Microelectronic Circuits

Size: px
Start display at page:

Download "Microelectronic Circuits"

Transcription

1 SECOND EDITION ISHBWHBI \ ' -' Microelectronic Circuits Adel S. Sedra University of Toronto Kenneth С Smith University of Toronto HOLT, RINEHART AND WINSTON HOLT, RINEHART AND WINSTON, INC. New York Chicago San Francisco Philadelphia Montreal Toronto London Sydney Tokyo

2 Contents Preface xiii Chapter 1 ELECTRONIC SYSTEMS Chapter Information and Signals Frequency Spectrum of Signals '. 1.3 Analog and Digital Signals Amplification and Filtering Communications Computers Instrumentation and Control Concluding Remarks 16 Problems 17 LINEAR CIRCUITS Linear and Nonlinear One-Port Networks 2.2 Amplifiers Circuit Models for Amplifiers Frequency Response of Amplifiers Some Useful Network Theorems 49 18

3 vi CONTENTS Chapter Single-Time-Constant Networks Frequency Response of STC Networks Step Response of STC Networks Pulse Response of STC Networks Summary 76 Problems 77 OPERATIONAL AMPLIFIERS 86 Chapter The Op-Amp Terminals The Ideal Op Amp Analysis of Circuits Containing Ideal Op Amps The Inverting Configuration Other Applications of the Inverting Configuration The Noninverting Configuration Examples of Op-Amp Circuits Nonideal Performance of Op Amps Finite Open-Loop Gain and Bandwidth The Internal Structure of 1С Op Amps Large-Signal Operation of Op Amps Common-Mode Rejection Input and Output Resistances DC Problems Summary 139 Problems 141 DIODES The Ideal Diode Terminal Characteristics of Real Junction Diodes The Forward-Bias Region The Reverse-Bias Region The Breakdown Region and Zener Diodes Analysis of Diode Circuits Modeling the Diode Forward Characteristics The Small-Signal Model and Its Application Physical Operation of Diodes Basic Semiconductor Concepts The pn Junction Under Open-Circuit Conditions The pn Junction Under Reverse-Bias Conditions The pn Junction in the Breakdown Region The pn Junction Under Forward-Bias Conditions The Complete Small-Signal Model Summary 194 Problems 195

4 CONTENTS vii Chapter 5 NONLINEAR CIRCUIT APPLICATIONS 2СИ 5.1 Half-Wave Rectification Precision Half-Wave Rectifier The "Superdiode" Full-Wave Rectification Transformer Coupling of Rectifiers The Bridge Rectifier The Peak Rectifier The Clamped Capacitor or DC Restorer Limiters and Comparators Comparator and Limiter Circuits Comparator with Hysteresis The Bistable Circuit Waveform Generators Other Applications Summary 252 Problems 254 Chapter 6 JUNCTION FIELD-EFFECT TRANSISTORS (JFETs) Physical Operation Static Characteristics The p-channel JFET JFET Circuits at DC Graphical Analysis Biasing The JFET as an Amplifier The JFET Common-Source Amplifier The Source Follower Direct-Coupled and Multistage Amplifiers The JFET as a Switch Summary 317 Problems 319 Chapter 7 METAL-OXIDE-SEMICONDUCTOR FIELD-EFFECT TRANSISTORS (MOSFETs) The Depletion-Type MOSFET The Enhancement-Type MOSFET Biasing the Enhancement MOSFET in Discrete Circuits Small-Signal Operation of the Enhancement MOSFET Amplifier Basic Configurations of Single-Stage MOSFET Amplifiers 358

5 viii CONTENTS 7.6 Integrated-Circuit MOS Amplifiers An Overview NMOS Load Devices NMOS Amplifier with Enhancement Load NMOS Amplifier with Depletion Load The Current Mirror The CMOS Amplifier The Source Follower MOS Analog Switches Summary 388 Problems 389 Chapter 8 BIPOLAR JUNCTION TRANSISTORS (BJTs) Physical Structure and Modes of Operation Operation of the npn Transistor in the Active Mode The pnp Transistor Circuit Symbols and Conventions Graphical Representation of Transistor Characteristics DC Analysis of Transistor Circuits The Transistor as an Amplifier Biasing the BJT for Discrete-Circuit Design Classical Single-Stage Transistor Amplifiers The Emitter Follower The Transistor as a Switch Cut-off and Saturation Complete Static Characteristics and Graphical Analysis Summary 476 Problems 477 Chapter 9 DIFFERENTIAL AND MULTISTAGE AMPLIFIERS The BJT Differential Pair Small-Signal Operation of the BJT Differential Amplifier Other Nonideal Characteristics of the Differential Amplifier Biasing in BJT Integrated Circuits The BJT Differential Amplifier with Active Loads The JFET Differential Pair MOS Differential Amplifiers Multistage Amplifiers Summary 538 Problems 539

