INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET)

Size: px
Start display at page:

Download "INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET)"

Transcription

1 INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET) International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 ISSN (Print) ISSN (Online) Volume 5, Issue 2, February (2014), pp IAEME: Journal Impact Factor (2014): (Calculated by GISI) IJECET I A E M E A VERSATILE MICROCONTROLLER BASED SEMICONDUCTOR DEVICE TESTER Kanade Jyoti Suresh 1, Kulkarni Vishwashri Amrut 2 1, 2 Electronics and Telecommunication Dept. Jawaharlal Nehru Engineering College, Aurangabad, (M.S.) INDIA ABSTRACT This paper proposes the design and development of a simple, low cost tester system for diode, bipolar junction transistor (BJT), and junction field effect transistor (JFET). The basic building blocks for this tester design include PIC 18F452 microcontroller, analog multiplexer/demultiplexer 74HC4052, 12 bit digital to analog converter (DAC) MCP4822, operational amplifier LM741 and liquid crystal display (LCD). The tester system discussed in this paper provides accurate identification of semiconductor device under test (diode, BJT, JFET), types of bipolar transistor (NPN, PNP), types of junction field effect transistor (N channel JFET, P channel JFET). The proposed system also detects leads of diode, bipolar junction transistor (BJT), and junction field effect transistor (JFET). Apart from this the tester also measures various parameters of above mentioned semiconductor devices such as forward voltage (V F ) and forward current (I F ) for diode, current gain (H FE ) for BJT, saturation current with the gate shorted to the source (I DSS ), cut-off voltage (V GS(OFF) ) and drain source on resistance (R DS(ON) ) for JFET. All measurement and test results are clearly represented on LCD. Low cost, low power consumption, simple hardware, user friendly design and compact size are salient features of this semiconductor device tester. Keywords: Bipolar Junction Transistor (BJT), Cut-Off Voltage, Diode, Junction Field Effect Transistor (JFET), Microcontroller. I. INTRODUCTION Semiconductor devices are used in all the current electrical or electronics products on the market. As a result of the increasing demand for semiconductors, the semiconductor industry has experienced significant growth over the past 8 to 10 years. The semiconductor industry is one of the most productive and dynamic industries in the world. It introduces continuous and rapid advancement in technology, new devices and integrated circuits. Challenges that the industry is facing are to continuously improve product and service quality and reliability, achieve greater 42

2 functionality, higher performance and zero defects. In order to meet all these challenges electronic products and integrated circuits need to be highly testable. Testing is a very critical component of the product development and production process. It can improve product s performance, increase quality and reliability, and lower return rates. The rising cost of electronics product testing is now one of the main challenges to manufacturers. Sometimes cost of testing can be even greater than the cost of product manufacturing itself. To make a significant impact on the cost of test may require a change in test strategy which may result in bringing a new, lower cost test platform. It is estimated that the cost of failure decreases ten times when an error is caught during production instead of the field, and decreases ten times again if it is caught in design instead of production. Hence to reduce manufacturing cost and improve yield semiconductor devices should be tested after being fabricated. Thus by taking into account practical importance of above mentioned fact valuable work has been accomplished in designing new versatile testing scheme for semiconductor devices. A few design methodology of semiconductor device tester has been adopted in recent days [1]-[6]. Some of them have made use of a mathematical model for the calculation of gate to source cut off voltage V GS(OFF) and drain source on resistance R DS(ON) [6]. In proposed module the values of V GS(OFF) and R DS(ON) are actually measured and for this a variable bipolar power supply of 5V has been designed. The software coding part is done using MPLAB IDE. II. GENERAL OVERVIEW OF PROPOSED DESIGN Block diagram of semiconductor device tester is as shown in Fig.1. It consist of 6 blocks as PIC18F452 microcontroller, resistor bank, analog multiplexer 74HC4052, variable bipolar power supply and device under test which interact with each other as follows : microcontroller applies necessary potential values to the leads of unknown device through suitable resistor in the resistor bank and also performs required voltage measurements for further tests and parameter calculations. S1, S2 represents select lines for mux1, S3, S4 for mux2 and S5, S6 for mux3. The purpose of select lines is to make proper choice of resistor values in resistor bank with the help of analog multiplexer. All measurement and test results for the device under test are clearly represented on liquid crystal display unit. Detailed description of each block is given below. Fig. 1 Block diagram of semiconductor device tester A. Microcontroller Microcontroller employed is Microchip s PIC18F452. Few of its built in features are as follows: It has linear program memory addressing to 32 Kbytes, linear data memory addressing to 1.5 Kbytes, 5 I/O ports, 10 bit analog to digital converter (ADC) module having 8 input channels, parallel slave port (PSP), analog comparator (AC). 43

3 B. Resistor Bank Resistor bank consists of 3 resistors of values 1KΩ, 100Ω and 150KΩ. Suitable resistor values are selected on the basis of type of test procedure to be carried out on a device under test. C. Analog Switch 74HC4052 It is dual 4 channel analog multiplexer/demultiplexer with common select logic. It plays very important role in making design of semiconductor device tester more user friendly. D. Liquid Crystal Display In this system 16x2 character liquid crystal display is used to print test and measurement results for transistor and diode. E. Variable Bipolar Power Supply DAC MCP4822 and operational amplifier LM741 together forms a variable bipolar power supply of 5V. It supplies power to the device under test through the array of 150KΩ resistors. Basic purpose behind designing a variable power supply is to calculate gate to source cut off voltage (V GS (OFF)) for JFET. III. MEASUREMENT TECHNIQUE AND ELECTRONIC HARDWARE OF THE TESTER Microcontroller starts its test schedule by performing very first test to determine whether device under test is two lead device that is diode. Diode can be connected between test terminals one and three. The test is based on the basic concept that is PN junction conducts current in only one direction [3]. In this test Microcontroller applies 5V to the lead of diode connected to test terminal 1 via 1KΩ resistor. The lead of diode connected to test terminal three is grounded through same resistor value that is 1KΩ. Microcontroller measures voltage across 1KΩ resistor connected to test terminal 3 through switch and stores measured value. One more measurement of this sort is made with different lead sequence. Microcontroller performs some logical operations on these two measured values to get final result. Now there are two ways in which diode can be connected between test terminals one and three that is cathode facing towards terminal three and cathode facing towards terminal one. Same test sequence is repeated for diode connected in another way to get one more final result. Thus based on these two result microcontroller determines whether device under test is diode or any other device. This test is also sufficient to locate anode and cathode leads of diode. After identification of diode leads its forward voltage is calculated by making necessary analog voltage measurements and calculations. Table I represents theoretical logic to locate anode and cathode leads for diode. In this table potential values applied and measured at test terminals 1 and 3 are represented in terms of logic levels 1 and 0. Voltage applied to test terminal (TT) through 1KΩ resistor in terms of logic levels 0 and 1 TABLE I: Logic of detecting anode and cathode leads of diode Voltage Voltage applied Voltage measured to test terminal measured across 1 KΩ (TT) through across 1 KΩ resistor 1KΩ resistor in resistor connected to terms of logic connected to TT3 levels 0 and 1 TT1 Remarks TT1 TT3 TT1 TT TT1-Anode, TT3-Cathode TT1- Cathode, TT3-Anode 44

