifiers Operational amplifiers are high-gain amplifiers with a similar general description typified by the most famous example, the LM741. The LM741 is used for many amplifier varieties

More information

3. Voltage and Current laws

3. Voltage and Current laws 1 3. Voltage and Current laws 3.1 Node, Branches, and loops A branch represents a single element such as a voltage source or a resistor A node is the point of the connection between two or more elements

More information

An amplifier increases the power (amplitude) of an

An amplifier increases the power (amplitude) of an Amplifiers Signal In Amplifier Signal Out An amplifier increases the power (amplitude) of an electronic signal, as shown in the figure above. Amplifiers are found everywhere in TV s, radios. MP3 players,

More information

Chapter 2. Operational Amplifiers

Chapter 2. Operational Amplifiers Chapter 2. Operational Amplifiers Tong In Oh 1 Objective Terminal characteristics of the ideal op amp How to analyze op amp circuits How to use op amps to design amplifiers How to design more sophisticated

More information

VCC_BAR. Grounds. Power, either postive or negative REVIEW OF SYMBOLS

VCC_BAR. Grounds. Power, either postive or negative REVIEW OF SYMBOLS LECTUE 4. OPEATIONAL AMPLIFIES EIEW OF SYMBOLS CC_BA Power, either postive or negative Grounds. Operational amplifiers (op-amps) are active devices. This means you must connect them to a power supply in

More information

Basic Information of Operational Amplifiers

Basic Information of Operational Amplifiers EC1254 Linear Integrated Circuits Unit I: Part - II Basic Information of Operational Amplifiers Mr. V. VAITHIANATHAN, M.Tech (PhD) Assistant Professor, ECE Department Objectives of this presentation To

More information

EE 551 Linear Integrated Circuits

EE 551 Linear Integrated Circuits EE 551 Linear Integrated Circuits Daid W. Graham West Virginia Uniersity Lane Department of Computer Science and Electrical Engineering Daid W. Graham, 2009-2013 1 What You Are Expected To Know Basic circuit

More information

MOSFET Amplifier Configuration. MOSFET Amplifier Configuration

MOSFET Amplifier Configuration. MOSFET Amplifier Configuration MOSFET Amplifier Configuration Single stage The signal is fed to the amplifier represented as sig with an internal resistance sig. MOSFET is represented by its small signal model. Generally interested

More information

What is an Op-Amp? The Surface

What is an Op-Amp? The Surface What is an Op-Amp? The Surface An Operational Amplifier (Op-Amp) is an integrated circuit that uses external voltage to amplify the input through a very high gain. We recognize an Op-Amp as a massproduced

More information

Solution: Based on the slope of q(t): 20 A for 0 t 1 s dt = 0 for 3 t 4 s. 20 A for 4 t 5 s 0 for t 5 s 20 C. t (s) 20 C. i (A) Fig. P1.

Solution: Based on the slope of q(t): 20 A for 0 t 1 s dt = 0 for 3 t 4 s. 20 A for 4 t 5 s 0 for t 5 s 20 C. t (s) 20 C. i (A) Fig. P1. Problem 1.24 The plot in Fig. P1.24 displays the cumulative charge q(t) that has entered a certain device up to time t. Sketch a plot of the corresponding current i(t). q 20 C 0 1 2 3 4 5 t (s) 20 C Figure

More information

BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY

BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY Electronics Circuits II Laboratory (EEE 208) Simulation Experiment No. 02 Study of the Characteristics and Application of Operational Amplifier (Part B)

More information

Announcements. To stop blowing fuses in the lab, note how the breadboards are wired. EECS 42, Spring 2005 Week 3a 1

Announcements. To stop blowing fuses in the lab, note how the breadboards are wired. EECS 42, Spring 2005 Week 3a 1 Announcements New topics: Mesh (loop) method of circuit analysis Superposition method of circuit analysis Equivalent circuit idea (Thevenin, Norton) Maximum power transfer from a circuit to a load To stop