6 CONTENTS ix Chapter 10 OUTPUT STAGES AND POWER AMPLIFIERS Classification of Output Stages Class A Output Stage Class В Output Stage Class AB Output Stage Biasing the Class AB Circuit Power BJTs Variations on the Class AB Configuration С Power Amplifiers MOS Power Transistors Summary 593 Problems Chapter 11 FREQUENCY RESPONSE s-domain Analysis The Amplifier Transfer Function Frequency Response of the Common-Source Amplifier The Hybrid-я Equivalent Circuit Model Frequency Response of the Common-Emitter Amplifier The Common-Base and Cascode Configurations Frequency Response of the Emitter Follower The Common-Collector Common-Emitter Cascade Frequency Response of the Differential Amplifier The Differential Pair as a Wideband Amplifier The Common-Collector Common-Base Configuration Summary 661 Problems 663 Chapter 12 FEEDBACK The General Feedback Structure Some Properties of Negative Feedback The Four Basic Feedback Topologies Analysis of the Series-Shunt Feedback Amplifier Analysis of the Series-Series Feedback Amplifier Analysis of the Shunt-Shunt and the Shunt-Series Feedback Amplifiers 12.7 Determining the Loop Gain The Stability Problem

7 x CONTENTS 12.9 Effect of Feedback on the Amplifier Poles Stability Study Using Bode Plots Frequency Compensation Summary 735 Problems Chapter 13 ANALOG INTEGRATED CIRCUITS The 741 Op-Amp Circuit DC Analysis of the Small-Signal Analysis of the 741 Input Stage Small-Signal Analysis of the 741 Second Stage Analysis of the 741 Output Stage Gain and Frequency Response of the CMOS Op Amps Summary 778 Problems 780 Chapter 14 FILTERS, TUNED AMPLIFIERS AND OSCILLATORS Filter Technologies Second-Order Filter Functions Single-Amplifier Biquadratic Filters Sensitivity Multiple-Amplifier Biquadratic Filters Switched-Capacitor Filters Tuned Amplifiers Basic Principles of Sinusoidal Oscillators Op-Amp-RC Oscillator Circuits LC and Crystal Oscillators Summary 837 Problems 839 Chapter 15 MOS DIGITAL CIRCUITS Logic Circuits Some Basic Concepts NMOS Inverter with Enhancement Load NMOS Inverter with Depletion Load NMOS Logic Circuits The CMOS Inverter 869

8 CONTENTS xi 15.6 CMOS Gate Circuits Latches and Flip-Flops Multivibrator Circuits Summary 894 Problems 896 Chapter 16 BIPOLAR DIGITAL CIRCUITS The BJT as a Digital Circuit Element 902 Early Forms of BJT Digital Circuits 911 Transistor-Transistor Logic (TTL or T 2 L) 915 Characteristics of Standard TTL 928 TTL Families with Improved Performance 935 Emitter-Coupled Logic (ECL) 942 Summary 956 Problems 958 APPENDIXES follow page 962 A Integrated-Circuit Technology A-1 В Two-Port Network Parameters B-1 С Computer Aids for Electronic Circuit Design D Answers to Selected Problems D-1 C-1 Index 1-1

Index. Small-Signal Models, 14 saturation current, 3, 5 Transistor Cutoff Frequency, 18 transconductance, 16, 22 transit time, 10

Index. Small-Signal Models, 14 saturation current, 3, 5 Transistor Cutoff Frequency, 18 transconductance, 16, 22 transit time, 10 Index A absolute value, 308 additional pole, 271 analog multiplier, 190 B BiCMOS,107 Bode plot, 266 base-emitter voltage, 16, 50 base-emitter voltages, 296 bias current, 111, 124, 133, 137, 166, 185 bipolar

More information

Introductory Electronics for Scientists and Engineers

Introductory Electronics for Scientists and Engineers Introductory Electronics for Scientists and Engineers Second Edition ROBERT E. SIMPSON University of New Hampshire Allyn and Bacon, Inc. Boston London Sydney Toronto Contents Preface xiü 1 Direct Current

More information

Preface... iii. Chapter 1: Diodes and Circuits... 1

Preface... iii. Chapter 1: Diodes and Circuits... 1 Table of Contents Preface... iii Chapter 1: Diodes and Circuits... 1 1.1 Introduction... 1 1.2 Structure of an Atom... 2 1.3 Classification of Solid Materials on the Basis of Conductivity... 2 1.4 Atomic

More information

ELECTRONICS WITH DISCRETE COMPONENTS

ELECTRONICS WITH DISCRETE COMPONENTS ELECTRONICS WITH DISCRETE COMPONENTS Enrique J. Galvez Department of Physics and Astronomy Colgate University WILEY John Wiley & Sons, Inc. ^ CONTENTS Preface vii 1 The Basics 1 1.1 Foreword: Welcome to

More information

GOPALAN COLLEGE OF ENGINEERING AND MANAGEMENT Department of Electronics and Communication Engineering COURSE PLAN

GOPALAN COLLEGE OF ENGINEERING AND MANAGEMENT Department of Electronics and Communication Engineering COURSE PLAN Appendix - C GOPALAN COLLEGE OF ENGINEERING AND MANAGEMENT Department of Electronics and Communication Engineering Academic Year: 2016-17 Semester: EVEN COURSE PLAN Semester: VI Subject Code& Name: 10EC63

More information

Design of Analog CMOS Integrated Circuits

Design of Analog CMOS Integrated Circuits Design of Analog CMOS Integrated Circuits Behzad Razavi Professor of Electrical Engineering University of California, Los Angeles H Boston Burr Ridge, IL Dubuque, IA Madison, WI New York San Francisco

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC6202 ELECTRONIC DEVICES AND CIRCUITS

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC6202 ELECTRONIC DEVICES AND CIRCUITS DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC6202 ELECTRONIC DEVICES AND CIRCUITS UNIT-I - PN DIODEAND ITSAPPLICATIONS 1. What is depletion region in PN junction?