4 In two conditions microcontroller executes programme for testing 3 lead devices that are transistor. The first condition is that if the test for diode fails and the second condition is that if the test for diode is positive and voltage of test terminal (TT) 2 is not zero. Microcontroller checks the second condition to avoid wrong identification of device under test. In case of transistor microcontroller conducts first test by performing voltage measurement to determine whether connected device is bipolar junction transistor or junction field effect transistor. The same logic for testing diode can be extended to test transistor; as transistor also consist of PN junctions which conduct current in only one direction; thus by considering the direction of current conduction one can determine whether the transistor under test is bipolar transistor or junction field effect transistor. This test is realised by connecting one of the three leads of transistor to 5V through 100Ω resistance and other two leads are connected to ground potential through 1KΩ resistance; their voltages are then digitally read in the form of logic levels 0 and 1. This process can be repeated for other two lead sequences. Each time microcontroller stores measured voltage values and performs some logical operations on them. Now transistor can be connected in between three test terminals in six ways, so the test sequence is repeated for that many times. The analysis shows a unique hex data corresponding to NPN BJT and N channel JFET; while the data corresponding to PNP BJT and P channel JFET is same therefore once it is recognized that the device under test is PNP BJT or P channel JFET it is further subjected to a test that differentiates PNP BJT from P channel JFET. The first test is also sufficient to determine base lead of BJT and gate lead of JFET. After identification of base lead the task remained is to identify the other two leads of BJT that are collector and emitter. In a properly biased transistor the current gain from base to collector is much higher than base to emitter. This property can be used to identify the actual collector lead of transistor. For this circuit is connected in common emitter configuration, base current is applied and the assumed collector is connected to supply through a lead resistor of 1KΩ. If it is real collector the current gain will be high, collector current will be high and collector voltage will be low. Repeating this process for other lead and comparing the collector voltages one can decide the actual collector lead. Configurations used for measurement of V F and I F for diode, current gain for NPN and PNP type of BJT and I DSS and R DS(ON) for N channel JFET are shown in Fig. 2. Fig. 2 Measurement configurations Once the collector lead is identified a proper biasing is applied choosing suitable collector and base resistors through the mux. The analog voltages at collector and base terminals are measured 45

5 using analog to digital converters. The collector current and base current are calculated by measuring voltages across the collector and base resistances and current gain is calculated. Resistor R SWITCH represents internal resistance of each switch of the analog mux/demux74hc4052. Its value is approximately 65Ω. Most of JFETs are symmetrical in nature that is their source and drain terminals can be interchanged hence the tester can identify only gate lead of JFET and other two leads can be assumed as source and drain without altering the results related to the calculation of its parameters [5]. Once the gate lead is identified JFET is properly biased and saturation current with the gate shorted to the source (I DSS ) as well as drain source on resistance (R DS(ON) ) is calculated for V GS =0V. To calculate cut-off voltage (V GS(OFF) ) gate to source reverse bias voltage is gradually increased and drain voltage is measured; for certain value of gate to source voltage (V GS ) the drain voltage becomes maximum as drain current falls to zero in N channel JFET and drain voltage becomes zero as drain current falls to zero in P channel JFET and this value of gate to source voltage is taken as cut off voltage. Operational flow of semiconductor device tester is given in Fig. 3. Fig. 3 Operation flowchart of semiconductor device tester Fig. 4 shows the circuit diagram of the semiconductor device tester. The external crystal of 12MHz is used as clock source. In the proposed module device under test is subjected to large no of permutations and combinations of logic levels in perfect sequence through suitable resistor values. Without removing device under test this is possible if and only if analog switches are used for proper routing of signal. Three analog to digital converter input channels are used to make necessary analog voltage measurements. The LCD panel communicates with the microcontroller in 8 bit mode. In the presented work the values of V GS(OFF) and R DS(ON) are actually measured by applying necessary potential values to the gate lead of JFET in order to force the device to work in a cut off region for this a variable bipolar power supply of 5V has been designed using DAC and operational amplifier. DAC is controlled through microcontroller for generating suitable voltage values. Current flowing through device terminal has to pass through the selected series resistance and internal resistance of analog switch. The current is calculated by measuring the potential difference across series resistance; therefore second analog switch of 74HC4052 is used to connect potential of other lead of series resistor to analog input of microcontroller. Input impedance of analog input of microcontroller is always extremely high hence no current flows through the internal resistance of second switch and all the voltage at desired point is coupled to analog input of microcontroller. Thus the effect of internal resistance of analog switch can be compensated to some extent while making current measurements. 46

6 Fig. 4 Circuit diagram of semiconductor device tester IV. TEST RESULTS OF THE SEMICONDUCTOR DEVICE TESTER Fig. 5, Fig. 6, Fig. 7 and Fig. 8 illustrate results displayed on LCD panel while testing semiconductor devices. Fig. 5 shows test results for diode. First line of display indicates forward current for diode and second line of display indicates lead arrangement and forward voltage for diode. Fig. 6 shows test results for bipolar junction transistor. First line of the display indicates the type of BJT and it s current gain H FE. Second line of display indicates it s lead arrangement and collector current. 47