More information

Instrumentation amplifier

Instrumentation amplifier Instrumentationamplifieris a closed-loop gainblock that has a differential input and an output that is single-ended with respect to a reference terminal. Application: are intended to be used whenever acquisition

More information

Announcements. To stop blowing fuses in the lab, note how the breadboards are wired. EECS 42, Spring 2005 Week 3a 1

Announcements. To stop blowing fuses in the lab, note how the breadboards are wired. EECS 42, Spring 2005 Week 3a 1 Announcements New topics: Mesh (loop) method of circuit analysis Superposition method of circuit analysis Equivalent circuit idea (Thevenin, Norton) Maximum power transfer from a circuit to a load To stop

More information

UNIT- IV ELECTRONICS

UNIT- IV ELECTRONICS UNIT- IV ELECTRONICS INTRODUCTION An operational amplifier or OP-AMP is a DC-coupled voltage amplifier with a very high voltage gain. Op-amp is basically a multistage amplifier in which a number of amplifier

More information

Operational Amplifiers

Operational Amplifiers Objective Operational Amplifiers Understand the basics and general concepts of operational amplifier (op amp) function. Build and observe output of a comparator and an amplifier (inverting amplifier).

More information

EE LINEAR INTEGRATED CIRCUITS & APPLICATIONS

EE LINEAR INTEGRATED CIRCUITS & APPLICATIONS UNITII CHARACTERISTICS OF OPAMP 1. What is an opamp? List its functions. The opamp is a multi terminal device, which internally is quite complex. It is a direct coupled high gain amplifier consisting of

More information

Improving Amplifier Voltage Gain

Improving Amplifier Voltage Gain 15.1 Multistage ac-coupled Amplifiers 1077 TABLE 15.3 Three-Stage Amplifier Summary HAND ANALYSIS SPICE RESULTS Voltage gain 998 1010 Input signal range 92.7 V Input resistance 1 M 1M Output resistance

More information

3.4 The Single-Loop Circuit Single-loop circuits

3.4 The Single-Loop Circuit Single-loop circuits 25 3.4 The Single-Loop Circuit Single-loop circuits Elements are connected in series All elements carry the same current We shall determine The current through each element The voltage across each element

More information

ELC224 Final Review (12/10/2009) Name:

ELC224 Final Review (12/10/2009) Name: ELC224 Final Review (12/10/2009) Name: Select the correct answer to the problems 1 through 20. 1. A common-emitter amplifier that uses direct coupling is an example of a dc amplifier. 2. The frequency

More information

55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point.

55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point. Exam 3 Name: Score /65 Question 1 Unless stated otherwise, each question below is 1 point. 1. An engineer designs a class-ab amplifier to deliver 2 W (sinusoidal) signal power to an resistive load. Ignoring

More information

Infrared Communications Lab

Infrared Communications Lab Infrared Communications Lab This lab assignment assumes that the student knows about: Ohm s Law oltage, Current and Resistance Operational Amplifiers (See Appendix I) The first part of the lab is to develop

More information

Describe the basic DC characteristics of an op amp. Sketch a diagram of the op amp DC test circuit. Input Offset Voltage. Input Offset Current

Describe the basic DC characteristics of an op amp. Sketch a diagram of the op amp DC test circuit. Input Offset Voltage. Input Offset Current Testing Op Amps Chapter 3 Goals Understand the requirements for testing Op Amp DC parameters. Objectives Describe the basic DC characteristics of an op amp. Select a test methodology for evaluating voltage

More information

Lecture # 4 Network Analysis

Lecture # 4 Network Analysis CPEN 206 Linear Circuits Lecture # 4 Network Analysis Dr. Godfrey A. Mills Email: gmills@ug.edu.gh Phone: 026-907-3163 February 22, 2016 Course TA David S. Tamakloe 1 What is Network Technique o Network

More information

Chapter 8. Constant Current Sources

Chapter 8. Constant Current Sources Chapter 8 Methods of Analysis Constant Current Sources Maintains same current in branch of circuit Doesn t matter how components are connected external to the source Direction of current source indicates