More information

Electronic Devices and Circuits

Electronic Devices and Circuits Electronic Devices and Circuits I.J. Nagrath Electronic Devices and Circuits I.J. NAGRATH Adjunct Professor Former Deputy Director Birla Institute of Technology & Science Pilani New Delhi-110001 2012 ELECTRONIC

More information

OBJECTIVE TYPE QUESTIONS

OBJECTIVE TYPE QUESTIONS OBJECTIVE TYPE QUESTIONS Q.1 The breakdown mechanism in a lightly doped p-n junction under reverse biased condition is called (A) avalanche breakdown. (B) zener breakdown. (C) breakdown by tunnelling.

More information

Chapter 1 Semiconductors and the p-n Junction Diode 1

Chapter 1 Semiconductors and the p-n Junction Diode 1 Preface xiv Chapter 1 Semiconductors and the p-n Junction Diode 1 1-1 Semiconductors 2 1-2 Impure Semiconductors 5 1-3 Conduction Processes in Semiconductors 7 1-4 Thep-nJunction 9' 1-5 The Meta1-Semiconductor

More information

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS Fourth Edition PAUL R. GRAY University of California, Berkeley PAUL J. HURST University of California, Davis STEPHEN H. LEWIS University of California,

More information

ELECTRONIC CIRCUITS. Time: Three Hours Maximum Marks: 100

ELECTRONIC CIRCUITS. Time: Three Hours Maximum Marks: 100 EC 40 MODEL TEST PAPER - 1 ELECTRONIC CIRCUITS Time: Three Hours Maximum Marks: 100 Answer five questions, taking ANY TWO from Group A, any two from Group B and all from Group C. All parts of a question

More information

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS Fourth Edition PAUL R. GRAY University of California, Berkeley PAUL J. HURST University of California, Davis STEPHEN H. LEWIS University of California,

More information

UNIT I PN JUNCTION DEVICES

UNIT I PN JUNCTION DEVICES UNIT I PN JUNCTION DEVICES 1. Define Semiconductor. 2. Classify Semiconductors. 3. Define Hole Current. 4. Define Knee voltage of a Diode. 5. What is Peak Inverse Voltage? 6. Define Depletion Region in

More information

EE301 Electronics I , Fall

EE301 Electronics I , Fall EE301 Electronics I 2018-2019, Fall 1. Introduction to Microelectronics (1 Week/3 Hrs.) Introduction, Historical Background, Basic Consepts 2. Rewiev of Semiconductors (1 Week/3 Hrs.) Semiconductor materials

More information

Chapter 8. Chapter 9. Chapter 6. Chapter 10. Chapter 11. Chapter 7

Chapter 8. Chapter 9. Chapter 6. Chapter 10. Chapter 11. Chapter 7 5.5 Series and Parallel Combinations of 246 Complex Impedances 5.6 Steady-State AC Node-Voltage 247 Analysis 5.7 AC Power Calculations 256 5.8 Using Power Triangles 258 5.9 Power-Factor Correction 261

More information

Lesson Plan. Electronics 1-Total 51 Hours

Lesson Plan. Electronics 1-Total 51 Hours Lesson Plan. Electronics 1-Total 5s Unit I: Electrical Engineering materials:(10) Crystal structure & defects; Ceramic materials-structures, composites, processing and uses; Insulating laminates for electronics,

More information

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) 4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) The Metal Oxide Semitonductor Field Effect Transistor (MOSFET) has two modes of operation, the depletion mode, and the enhancement mode.

More information

BJT Amplifier. Superposition principle (linear amplifier)

BJT Amplifier. Superposition principle (linear amplifier) BJT Amplifier Two types analysis DC analysis Applied DC voltage source AC analysis Time varying signal source Superposition principle (linear amplifier) The response of a linear amplifier circuit excited

More information

VALLIAMMAI ENGINEERING COLLEGE SRM NAGAR, KATTANKULATHUR- 603 203 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6202- ELECTRONIC DEVICES AND CIRCUITS UNIT I PN JUNCTION DEVICES 1. Define Semiconductor.

More information

SYLLABUS OSMANIA UNIVERSITY (HYDERABAD)

SYLLABUS OSMANIA UNIVERSITY (HYDERABAD) UNIT - 1 i SYLLABUS OSMANIA UNIVERSITY (HYDERABAD) JUNCTION DIODE Different Types of PN Junction Formation Techniques, PN Junction Characteristics, Biasing, Band Diagrams and Current Flow, Diode Current

More information

Preface... Chapter 1. Nonlinear Two-terminal Devices... 1

Preface... Chapter 1. Nonlinear Two-terminal Devices... 1 Preface........................................... xi Chapter 1. Nonlinear Two-terminal Devices.................... 1 1.1. Introduction..................................... 1 1.2. Example of a nonlinear

More information

PREFACE xvii PRACTICAL TRANSISTOR CIRCUIT THEORY 1.1 Iterated Circuits 1.2 Symbols 1.3 Feedback 1.4 The Miller Effect 1.5 Transistors 1.6 The transistor gain-impedance relation 1.7 Ohm's law and dc current-voltage

More information

Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc. Feedback 1 Figure 8.1 General structure of the feedback amplifier. This is a signal-flow diagram, and the quantities x represent either voltage or current signals. 2 Figure E8.1 3 Figure 8.2 Illustrating

More information

Transistor Digital Circuits

Transistor Digital Circuits Recapitulation Transistor Digital Circuits The transistor Operating principle and regions Utilization of the transistor Transfer characteristics, symbols Controlled switch model BJT digital circuits MOSFET