7 Fig. 7 and Fig. 8 illustrate test results for junction field effect transistor. In Fig.7 first line of the display indicates the type of JFET and second line of the display indicates it s lead arrangement. In Fig. 8 first line of the display represents saturation current with the gate shorted to the source (I DSS ) and second line of the display represents drain source on resistance (R DS(ON) ) for JFET. Fig. 5 Test results for diode. The tester s Fig. 6 Test results for bipolar transistor. display indicates DIODE; I f = 1.7mA; The tester s display indicates BJT; PNP; 1-A 3-K; V f = 0.62V. h fe = 163; EBC; I c = 3.27mA. Fig. 7 Test results for junction field effect transistor. The tester s display indicates N-CHANNEL JFET; G-S-D. Fig. 8 Test results for junction field effect transistor. The tester s display indicates I DSS =3.35mA; R DS(ON) =54ohm. V. CONCLUSION AND FUTURE WORK By taking into account immense practical importance of testing semiconductor devices especially diode, bipolar junction transistor and junction field effect transistor a low cost, high performance testing scheme is presented in this paper. A variable bipolar power supply of 5V has been designed to calculate V GS(OFF) for JFET and also as a further provision for calculation of threshold voltage (V TH ) for metal oxide semiconductor field effect transistor (MOSFET). The proposed module can further be developed to test MOSFET and calculate it s parameters with few modifications in software. 48

8 REFERENCES [1] I. Lita, M. Jurian, D. A. Visan, S. Opera, and I. B. Cioc, Microcontroller based tester for semiconductor Devices, Electronics Technology, 31st International Spring Seminar, ISSE 08, pp , May 7-11, [2] R. L. Boylestad and L. Nasheisky, Electronic Devices and Circuit Theory, 10th ed., Pearson Education South Asia, India, [3] T. L. Floyd, Electronic Devices, 7th ed., Pearson Education South Asia, India, [4] R. Gaonkar, Fundamentals of Microcontrollers and Applications in Embedded Systems (with the PIC18 Microcontroller Family), Penram International India, [5] A. S. Sedra and K. C. Smith, Microelectronic Circuits, 5th ed., Oxford University Press. [6] [7] Microcontroller datasheet. [online]. Available: [8] 74HC4052 datasheet. [online]. Available: [9] MCP4822 datasheet. [online]. Available: [10] LM741 datasheet. [online]. Available: 49

Semiconductor analyser AS4002P User Manual

Semiconductor analyser AS4002P User Manual Semiconductor analyser AS4002P User Manual Copyright Ormelabs (C) 2010 http://www.ormelabs.com 1 CONTENTS SECTION Page SECTION 1: Introduction... 3 SECTION 2: Features... 3 SECTION 3: Component analysis...

More information

I E I C since I B is very small

I E I C since I B is very small Figure 2: Symbols and nomenclature of a (a) npn and (b) pnp transistor. The BJT consists of three regions, emitter, base, and collector. The emitter and collector are usually of one type of doping, while

More information

COLLECTOR DRAIN BASE GATE EMITTER. Applying a voltage to the Gate connection allows current to flow between the Drain and Source connections.

COLLECTOR DRAIN BASE GATE EMITTER. Applying a voltage to the Gate connection allows current to flow between the Drain and Source connections. MOSFETS Although the base current in a transistor is usually small (< 0.1 ma), some input devices (e.g. a crystal microphone) may be limited in their output. In order to overcome this, a Field Effect Transistor

More information

Field Effect Transistors

Field Effect Transistors Field Effect Transistors Purpose In this experiment we introduce field effect transistors (FETs). We will measure the output characteristics of a FET, and then construct a common-source amplifier stage,

More information

Lecture 12. Bipolar Junction Transistor (BJT) BJT 1-1

Lecture 12. Bipolar Junction Transistor (BJT) BJT 1-1 Lecture 12 Bipolar Junction Transistor (BJT) BJT 1-1 Course Info Lecture hours: 4 Two Lectures weekly (Saturdays and Wednesdays) Location: K2 Time: 1:40 pm Tutorial hours: 2 One tutorial class every week

More information

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) 4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) The Metal Oxide Semitonductor Field Effect Transistor (MOSFET) has two modes of operation, the depletion mode, and the enhancement mode.

More information

L MOSFETS, IDENTIFICATION, CURVES. PAGE 1. I. Review of JFET (DRAW symbol for n-channel type, with grounded source)

L MOSFETS, IDENTIFICATION, CURVES. PAGE 1. I. Review of JFET (DRAW symbol for n-channel type, with grounded source) L.107.4 MOSFETS, IDENTIFICATION, CURVES. PAGE 1 I. Review of JFET (DRAW symbol for n-channel type, with grounded source) 1. "normally on" device A. current from source to drain when V G = 0 no need to

More information

Microelectronic Circuits

Microelectronic Circuits SECOND EDITION ISHBWHBI \ ' -' Microelectronic Circuits Adel S. Sedra University of Toronto Kenneth С Smith University of Toronto HOLT, RINEHART AND WINSTON HOLT, RINEHART AND WINSTON, INC. New York Chicago

More information

Analog Electronics. Electronic Devices, 9th edition Thomas L. Floyd Pearson Education. Upper Saddle River, NJ, All rights reserved.