More information

Objective of the Lecture

Objective of the Lecture Objective of the Lecture Present Kirchhoff s Current and Voltage Laws. Chapter 5.6 and Chapter 6.3 Principles of Electric Circuits Chapter4.6 and Chapter 5.5 Electronics Fundamentals or Electric Circuit

More information

Differential Amplifier : input. resistance. Differential amplifiers are widely used in engineering instrumentation

Differential Amplifier : input. resistance. Differential amplifiers are widely used in engineering instrumentation Differential Amplifier : input resistance Differential amplifiers are widely used in engineering instrumentation Differential Amplifier : input resistance v 2 v 1 ir 1 ir 1 2iR 1 R in v 2 i v 1 2R 1 Differential

More information

Advanced Test Equipment Rentals ATEC (2832)

Advanced Test Equipment Rentals ATEC (2832) Established 1981 Adanced Test Equipment Rentals www.atecorp.com 800-404-ATEC (2832) UNIVERSITY OF UTAH ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT ANALOG INTEGRATED CIRCUITS LAB LAB 5 Two-Stage CMOS

More information

Differential Amp DC Analysis by Robert L Rauck

Differential Amp DC Analysis by Robert L Rauck Differential Amp DC Analysis by Robert L Rauck Amplifier DC performance is affected by a variety of Op Amp characteristics. Not all of these factors are commonly well understood. This analysis will develop

More information

Introduction to Analog Interfacing. ECE/CS 5780/6780: Embedded System Design. Various Op Amps. Ideal Op Amps

Introduction to Analog Interfacing. ECE/CS 5780/6780: Embedded System Design. Various Op Amps. Ideal Op Amps Introduction to Analog Interfacing ECE/CS 5780/6780: Embedded System Design Scott R. Little Lecture 19: Operational Amplifiers Most embedded systems include components that measure and/or control real-world

More information

Common Reference Example

Common Reference Example Operational Amplifiers Overview Common reference circuit diagrams Real models of operational amplifiers Ideal models operational amplifiers Inverting amplifiers Noninverting amplifiers Summing amplifiers

More information

C H A P T E R 02. Operational Amplifiers

C H A P T E R 02. Operational Amplifiers C H A P T E R 02 Operational Amplifiers The Op-amp Figure 2.1 Circuit symbol for the op amp. Figure 2.2 The op amp shown connected to dc power supplies. The Ideal Op-amp 1. Infinite input impedance 2.

More information

Study Guide for the First Exam

Study Guide for the First Exam Study Guide or the First Exam Chemistry 838 Fall 005 T V Atkinson Department o Chemistry Michigan State Uniersity East Lansing, MI 4884 The leel o knowledge and detail expected or the exam is that o the

More information

Chapter 2. Operational Amplifiers

Chapter 2. Operational Amplifiers Chapter 2. Operational Amplifiers Tong In Oh 1 2.3 The Noninverting Configuration v I is applied directly to the positive input terminal of the op amp One terminal of is connected to ground Closed-loop

More information

Introduction... 1 Part I: Getting Started with Circuit Analysis Part II: Applying Analytical Methods for Complex Circuits...

Introduction... 1 Part I: Getting Started with Circuit Analysis Part II: Applying Analytical Methods for Complex Circuits... Contents at a Glance Introduction... 1 Part I: Getting Started with Circuit Analysis... 5 Chapter 1: Introducing Circuit Analysis...7 Chapter 2: Clarifying Basic Circuit Concepts and Diagrams...15 Chapter

More information

General Purpose Operational Amplifiers

General Purpose Operational Amplifiers General Purpose Operational Amplifiers OUTLINE Lecture 0, 0/7/05 Corrected 0/9/05 Op-Amp from -Port Blocks Op-Amp Model and its Idealization Negative Feedback for Stability Components around Op-Amp define

More information

EEE118: Electronic Devices and Circuits

EEE118: Electronic Devices and Circuits EEE118: Electronic Devices and Circuits Lecture XVII James E Green Department of Electronic Engineering University of Sheffield j.e.green@sheffield.ac.uk Review Looked (again) at Feedback for signals and