More information

ET475 Electronic Circuit Design I [Onsite]

ET475 Electronic Circuit Design I [Onsite] ET475 Electronic Circuit Design I [Onsite] Course Description: This course covers the analysis and design of electronic circuits, and includes a laboratory that utilizes computer-aided software tools for

More information

FREQUENTLY ASKED QUESTIONS

FREQUENTLY ASKED QUESTIONS FREQUENTLY ASKED QUESTIONS UNIT-1 SUBJECT : ELECTRONIC DEVICES AND CIRCUITS SUBJECT CODE : EC6202 BRANCH: EEE PART -A 1. What is meant by diffusion current in a semi conductor? (APR/MAY 2010, 2011, NOV/DEC

More information

Electronics I Circuit Drawings. Robert R. Krchnavek Rowan University Spring, 2018

Electronics I Circuit Drawings. Robert R. Krchnavek Rowan University Spring, 2018 Electronics I Circuit Drawings Robert R. Krchnavek Rowan University Spring, 2018 Ideal Diode Piecewise Linear Models of a Diode Piecewise Linear Models of a Diode 1 r d Piecewise Linear Models of a Diode

More information

21/10/58. M2-3 Signal Generators. Bill Hewlett and Dave Packard s 1 st product (1939) US patent No HP 200A s schematic

21/10/58. M2-3 Signal Generators. Bill Hewlett and Dave Packard s 1 st product (1939) US patent No HP 200A s schematic M2-3 Signal Generators Bill Hewlett and Dave Packard s 1 st product (1939) US patent No.2267782 1 HP 200A s schematic 2 1 The basic structure of a sinusoidal oscillator. A positive feedback loop is formed

More information

Analogue Electronic Systems

Analogue Electronic Systems Unit 47: Unit code Analogue Electronic Systems F/615/1515 Unit level 5 Credit value 15 Introduction Analogue electronic systems are still widely used for a variety of very important applications and this

More information

UNIT I Introduction to DC & AC circuits

UNIT I Introduction to DC & AC circuits SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code: Basic Electrical and Electronics Engineering (16EE207) Year & Sem: II-B.

More information

GATE: Electronics MCQs (Practice Test 1 of 13)

GATE: Electronics MCQs (Practice Test 1 of 13) GATE: Electronics MCQs (Practice Test 1 of 13) 1. Removing bypass capacitor across the emitter leg resistor in a CE amplifier causes a. increase in current gain b. decrease in current gain c. increase

More information

Downloaded from Downloaded from

Downloaded from  Downloaded from IV SEMESTER FINAL EXAMINATION-2002 The figure in the margin indicates full marks. [i] (110111) 2 = (?) 16 [ii] (788) 10 = (?) 8 Q. [1] [a] Explain the types of extrinsic semiconductors with the help of

More information

COURSE SCHEDULE SECTION. A (Room No: TP 301) B (Room No: TP 302) Hours Timings Hours Timings. Name of the staff Sec Office Office Hours Mail ID

COURSE SCHEDULE SECTION. A (Room No: TP 301) B (Room No: TP 302) Hours Timings Hours Timings. Name of the staff Sec Office Office Hours Mail ID SRM UNIVERSITY FACULTY OF ENGINEERING AND TECHNOLOGY SCHOOL OF ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT OF ECE COURSE PLAN Course Code : IT0201 Course Title : Electron Devices and Circuits

More information

BE Assignment. (1) Explain Active component and Passive component in Detail. (1) Explain practical voltage source and ideal voltage source.

BE Assignment. (1) Explain Active component and Passive component in Detail. (1) Explain practical voltage source and ideal voltage source. BE Assignment chapter-1 (1) Explain Active component and Passive component in Detail. (1) Explain practical voltage source and ideal voltage source. (2) Explain practical current source and ideal current

More information

UPSC Electrical Engineering Syllabus

UPSC Electrical Engineering Syllabus UPSC Electrical Engineering Syllabus UPSC Electrical Engineering Syllabus PAPER I 1. Circuit Theory: Circuit components; network graphs; KCL, KVL; circuit analysis methods: nodal analysis, mesh analysis;

More information

Carleton University. Faculty of Engineering and Design, Department of Electronics. ELEC 2507 Electronic - I Summer Term 2017

Carleton University. Faculty of Engineering and Design, Department of Electronics. ELEC 2507 Electronic - I Summer Term 2017 Carleton University Faculty of Engineering and Design, Department of Electronics Instructors: ELEC 2507 Electronic - I Summer Term 2017 Name Section Office Email Prof. Q. J. Zhang Section A 4148 ME qjz@doe.carleton.ca

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE) PART - A

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE) PART - A SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code: Basic Electrical and Electronics Engineering (16EE207) Year & Sem: II-B.