Analog Electronics. Electronic Devices, 9th edition Thomas L. Floyd Pearson Education. Upper Saddle River, NJ, All rights reserved. Analog Electronics BJT Structure The BJT has three regions called the emitter, base, and collector. Between the regions are junctions as indicated. The base is a thin lightly doped region compared to the

More information

Unit III FET and its Applications. 2 Marks Questions and Answers

Unit III FET and its Applications. 2 Marks Questions and Answers Unit III FET and its Applications 2 Marks Questions and Answers 1. Why do you call FET as field effect transistor? The name field effect is derived from the fact that the current is controlled by an electric

More information

EIE209 Basic Electronics. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: T ransistor devices

EIE209 Basic Electronics. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: T ransistor devices EIE209 Basic Electronics Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Three-terminal device whose voltage-current relationship is controlled by a third voltage

More information

CHAPTER 8 FIELD EFFECT TRANSISTOR (FETs)

CHAPTER 8 FIELD EFFECT TRANSISTOR (FETs) CHAPTER 8 FIELD EFFECT TRANSISTOR (FETs) INTRODUCTION - FETs are voltage controlled devices as opposed to BJT which are current controlled. - There are two types of FETs. o Junction FET (JFET) o Metal

More information

Electronics: Design and Build Training Session. Presented By: Dr. Shakti Singh Hazem Elgabra Amna Siddiqui

Electronics: Design and Build Training Session. Presented By: Dr. Shakti Singh Hazem Elgabra Amna Siddiqui Electronics: Design and Build Training Session Presented By: Dr. Shakti Singh Hazem Elgabra Amna Siddiqui Basic prototyping and measurement tools Breadboard basics Back View VCC GND VSS Breadboard basics

More information

ITT Technical Institute. ET215 Devices 1. Chapter

ITT Technical Institute. ET215 Devices 1. Chapter ITT Technical Institute ET215 Devices 1 Chapter 4.6 4.7 Chapter 4 Section 4.6 FET Linear Amplifiers Transconductance of FETs The output drain current is controlled by the input signal voltage. As we earlier

More information

Chapter 8. Field Effect Transistor

Chapter 8. Field Effect Transistor Chapter 8. Field Effect Transistor Field Effect Transistor: The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There

More information

Device Technologies. Yau - 1

Device Technologies. Yau - 1 Device Technologies Yau - 1 Objectives After studying the material in this chapter, you will be able to: 1. Identify differences between analog and digital devices and passive and active components. Explain

More information

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 6 FIELD-EFFECT TRANSISTORS

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 6 FIELD-EFFECT TRANSISTORS KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 6 FIELD-EFFECT TRANSISTORS Most of the content is from the textbook: Electronic devices and circuit theory, Robert

More information

EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT

EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT 1. OBJECTIVES 1.1 To practice how to test NPN and PNP transistors using multimeter. 1.2 To demonstrate the relationship between collector current

More information

Q1. Explain the construction and principle of operation of N-Channel and P-Channel Junction Field Effect Transistor (JFET).

Q1. Explain the construction and principle of operation of N-Channel and P-Channel Junction Field Effect Transistor (JFET). Q. Explain the construction and principle of operation of N-Channel and P-Channel Junction Field Effect Transistor (JFET). Answer: N-Channel Junction Field Effect Transistor (JFET) Construction: Drain(D)

More information

DISCUSSION The best way to test a transistor is to connect it in a circuit that uses the transistor.

DISCUSSION The best way to test a transistor is to connect it in a circuit that uses the transistor. Exercise 1: EXERCISE OBJECTIVE When you have completed this exercise, you will be able to test a transistor by forward biasing and reverse biasing the junctions. You will verify your results with an ohmmeter.

More information

Transistor Characteristics

Transistor Characteristics Transistor Characteristics Topics covered in this presentation: Transistor Construction Transistor Operation Transistor Characteristics 1 of 15 The Transistor The transistor is a semiconductor device that

More information

THE METAL-SEMICONDUCTOR CONTACT

THE METAL-SEMICONDUCTOR CONTACT THE METAL-SEMICONDUCTOR CONTACT PROBLEM 1 To calculate the theoretical barrier height, built-in potential barrier, and maximum electric field in a metal-semiconductor diode for zero applied bias. Consider

More information

TRANSISTOR TRANSISTOR

TRANSISTOR TRANSISTOR It is made up of semiconductor material such as Si and Ge. Usually, it comprises of three terminals namely, base, emitter and collector for providing connection to the external circuit. Today, some transistors

More information

Field Effect Transistors (npn)

Field Effect Transistors (npn) Field Effect Transistors (npn) gate drain source FET 3 terminal device channel e - current from source to drain controlled by the electric field generated by the gate base collector emitter BJT 3 terminal

More information

BJT Amplifier. Superposition principle (linear amplifier)

BJT Amplifier. Superposition principle (linear amplifier) BJT Amplifier Two types analysis DC analysis Applied DC voltage source AC analysis Time varying signal source Superposition principle (linear amplifier) The response of a linear amplifier circuit excited

More information

FET. FET (field-effect transistor) JFET. Prepared by Engr. JP Timola Reference: Electronic Devices by Floyd

FET. FET (field-effect transistor) JFET. Prepared by Engr. JP Timola Reference: Electronic Devices by Floyd FET Prepared by Engr. JP Timola Reference: Electronic Devices by Floyd FET (field-effect transistor) unipolar devices - unlike BJTs that use both electron and hole current, they operate only with one type

More information

Intelligent Semiconductor Analyzer User Manual

Intelligent Semiconductor Analyzer User Manual Intelligent Semiconductor Analyzer User Manual Please read this manual before switching the unit on. Important safety information inside. 2 Contents Page 1.Introduction... 4 2.Important Considerations...