More information

Source Transformation

Source Transformation HW Chapter 0: 4, 20, 26, 44, 52, 64, 74, 92. Source Transformation Source transformation in frequency domain involves transforming a voltage source in series with an impedance to a current source in parallel

More information

Lecture 01 Operational Amplifiers Op-Amps Introduction

Lecture 01 Operational Amplifiers Op-Amps Introduction Lecture 01 Operational Amplifiers Op-Amps Introduction Chapter 9 Ideal Operational Amplifiers and Op-Amp Circuits Donald A. Neamen (2009). Microelectronics: Circuit Analysis and Design, 4th Edition, Mc-Graw-Hill

More information

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) 4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) The Metal Oxide Semitonductor Field Effect Transistor (MOSFET) has two modes of operation, the depletion mode, and the enhancement mode.

More information

Celso José Faria de Araújo, M.Sc.

Celso José Faria de Araújo, M.Sc. elso José Faria de Araújo, M.Sc. TH IPOLA JUNTION TANSISTOS - JT Objecties: Understand the basic principles of JT operation Interpret the transport model Identify operating regions of the JT and use simplified

More information

ELT 215 Operational Amplifiers (LECTURE) Chapter 5

ELT 215 Operational Amplifiers (LECTURE) Chapter 5 CHAPTER 5 Nonlinear Signal Processing Circuits INTRODUCTION ELT 215 Operational Amplifiers (LECTURE) In this chapter, we shall present several nonlinear circuits using op-amps, which include those situations

More information

Transistor Configuration

Transistor Configuration Transistor Configuration 1 Objectives To review BJT biasing circuit. To study BJT amplifier circuit To understand the BJT configuration. To analyse single-stage BJT amplifier circuits. To study the differential

More information

Study Guide for the First Exam

Study Guide for the First Exam Study Guide or the First Exam Chemistry 838 Fall 27 T V Atkinson Department o Chemistry Michigan State Uniersity East Lansing, MI 48824 Table o Contents Table o Contents...1 Table o Tables...1 Table o

More information

tyuiopasdfghjklzxcvbnmqwertyuiopas dfghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq

tyuiopasdfghjklzxcvbnmqwertyuiopas dfghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq qwertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfgh jklzxcvbnmqwertyuiopasdfghjklzxcvb nmqwertyuiopasdfghjklzxcvbnmqwer Instrumentation Device Components Semester 2 nd tyuiopasdfghjklzxcvbnmqwertyuiopas

More information

EET 438a Automatic Control Systems Technology Laboratory 1 Analog Sensor Signal Conditioning

EET 438a Automatic Control Systems Technology Laboratory 1 Analog Sensor Signal Conditioning EET 438a Automatic Control Systems Technology Laboratory 1 Analog Sensor Signal Conditioning Objectives: Use analog OP AMP circuits to scale the output of a sensor to signal levels commonly found in practical

More information

EE 171. MOS Transistors (Chapter 5) University of California, Santa Cruz May 1, 2007

EE 171. MOS Transistors (Chapter 5) University of California, Santa Cruz May 1, 2007 EE 171 MOS Transistors (Chapter 5) Uniersity of California, Santa Cruz May 1, 007 FET: Fiel Effect Transistors MOSFET (Metal-Oxie-Semiconuctor) N-channel (NMOS) P-channel (PMOS) Enhancement type (V to

More information

Homework Assignment 01

Homework Assignment 01 Homework Assignment 01 In this homework set students review some basic circuit analysis techniques, as well as review how to analyze ideal op-amp circuits. Numerical answers must be supplied using engineering

More information

Operational Amplifier (Op-Amp)

Operational Amplifier (Op-Amp) Operational Amplifier (Op-Amp) 1 Contents Op-Amp Characteristics Op-Amp Circuits - Noninverting Amplifier - Inverting Amplifier - Comparator - Differential - Summing - Integrator - Differentiator 2 Introduction

More information