More information

PART-A UNIT I Introduction to DC & AC circuits

PART-A UNIT I Introduction to DC & AC circuits SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Basic Electrical and Electronics Engineering (16EE207)

More information

multivibrator; Introduction to silicon-controlled rectifiers (SCRs).

multivibrator; Introduction to silicon-controlled rectifiers (SCRs). Appendix The experiments of which details are given in this book are based largely on a set of 'modules' specially designed by Dr. K.J. Close. These 'modules' are now made and marketed by Irwin-Desman

More information

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. ELECTRONIC PRINCIPLES AND APPLICATIONS

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. ELECTRONIC PRINCIPLES AND APPLICATIONS R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. DEPARTMENT OF PHYSICS QUESTION BANK FOR SEMESTER V PHYSICS PAPER VI (A) ELECTRONIC PRINCIPLES AND APPLICATIONS UNIT I: SEMICONDUCTOR DEVICES

More information

DC/AC CIRCUITS: CONVENTIONAL FLOW TEXTBOOKS

DC/AC CIRCUITS: CONVENTIONAL FLOW TEXTBOOKS 4 PEARSON CUSTOM ELECTRONICS TECHNOLOGY DC/AC CIRCUITS: CONVENTIONAL FLOW TEXTBOOKS AVAILABLE MARCH 2009 Boylestad Introductory Circuit Analysis, 11/e, 0-13-173044-4 Introduction 32 LC4501 Voltage and

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) WINTER 16 EXAMINATION Model Answer Subject Code: 17213 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2)

More information

Signal Generators and Waveform-Shaping Circuits

Signal Generators and Waveform-Shaping Circuits CHAPTER 18 Signal Generators and Waveform-Shaping Circuits Figure 18.1 The basic structure of a sinusoidal oscillator. A positive-feedback loop is formed by an amplifier and a frequency-selective network.

More information

Devices and Op-Amps p. 1 Introduction to Diodes p. 3 Introduction to Diodes p. 4 Inside the Diode p. 6 Three Diode Models p. 10 Computer Circuit

Devices and Op-Amps p. 1 Introduction to Diodes p. 3 Introduction to Diodes p. 4 Inside the Diode p. 6 Three Diode Models p. 10 Computer Circuit Contents p. v Preface p. ix Devices and Op-Amps p. 1 Introduction to Diodes p. 3 Introduction to Diodes p. 4 Inside the Diode p. 6 Three Diode Models p. 10 Computer Circuit Analysis p. 16 MultiSIM Lab

More information

Analog Filter and. Circuit Design Handbook. Arthur B. Williams. Singapore Sydney Toronto. Mc Graw Hill Education

Analog Filter and. Circuit Design Handbook. Arthur B. Williams. Singapore Sydney Toronto. Mc Graw Hill Education Analog Filter and Circuit Design Handbook Arthur B. Williams Mc Graw Hill Education New York Chicago San Francisco Athens London Madrid Mexico City Milan New Delhi Singapore Sydney Toronto Contents Preface

More information

Fundamentals of Power Electronics

Fundamentals of Power Electronics Fundamentals of Power Electronics SECOND EDITION Robert W. Erickson Dragan Maksimovic University of Colorado Boulder, Colorado Preface 1 Introduction 1 1.1 Introduction to Power Processing 1 1.2 Several

More information

Gechstudentszone.wordpress.com

Gechstudentszone.wordpress.com UNIT 4: Small Signal Analysis of Amplifiers 4.1 Basic FET Amplifiers In the last chapter, we described the operation of the FET, in particular the MOSFET, and analyzed and designed the dc response of circuits

More information

1 FUNDAMENTAL CONCEPTS What is Noise Coupling 1

1 FUNDAMENTAL CONCEPTS What is Noise Coupling 1 Contents 1 FUNDAMENTAL CONCEPTS 1 1.1 What is Noise Coupling 1 1.2 Resistance 3 1.2.1 Resistivity and Resistance 3 1.2.2 Wire Resistance 4 1.2.3 Sheet Resistance 5 1.2.4 Skin Effect 6 1.2.5 Resistance

More information

Chapter 13 Oscillators and Data Converters

Chapter 13 Oscillators and Data Converters Chapter 13 Oscillators and Data Converters 13.1 General Considerations 13.2 Ring Oscillators 13.3 LC Oscillators 13.4 Phase Shift Oscillator 13.5 Wien-Bridge Oscillator 13.6 Crystal Oscillators 13.7 Chapter

More information

PESIT - BANGALORE SOUTH CAMPUS PART A

PESIT - BANGALORE SOUTH CAMPUS PART A PESIT - BANGALORE SOUTH CAMPUS LESSON - PLAN FOR BASIC ELECTRONICS ENGG. Name of Faculty: Percentage of course Periods Reference/ Text books Topics covered Reference chapter covered Cumulative PART A Unit

More information

EC202- ELECTRONIC CIRCUITS II Unit- I -FEEEDBACK AMPLIFIER

EC202- ELECTRONIC CIRCUITS II Unit- I -FEEEDBACK AMPLIFIER EC202- ELECTRONIC CIRCUITS II Unit- I -FEEEDBACK AMPLIFIER 1. What is feedback? What are the types of feedback? 2. Define positive feedback. What are its merits and demerits? 3. Define negative feedback.

More information

1 Signals and systems, A. V. Oppenhaim, A. S. Willsky, Prentice Hall, 2 nd edition, FUNDAMENTALS. Electrical Engineering. 2.

1 Signals and systems, A. V. Oppenhaim, A. S. Willsky, Prentice Hall, 2 nd edition, FUNDAMENTALS. Electrical Engineering. 2. 1 Signals and systems, A. V. Oppenhaim, A. S. Willsky, Prentice Hall, 2 nd edition, 1996. FUNDAMENTALS Electrical Engineering 2.Processing - Analog data An analog signal is a signal that varies continuously.