More information

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism;

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; Chapter 3 Field-Effect Transistors (FETs) 3.1 Introduction Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; The concept has been known

More information

Lecture 9 Transistors

Lecture 9 Transistors Lecture 9 Transistors Physics Transistor/transistor logic CMOS logic CA 1947 http://www.extremetech.com/extreme/164301-graphenetransistors-based-on-negative-resistance-could-spell-theend-of-silicon-and-semiconductors

More information

UNIT 3: FIELD EFFECT TRANSISTORS

UNIT 3: FIELD EFFECT TRANSISTORS FIELD EFFECT TRANSISTOR: UNIT 3: FIELD EFFECT TRANSISTORS The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There are

More information

Lab 1 - Revisited. Oscilloscope demo IAP Lecture 2 1

Lab 1 - Revisited. Oscilloscope demo IAP Lecture 2 1 Lab 1 - Revisited Display signals on scope Measure the time, frequency, voltage visually and with the scope Voltage measurement* Build simple circuits on a protoboard.* Oscilloscope demo 6.091 IAP Lecture

More information

Lecture 3: Transistors

Lecture 3: Transistors Lecture 3: Transistors Now that we know about diodes, let s put two of them together, as follows: collector base emitter n p n moderately doped lightly doped, and very thin heavily doped At first glance,

More information

Electronics I. Last Time

Electronics I. Last Time (Rev. 1.0) Electronics I Lecture 28 Introduction to Field Effect Transistors (FET s) Muhammad Tilal Department of Electrical Engineering CIIT Attock Campus The logo and is the property of CIIT, Pakistan

More information

FIELD EFFECT TRANSISTOR (FET) 1. JUNCTION FIELD EFFECT TRANSISTOR (JFET)

FIELD EFFECT TRANSISTOR (FET) 1. JUNCTION FIELD EFFECT TRANSISTOR (JFET) FIELD EFFECT TRANSISTOR (FET) The field-effect transistor (FET) is a three-terminal device used for a variety of applications that match, to a large extent, those of the BJT transistor. Although there

More information

ITT Technical Institute. ET215 Devices 1. Unit 7 Chapter 4, Sections

ITT Technical Institute. ET215 Devices 1. Unit 7 Chapter 4, Sections ITT Technical Institute ET215 Devices 1 Unit 7 Chapter 4, Sections 4.1 4.3 Chapter 4 Section 4.1 Structure of Field-Effect Transistors Recall that the BJT is a current-controlling device; the field-effect

More information

Lecture #3 BJT Transistors & DC Biasing

Lecture #3 BJT Transistors & DC Biasing November 2014 Ahmad El-Banna Integrated Technical Education Cluster At AlAmeeria J-601-1448 Electronic Principals Lecture #3 BJT Transistors & DC Biasing Instructor: Dr. Ahmad El-Banna Agenda Transistor

More information

ITT Technical Institute. ET215 Devices 1. Unit 8 Chapter 4, Sections

ITT Technical Institute. ET215 Devices 1. Unit 8 Chapter 4, Sections ITT Technical Institute ET215 Devices 1 Unit 8 Chapter 4, Sections 4.4 4.5 Chapter 4 Section 4.4 MOSFET Characteristics A Metal-Oxide semiconductor field-effect transistor is the other major category of

More information

A Practical Approach to Designing MOSFET Amplifiers for a Specific Gain

A Practical Approach to Designing MOSFET Amplifiers for a Specific Gain Paper ID #11289 A Practical Approach to Designing MOSFET Amplifiers for a Specific Gain Prof. James E. Globig, University of Dayton Prof. Globig joined the University of Dayton in August 1998. Before becoming

More information

Questions on JFET: 1) Which of the following component is a unipolar device?

Questions on JFET: 1) Which of the following component is a unipolar device? Questions on JFET: 1) Which of the following component is a unipolar device? a) BJT b) FET c) DJT d) EFT 2) Current Conduction in FET takes place due e) Majority charge carriers only f) Minority charge

More information

Current Mirrors. Basic BJT Current Mirror. Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror.

Current Mirrors. Basic BJT Current Mirror. Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror. Current Mirrors Basic BJT Current Mirror Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror. For its analysis, we assume identical transistors and neglect

More information

Physics 364, Fall 2012, reading due your answers to by 11pm on Thursday

Physics 364, Fall 2012, reading due your answers to by 11pm on Thursday Physics 364, Fall 2012, reading due 2012-10-25. Email your answers to ashmansk@hep.upenn.edu by 11pm on Thursday Course materials and schedule are at http://positron.hep.upenn.edu/p364 Assignment: (a)

More information

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers EE 330 Laboratory 8 Discrete Semiconductor Amplifiers Fall 2018 Contents Objective:...2 Discussion:...2 Components Needed:...2 Part 1 Voltage Controlled Amplifier...2 Part 2 A Nonlinear Application...3

More information

THE JFET. Script. Discuss the JFET and how it differs from the BJT. Describe the basic structure of n-channel and p -channel JFETs

THE JFET. Script. Discuss the JFET and how it differs from the BJT. Describe the basic structure of n-channel and p -channel JFETs Course: B.Sc. Applied Physical Science (Computer Science) Year & Sem.: Ist Year, Sem - IInd Subject: Electronics Paper No.: V Paper Title: Analog Circuits Lecture No.: 12 Lecture Title: Analog Circuits

More information

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 3 Field Effect Transistors Lecture-8 Junction Field

More information

= V IN. and V CE. = the supply voltage 0.7 V, the transistor is on, V BE. = 0.7 V and V CE. until saturation is reached.

= V IN. and V CE. = the supply voltage 0.7 V, the transistor is on, V BE. = 0.7 V and V CE. until saturation is reached. Switching Circuits Learners should be able to: (a) describe and analyse the operation and use of n-channel enhancement mode MOSFETs and npn transistors in switching circuits, including those which interface

More information

6. Field-Effect Transistor

6. Field-Effect Transistor 6. Outline: Introduction to three types of FET: JFET MOSFET & CMOS MESFET Constructions, Characteristics & Transfer curves of: JFET & MOSFET Introduction The field-effect transistor (FET) is a threeterminal

More information

EEE225: Analogue and Digital Electronics

EEE225: Analogue and Digital Electronics EEE225: Analogue and Digital Electronics Lecture I James E. Green Department of Electronic Engineering University of Sheffield j.e.green@sheffield.ac.uk Introduction This Lecture 1 Introduction Aims &

More information

Summary. Electronics II Lecture 5(b): Metal-Oxide Si FET MOSFET. A/Lectr. Khalid Shakir Dept. Of Electrical Engineering

Summary. Electronics II Lecture 5(b): Metal-Oxide Si FET MOSFET. A/Lectr. Khalid Shakir Dept. Of Electrical Engineering Summary Electronics II Lecture 5(b): Metal-Oxide Si FET MOSFET A/Lectr. Khalid Shakir Dept. Of Electrical Engineering College of Engineering Maysan University Page 1-21 Summary The MOSFET The metal oxide

More information

Student Lecture by: Giangiacomo Groppi Joel Cassell Pierre Berthelot September 28 th 2004

Student Lecture by: Giangiacomo Groppi Joel Cassell Pierre Berthelot September 28 th 2004 Student Lecture by: Giangiacomo Groppi Joel Cassell Pierre Berthelot September 28 th 2004 Lecture outline Historical introduction Semiconductor devices overview Bipolar Junction Transistor (BJT) Field

More information

Electronic Circuits. Junction Field-effect Transistors. Dr. Manar Mohaisen Office: F208 Department of EECE

Electronic Circuits. Junction Field-effect Transistors. Dr. Manar Mohaisen Office: F208   Department of EECE Electronic Circuits Junction Field-effect Transistors Dr. Manar Mohaisen Office: F208 Email: manar.subhi@kut.ac.kr Department of EECE Review of the Precedent Lecture Explain the Operation Class A Power

More information

IFB270 Advanced Electronic Circuits

IFB270 Advanced Electronic Circuits IFB270 Advanced Electronic Circuits Chapter 9: FET amplifiers and switching circuits Prof. Manar Mohaisen Department of EEC Engineering Review of the Precedent Lecture Review of basic electronic devices

More information

EE 5611 Introduction to Microelectronic Technologies Fall Thursday, September 04, 2014 Lecture 02

EE 5611 Introduction to Microelectronic Technologies Fall Thursday, September 04, 2014 Lecture 02 EE 5611 Introduction to Microelectronic Technologies Fall 2014 Thursday, September 04, 2014 Lecture 02 1 Lecture Outline Review on semiconductor materials Review on microelectronic devices Example of microelectronic

More information

EXPERIMENT 12: SIMULATION STUDY OF DIFFERENT BIASING CIRCUITS USING NPN BJT

EXPERIMENT 12: SIMULATION STUDY OF DIFFERENT BIASING CIRCUITS USING NPN BJT EXPERIMENT 12: SIMULATION STUDY OF DIFFERENT BIASING CIRCUITS USING NPN BJT AIM: 1) To study different BJT DC biasing circuits 2) To design voltage divider bias circuit using NPN BJT SOFTWARE TOOL: PC

More information

Conventional transistor overview and special transistors

Conventional transistor overview and special transistors Conventional transistor overview and special transistors This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit

More information

Semiconductors, ICs and Digital Fundamentals

Semiconductors, ICs and Digital Fundamentals Semiconductors, ICs and Digital Fundamentals The Diode The semiconductor phenomena. Diode performance with ac and dc currents. Diode types: General purpose LED Zener The Diode The semiconductor phenomena

More information

Electronics EECE2412 Spring 2017 Exam #2

Electronics EECE2412 Spring 2017 Exam #2 Electronics EECE2412 Spring 2017 Exam #2 Prof. Charles A. DiMarzio Department of Electrical and Computer Engineering Northeastern University 30 March 2017 File:12198/exams/exam2 Name: : General Rules:

More information

Chapter 5: Field Effect Transistors

Chapter 5: Field Effect Transistors Chapter 5: Field Effect Transistors Slide 1 FET FET s (Field Effect Transistors) are much like BJT s (Bipolar Junction Transistors). Similarities: Amplifiers Switching devices Impedance matching circuits

More information

Embedded Systems. Oscillator and I/O Hardware. Eng. Anis Nazer First Semester

Embedded Systems. Oscillator and I/O Hardware. Eng. Anis Nazer First Semester Embedded Systems Oscillator and I/O Hardware Eng. Anis Nazer First Semester 2016-2017 Oscillator configurations Three possible configurations for Oscillator (a) using a crystal oscillator (b) using an

More information

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET Ch. 13 MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor : I D D-mode E-mode V g The gate oxide is made of dielectric SiO 2 with e = 3.9 Depletion-mode operation ( 공핍형 ): Using an input gate voltage

More information

Transistors and Applications

Transistors and Applications Chapter 17 Transistors and Applications DC Operation of Bipolar Junction Transistors (BJTs) The bipolar junction transistor (BJT) is constructed with three doped semiconductor regions separated by two

More information

4 Transistors. 4.1 IV Relations

4 Transistors. 4.1 IV Relations 4 Transistors Due date: Sunday, September 19 (midnight) Reading (Bipolar transistors): HH sections 2.01-2.07, (pgs. 62 77) Reading (Field effect transistors) : HH sections 3.01-3.03, 3.11-3.12 (pgs. 113

More information

ME 4447 / 6405 Student Lecture. Transistors. Abiodun Otolorin Michael Abraham Waqas Majeed

ME 4447 / 6405 Student Lecture. Transistors. Abiodun Otolorin Michael Abraham Waqas Majeed ME 4447 / 6405 Student Lecture Transistors Abiodun Otolorin Michael Abraham Waqas Majeed Lecture Overview Transistor? History Underlying Science Properties Types of transistors Bipolar Junction Transistors

More information

The Common Source JFET Amplifier

The Common Source JFET Amplifier The Common Source JFET Amplifier Small signal amplifiers can also be made using Field Effect Transistors or FET's for short. These devices have the advantage over bipolar transistors of having an extremely

More information

Scheme I Sample. : Second : Basic. Electronics : 70. Marks. Time: 3 Hrs. 2] b) State any. e) State any. Figure Definition.