More information

UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A

UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A 1. Why do we choose Q point at the center of the load line? 2. Name the two techniques used in the stability of the q point.explain. 3. Give the expression

More information

UNIVERSITY OF NAIROBI COLLEGE OF BIOLOGICAL AND PHYSICAL SCIENCES FACULTY OF SCIENCE SPH 307 INTRODUCTORY ELECTRONICS

UNIVERSITY OF NAIROBI COLLEGE OF BIOLOGICAL AND PHYSICAL SCIENCES FACULTY OF SCIENCE SPH 307 INTRODUCTORY ELECTRONICS UNIVERSITY OF NAIROBI COLLEGE OF BIOLOGICAL AND PHYSICAL SCIENCES FACULTY OF SCIENCE SPH 307 INTRODUCTORY ELECTRONICS Dr. Kenneth A. Kaduki Department of Physics University of Nairobi Reviewer: Prof. Bernard

More information

visit website regularly for updates and announcements

visit website regularly for updates and announcements ESE 372: Electronics Spring 2013 Web site: www.ece.sunysb.edu/~oe/leon.html visit website regularly for updates and announcements Prerequisite: ESE 271 Corequisites: ESE 211 Text Books: A.S. Sedra, K.C.

More information

S.E. Sem. III [ETRX] Control System Engineering SYLLABUS

S.E. Sem. III [ETRX] Control System Engineering SYLLABUS Oral : 25 Marks Control System Engineering 1. Introduction to control system analysis Introduction, examples of control systems, open loop control systems, closed loop control systems, Transfer function.

More information

Device Technologies. Yau - 1

Device Technologies. Yau - 1 Device Technologies Yau - 1 Objectives After studying the material in this chapter, you will be able to: 1. Identify differences between analog and digital devices and passive and active components. Explain

More information

55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point.

55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point. Exam 3 Name: Score /65 Question 1 Unless stated otherwise, each question below is 1 point. 1. An engineer designs a class-ab amplifier to deliver 2 W (sinusoidal) signal power to an resistive load. Ignoring

More information

EE : ELECTRICAL ENGINEERING Module 8 : Analog and Digital Electronics INDEX

EE : ELECTRICAL ENGINEERING Module 8 : Analog and Digital Electronics INDEX Pearl Centre, S.B. Marg, Dadar (W), Mumbai 400 028. Tel. 4232 4232 EE : ELECTRICAL ENGINEERING Module 8 : Analog and Digital Electronics Contents INDEX Sub Topics 1. Characteristics of Diodes, BJT & FET

More information

LECTURE NOTES ELECTRONIC CIRCUITS II SYLLABUS

LECTURE NOTES ELECTRONIC CIRCUITS II SYLLABUS FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Madurai Sivagangai Main Road Madurai - 625 020. [An ISO 9001:2008 Certified Institution] LECTURE NOTES EC6401 ELECTRONIC CIRCUITS - II SEMESTER: IV /

More information

EC8351-ELECTRON DEVICES AND CIRCUITS TWO MARK QUESTIONS AND ANSWERS UNIT-I PN JUNCTION DEVICES

EC8351-ELECTRON DEVICES AND CIRCUITS TWO MARK QUESTIONS AND ANSWERS UNIT-I PN JUNCTION DEVICES TWO MARK QUESTIONS AND ANSWERS UNIT-I PN JUNCTION DEVICES 1) Define semiconductor. Semiconductor is a substance, which has resistivity in between Conductors and insulators. Eg. Germanium, Silicon. 2) Define

More information

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET) Difference between BJTs and FETs Transistors can be categorized according to their structure, and two of the more commonly known transistor structures, are the BJT and FET. The comparison between BJTs

More information

Code No: Y0221/R07 Set No. 1 I B.Tech Supplementary Examinations, Apr/May 2013 BASIC ELECTRONIC DEVICES AND CIRCUITS (Electrical & Electronics Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions

More information

Analog Electronic Circuits Lab-manual

Analog Electronic Circuits Lab-manual 2014 Analog Electronic Circuits Lab-manual Prof. Dr Tahir Izhar University of Engineering & Technology LAHORE 1/09/2014 Contents Experiment-1:...4 Learning to use the multimeter for checking and indentifying

More information

Q1. Explain the Astable Operation of multivibrator using 555 Timer IC.

Q1. Explain the Astable Operation of multivibrator using 555 Timer IC. Q1. Explain the Astable Operation of multivibrator using 555 Timer I. Answer: The following figure shows the 555 Timer connected for astable operation. A V PIN 8 PIN 7 B 5K PIN6 - S Q 5K PIN2 - Q PIN3

More information

SETH JAI PARKASH POLYTECHNIC, DAMLA

SETH JAI PARKASH POLYTECHNIC, DAMLA SETH JAI PARKASH POLYTECHNIC, DAMLA NAME OF FACULTY----------SANDEEP SHARMA DISCIPLINE---------------------- E.C.E (S.F) SEMESTER-------------------------2 ND SUBJECT----------------------------BASIC ELECTRONICS

More information

R a) Explain the operation of RC high-pass circuit when exponential input is applied.

R a) Explain the operation of RC high-pass circuit when exponential input is applied. SET - 1 1. a) Explain the operation of RC high-pass circuit when exponential input is applied. 2x V ( e 1) V b) Verify V2 = = tanhx for a symmetrical square wave applied to a RC low 2x 2 ( e + 2 pass circuit.