Scheme I Sample. : Second : Basic. Electronics : 70. Marks. Time: 3 Hrs. 2] b) State any. e) State any. Figure Definition. Program Name Program Code Semester Course Title Scheme I Sample Question Paper : Diploma in Electronics Program Group : DE/EJ/IE/IS/ET/EN/EX : Second : Basic Electronics : 70 22216 Time: 3 Hrs. Instructions:

More information

Electronics Prof. D. C. Dube Department of Physics Indian Institute of Technology, Delhi

Electronics Prof. D. C. Dube Department of Physics Indian Institute of Technology, Delhi Electronics Prof. D. C. Dube Department of Physics Indian Institute of Technology, Delhi Module No # 05 FETS and MOSFETS Lecture No # 06 FET/MOSFET Amplifiers and their Analysis In the previous lecture

More information

Field Effect Transistors

Field Effect Transistors Chapter 5: Field Effect Transistors Slide 1 FET FET s (Field Effect Transistors) are much like BJT s (Bipolar Junction Transistors). Similarities: Amplifiers Switching devices Impedance matching circuits

More information

ES 330 Electronics II Homework # 2 (Fall 2016 Due Wednesday, September 7, 2016)

ES 330 Electronics II Homework # 2 (Fall 2016 Due Wednesday, September 7, 2016) Page1 Name ES 330 Electronics II Homework # 2 (Fall 2016 Due Wednesday, September 7, 2016) Problem 1 (15 points) You are given an NMOS amplifier with drain load resistor R D = 20 k. The DC voltage (V RD

More information

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s.

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s. UNIT-I FIELD EFFECT TRANSISTOR 1. Explain about the Field Effect Transistor and also mention types of FET s. The Field Effect Transistor, or simply FET however, uses the voltage that is applied to their

More information

Phy 335, Unit 4 Transistors and transistor circuits (part one)

Phy 335, Unit 4 Transistors and transistor circuits (part one) Mini-lecture topics (multiple lectures): Phy 335, Unit 4 Transistors and transistor circuits (part one) p-n junctions re-visited How does a bipolar transistor works; analogy with a valve Basic circuit

More information

AE53/AC53/AT53/AE103 ELECT. DEVICES & CIRCUITS DEC 2015

AE53/AC53/AT53/AE103 ELECT. DEVICES & CIRCUITS DEC 2015 Q.2 a. By using Norton s theorem, find the current in the load resistor R L for the circuit shown in Fig.1. (8) Fig.1 IETE 1 b. Explain Z parameters and also draw an equivalent circuit of the Z parameter

More information

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press UNIT-1 Bipolar Junction Transistors Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press Figure 6.1 A simplified structure of the npn transistor. Microelectronic Circuits, Sixth

More information

ANALOG FUNDAMENTALS C. Topic 4 BASIC FET AMPLIFIER CONFIGURATIONS

ANALOG FUNDAMENTALS C. Topic 4 BASIC FET AMPLIFIER CONFIGURATIONS AV18-AFC ANALOG FUNDAMENTALS C Topic 4 BASIC FET AMPLIFIER CONFIGURATIONS 1 ANALOG FUNDAMENTALS C AV18-AFC Overview This topic identifies the basic FET amplifier configurations and their principles of

More information

Index. Small-Signal Models, 14 saturation current, 3, 5 Transistor Cutoff Frequency, 18 transconductance, 16, 22 transit time, 10

Index. Small-Signal Models, 14 saturation current, 3, 5 Transistor Cutoff Frequency, 18 transconductance, 16, 22 transit time, 10 Index A absolute value, 308 additional pole, 271 analog multiplier, 190 B BiCMOS,107 Bode plot, 266 base-emitter voltage, 16, 50 base-emitter voltages, 296 bias current, 111, 124, 133, 137, 166, 185 bipolar

More information

Experiment (1) Principles of Switching

Experiment (1) Principles of Switching Experiment (1) Principles of Switching Introduction When you use microcontrollers, sometimes you need to control devices that requires more electrical current than a microcontroller can supply; for this,

More information

Laboratory #5 BJT Basics and MOSFET Basics

Laboratory #5 BJT Basics and MOSFET Basics Laboratory #5 BJT Basics and MOSFET Basics I. Objectives 1. Understand the physical structure of BJTs and MOSFETs. 2. Learn to measure I-V characteristics of BJTs and MOSFETs. II. Components and Instruments

More information

IENGINEERS-CONSULTANTS QUESTION BANK SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU ELECTRONICS ENGINEERING EC 101 UNIT 3 (JFET AND MOSFET)

IENGINEERS-CONSULTANTS QUESTION BANK SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU ELECTRONICS ENGINEERING EC 101 UNIT 3 (JFET AND MOSFET) ELECTRONICS ENGINEERING EC 101 UNIT 3 (JFET AND MOSFET) LONG QUESTIONS (10 MARKS) 1. Draw the construction diagram and explain the working of P-Channel JFET. Also draw the characteristics curve and transfer

More information

Q.1: Power factor of a linear circuit is defined as the:

Q.1: Power factor of a linear circuit is defined as the: Q.1: Power factor of a linear circuit is defined as the: a. Ratio of real power to reactive power b. Ratio of real power to apparent power c. Ratio of reactive power to apparent power d. Ratio of resistance

More information

Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Department of Mechanical Engineering

Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Department of Mechanical Engineering MEMS1082 Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Bipolar Transistor Construction npn BJT Transistor Structure npn BJT I = I + E C I B V V BE CE = V = V B C V V E E Base-to-emitter

More information

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers EE 330 Laboratory 8 Discrete Semiconductor Amplifiers Fall 2017 Contents Objective:... 2 Discussion:... 2 Components Needed:... 2 Part 1 Voltage Controlled Amplifier... 2 Part 2 Common Source Amplifier...

More information

An Introduction to Bipolar Junction Transistors. Prepared by Dr Yonas M Gebremichael, 2005

An Introduction to Bipolar Junction Transistors. Prepared by Dr Yonas M Gebremichael, 2005 An Introduction to Bipolar Junction Transistors Transistors Transistors are three port devices used in most integrated circuits such as amplifiers. Non amplifying components we have seen so far, such as

More information

Chapter 8: Field Effect Transistors

Chapter 8: Field Effect Transistors Chapter 8: Field Effect Transistors Transistors are different from the basic electronic elements in that they have three terminals. Consequently, we need more parameters to describe their behavior than

More information

EE301 Electronics I , Fall

EE301 Electronics I , Fall EE301 Electronics I 2018-2019, Fall 1. Introduction to Microelectronics (1 Week/3 Hrs.) Introduction, Historical Background, Basic Consepts 2. Rewiev of Semiconductors (1 Week/3 Hrs.) Semiconductor materials

More information

UNIT I - TRANSISTOR BIAS STABILITY

UNIT I - TRANSISTOR BIAS STABILITY UNIT I - TRANSISTOR BIAS STABILITY OBJECTIVE On the completion of this unit the student will understand NEED OF BIASING CONCEPTS OF LOAD LINE Q-POINT AND ITS STABILIZATION AND COMPENSATION DIFFERENT TYPES

More information

Analogue Electronic Systems

Analogue Electronic Systems Unit 47: Unit code Analogue Electronic Systems F/615/1515 Unit level 5 Credit value 15 Introduction Analogue electronic systems are still widely used for a variety of very important applications and this

More information

Field - Effect Transistor

Field - Effect Transistor Page 1 of 6 Field - Effect Transistor Aim :- To draw and study the out put and transfer characteristics of the given FET and to determine its parameters. Apparatus :- FET, two variable power supplies,

More information

Chapter 6: Field-Effect Transistors

Chapter 6: Field-Effect Transistors Chapter 6: Field-Effect Transistors FETs vs. BJTs Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage controlled devices. BJTs are current controlled devices.

More information

MTLE-6120: Advanced Electronic Properties of Materials. Semiconductor transistors for logic and memory. Reading: Kasap

MTLE-6120: Advanced Electronic Properties of Materials. Semiconductor transistors for logic and memory. Reading: Kasap MTLE-6120: Advanced Electronic Properties of Materials 1 Semiconductor transistors for logic and memory Reading: Kasap 6.6-6.8 Vacuum tube diodes 2 Thermionic emission from cathode Electrons collected

More information

Chapter 3 Bipolar Junction Transistors (BJT)

Chapter 3 Bipolar Junction Transistors (BJT) Chapter 3 Bipolar Junction Transistors (BJT) Transistors In analog circuits, transistors are used in amplifiers and linear regulated power supplies. In digital circuits they function as electrical switches,

More information

Three Terminal Devices

Three Terminal Devices Three Terminal Devices - field effect transistor (FET) - bipolar junction transistor (BJT) - foundation on which modern electronics is built - active devices - devices described completely by considering

More information

Microelectronic Circuits, Kyung Hee Univ. Spring, Chapter 3. Diodes

Microelectronic Circuits, Kyung Hee Univ. Spring, Chapter 3. Diodes Chapter 3. Diodes 1 Introduction IN THIS CHAPTER WE WILL LEARN the characteristics of the ideal diode and how to analyze and design circuits containing multiple ideal diodes together with resistors and

More information

Electronic Circuits - Tutorial 07 BJT transistor 1

Electronic Circuits - Tutorial 07 BJT transistor 1 Electronic Circuits - Tutorial 07 BJT transistor 1-1 / 20 - T & F # Question 1 A bipolar junction transistor has three terminals. T 2 For operation in the linear or active region, the base-emitter junction

More information

ECE 440 Lecture 29 : Introduction to the BJT-I Class Outline:

ECE 440 Lecture 29 : Introduction to the BJT-I Class Outline: ECE 440 Lecture 29 : Introduction to the BJT-I Class Outline: Narrow-Base Diode BJT Fundamentals BJT Amplification Things you should know when you leave Key Questions How does the narrow-base diode multiply

More information

Chapter 6 DIFFERENT TYPES OF LOGIC GATES

Chapter 6 DIFFERENT TYPES OF LOGIC GATES Chapter 6 DIFFERENT TYPES OF LOGIC GATES Lesson 3 RTL and DTL Gates Ch06L3-"Digital Principles and Design", Raj Kamal, Pearson Education, 2006 2 Outline Resistor transistor logic (RTL) RTL Circuit Characteristics

More information

Carleton University. Faculty of Engineering and Design, Department of Electronics. ELEC 2507 Electronic - I Summer Term 2017

Carleton University. Faculty of Engineering and Design, Department of Electronics. ELEC 2507 Electronic - I Summer Term 2017 Carleton University Faculty of Engineering and Design, Department of Electronics Instructors: ELEC 2507 Electronic - I Summer Term 2017 Name Section Office Email Prof. Q. J. Zhang Section A 4148 ME qjz@doe.carleton.ca

More information

ITT Technical Institute. ET215 Devices 1. Unit 6 Chapter 3, Sections

ITT Technical Institute. ET215 Devices 1. Unit 6 Chapter 3, Sections ITT Technical Institute ET215 Devices 1 Unit 6 Chapter 3, Sections 3.7-3.9 Chapter 3 Section 3.7 The Bipolar Transistor as a Switch Objectives: Explain how a transistor can be used as a switch 1. Compute

More information

Chapter 11 Output Stages

Chapter 11 Output Stages 1 Chapter 11 Output Stages Learning Objectives 2 1) The classification of amplifier output stages 2) Analysis and design of a variety of output-stage types 3) Overview of power amplifiers Introduction

More information

EE105 Fall 2014 Microelectronic Devices and Circuits. NPN Bipolar Junction Transistor (BJT)

EE105 Fall 2014 Microelectronic Devices and Circuits. NPN Bipolar Junction Transistor (BJT) EE105 Fall 2014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 utardja Dai Hall (DH) 1 NPN Bipolar Junction Transistor (BJT) Forward Bias Reverse Bias Hole Flow Electron

More information

The first transistor. (Courtesy Bell Telephone Laboratories.)

The first transistor. (Courtesy Bell Telephone Laboratories.) Fig. 3.1 The first transistor. (Courtesy Bell Telephone Laboratories.) Fig. 3.2 Types of transistors: (a) pnp; (b) npn. : (a) pnp; : (b) npn Fig. 3.3 Forward-biased junction of a pnp transistor. Fig. 3.4

More information

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 3 Field Effect Transistors Lecture-3 MOSFET UNDER

More information

Radio Frequency Electronics

Radio Frequency Electronics Radio Frequency Electronics Active Components II Harry Nyquist Born in 1889 in Sweden Received B.S. and M.S. from U. North Dakota Received Ph.D. from Yale Worked and Bell Laboratories for all of his career

More information