More information

PESIT BANGALORE SOUTH CAMPUS BASIC ELECTRONICS

PESIT BANGALORE SOUTH CAMPUS BASIC ELECTRONICS PESIT BANGALORE SOUTH CAMPUS QUESTION BANK BASIC ELECTRONICS Sub Code: 17ELN15 / 17ELN25 IA Marks: 20 Hrs/ Week: 04 Exam Marks: 80 Total Hours: 50 Exam Hours: 03 Name of Faculty: Mr. Udoshi Basavaraj Module

More information

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press UNIT-1 Bipolar Junction Transistors Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press Figure 6.1 A simplified structure of the npn transistor. Microelectronic Circuits, Sixth

More information

Unit III FET and its Applications. 2 Marks Questions and Answers

Unit III FET and its Applications. 2 Marks Questions and Answers Unit III FET and its Applications 2 Marks Questions and Answers 1. Why do you call FET as field effect transistor? The name field effect is derived from the fact that the current is controlled by an electric

More information

BJT Circuits (MCQs of Moderate Complexity)

BJT Circuits (MCQs of Moderate Complexity) BJT Circuits (MCQs of Moderate Complexity) 1. The current ib through base of a silicon npn transistor is 1+0.1 cos (1000πt) ma. At 300K, the rπ in the small signal model of the transistor is i b B C r

More information

WINTER 14 EXAMINATION. Model Answer. 1) The answers should be examined by key words and not as word-to-word as given in the

WINTER 14 EXAMINATION. Model Answer. 1) The answers should be examined by key words and not as word-to-word as given in the WINTER 14 EXAMINATION Subject Code: 17213 Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2)

More information

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY)

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY) SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY) QUESTION BANK I YEAR B.Tech (II Semester) ELECTRONIC DEVICES (COMMON FOR EC102, EE104, IC108, BM106) UNIT-I PART-A 1. What are intrinsic and

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION 1.1 Historical Background Recent advances in Very Large Scale Integration (VLSI) technologies have made possible the realization of complete systems on a single chip. Since complete

More information

SAMPLE FINAL EXAMINATION FALL TERM

SAMPLE FINAL EXAMINATION FALL TERM ENGINEERING SCIENCES 154 ELECTRONIC DEVICES AND CIRCUITS SAMPLE FINAL EXAMINATION FALL TERM 2001-2002 NAME Some Possible Solutions a. Please answer all of the questions in the spaces provided. If you need

More information

Integrated Circuit Design for High-Speed Frequency Synthesis

Integrated Circuit Design for High-Speed Frequency Synthesis Integrated Circuit Design for High-Speed Frequency Synthesis John Rogers Calvin Plett Foster Dai ARTECH H O US E BOSTON LONDON artechhouse.com Preface XI CHAPTER 1 Introduction 1 1.1 Introduction to Frequency

More information

Linear electronic. Lecture No. 1

Linear electronic. Lecture No. 1 1 Lecture No. 1 2 3 4 5 Lecture No. 2 6 7 8 9 10 11 Lecture No. 3 12 13 14 Lecture No. 4 Example: find Frequency response analysis for the circuit shown in figure below. Where R S =4kR B1 =8kR B2 =4k R

More information

SET - 1 1. a) Write the application of attenuator b) State the clamping theorem c) Write the application of Monostable multi vibrator d) Draw the diagram for Diode two input AND gate e) Define the terms

More information

Multivibrators. Department of Electrical & Electronics Engineering, Amrita School of Engineering

Multivibrators. Department of Electrical & Electronics Engineering, Amrita School of Engineering Multivibrators Multivibrators Multivibrator is an electronic circuit that generates square, rectangular, pulse waveforms. Also called as nonlinear oscillators or function generators. Multivibrator is basically

More information

F.Y. Diploma : Sem. II [CO/CD/CM/CW/IF] Basic Electronics

F.Y. Diploma : Sem. II [CO/CD/CM/CW/IF] Basic Electronics F.Y. Diploma : Sem. II [CO/CD/CM/CW/IF] Basic Electronics Time : 3 Hrs.] Prelim Question Paper Solutions [Marks : 100 Q.1 Attempt any TEN of the following : [20] Q.1(a) Give the classification of capacitor.

More information

ES 330 Electronics II Fall 2016

ES 330 Electronics II Fall 2016 ES 330 Electronics II Fall 2016 Sect Lectures Location Instructor Office Office Hours Email Tel 001 001 9:00 am to 9:50 am Wednesday 10:00 am to 10 :50 am 2001 2001 Dr. Donald Estreich Dr. Donald Estreich

More information

Electronics Lab. (EE21338)

Electronics Lab. (EE21338) Princess Sumaya University for Technology The King Abdullah II School for Engineering Electrical Engineering Department Electronics Lab. (EE21338) Prepared By: Eng. Eyad Al-Kouz October, 2012 Table of

More information

ENE/EIE 211 : Electronic Devices and Circuit Design II Lecture 1: Introduction

ENE/EIE 211 : Electronic Devices and Circuit Design II Lecture 1: Introduction ENE/EIE 211 : Electronic Devices and Circuit Design II Lecture 1: Introduction 1/14/2018 1 Course Name: ENE/EIE 211 Electronic Devices and Circuit Design II Credits: 3 Prerequisite: ENE/EIE 210 Electronic

More information

Unit- I- Biasing Of Discrete BJT and MOSFET

Unit- I- Biasing Of Discrete BJT and MOSFET Part- A QUESTIONS: Unit- I- Biasing Of Discrete BJT and MOSFET 1. Describe about BJT? BJT consists of 2 PN junctions. It has three terminals: emitter, base and collector. Transistor can be operated in

More information

Lecture 3: Transistors

Lecture 3: Transistors Lecture 3: Transistors Now that we know about diodes, let s put two of them together, as follows: collector base emitter n p n moderately doped lightly doped, and very thin heavily doped At first glance,

More information

ELT 215 Operational Amplifiers (LECTURE) Chapter 5

ELT 215 Operational Amplifiers (LECTURE) Chapter 5 CHAPTER 5 Nonlinear Signal Processing Circuits INTRODUCTION ELT 215 Operational Amplifiers (LECTURE) In this chapter, we shall present several nonlinear circuits using op-amps, which include those situations

More information

Effect of Current Feedback Operational Amplifiers using BJT and CMOS

Effect of Current Feedback Operational Amplifiers using BJT and CMOS Effect of Current Feedback Operational Amplifiers using BJT and CMOS 1 Ravi Khemchandani ; 2 Ashish Nipane Singh & 3 Hitesh Khanna Research Scholar in Dronacharya College of Engineering Gurgaon Abstract

More information

Pg: 1 VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 Department of Electronics & Communication Engineering Regulation: 2013 Acadamic Year : 2015 2016 EC6304 Electronic Circuits I Question

More information

TRANSISTOR TRANSISTOR

TRANSISTOR TRANSISTOR It is made up of semiconductor material such as Si and Ge. Usually, it comprises of three terminals namely, base, emitter and collector for providing connection to the external circuit. Today, some transistors

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05010204 Set No. 1 I B.Tech Supplimentary Examinations, Aug/Sep 2007 ELECTRONIC DEVICES AND CIRCUITS ( Common to Electrical & Electronic Engineering, Electronics & Communication Engineering,

More information

DEGREE: BACHELOR IN INDUSTRIAL ELECTRONICS AND AUTOMATION YEAR: 2ND TERM: 2ND

DEGREE: BACHELOR IN INDUSTRIAL ELECTRONICS AND AUTOMATION YEAR: 2ND TERM: 2ND SESSION WEEK COURSE: ELECTRONICS ENGINEERING FUNDAMENTALS DEGREE: BACHELOR IN INDUSTRIAL ELECTRONICS AND AUTOMATION YEAR: 2ND TERM: 2ND The course has 29 sessions distributed during 15 weeks. The duration

More information

POWER ELECTRONICS. Converters, Applications, and Design. NED MOHAN Department of Electrical Engineering University of Minnesota Minneapolis, Minnesota

POWER ELECTRONICS. Converters, Applications, and Design. NED MOHAN Department of Electrical Engineering University of Minnesota Minneapolis, Minnesota POWER ELECTRONICS Converters, Applications, and Design THIRD EDITION NED MOHAN Department of Electrical Engineering University of Minnesota Minneapolis, Minnesota TORE M. UNDELAND Department of Electrical

More information

ANALOG INTEGRATED CIRCUITS FOR COMMUNICATION Principles, Simulation and Design

ANALOG INTEGRATED CIRCUITS FOR COMMUNICATION Principles, Simulation and Design ANALOG INTEGRATED CIRCUITS FOR COMMUNICATION Principles, Simulation and Design ANALOG INTEGRATED CIRCUITS FOR COMMUNICATION Principles, Simulation and Design by Donald 0. Pederson University of California

More information

R & D Electronics DIGITAL IC TRAINER. Model : DE-150. Feature: Object: Specification:

R & D Electronics DIGITAL IC TRAINER. Model : DE-150. Feature: Object: Specification: DIGITAL IC TRAINER Model : DE-150 Object: To Study the Operation of Digital Logic ICs TTL and CMOS. To Study the All Gates, Flip-Flops, Counters etc. To Study the both the basic and advance digital electronics

More information

Lesson Plan. Week Theory Practical Lecture Day. Topic (including assignment / test) Day. Thevenin s theorem, Norton s theorem

Lesson Plan. Week Theory Practical Lecture Day. Topic (including assignment / test) Day. Thevenin s theorem, Norton s theorem Name of the faculty: GYANENDRA KUMAR YADAV Discipline: APPLIED SCIENCE(C.S.E,E.E.ECE) Year : 1st Subject: FEEE Lesson Plan Lesson Plan Duration: 31 weeks (from July, 2018 to April, 2019) Week Theory Practical

More information

State the application of negative feedback and positive feedback (one in each case)

State the application of negative feedback and positive feedback (one in each case) (ISO/IEC - 700-005 Certified) Subject Code: 073 Model wer Page No: / N Important Instructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer

More information

EC6202-ELECTRONIC DEVICES AND CIRCUITS YEAR/SEM: II/III UNIT 1 TWO MARKS. 1. Define diffusion current.

EC6202-ELECTRONIC DEVICES AND CIRCUITS YEAR/SEM: II/III UNIT 1 TWO MARKS. 1. Define diffusion current. EC6202-ELECTRONIC DEVICES AND CIRCUITS YEAR/SEM: II/III UNIT 1 TWO MARKS 1. Define diffusion current. A movement of charge carriers due to the concentration gradient in a semiconductor is called process

More information

S-[F] NPW-02 June All Syllabus B.Sc. [Electronics] Ist Year Semester-I & II.doc - 1 -

S-[F] NPW-02 June All Syllabus B.Sc. [Electronics] Ist Year Semester-I & II.doc - 1 - - 1 - - 2 - - 3 - DR. BABASAHEB AMBEDKAR MARATHWADA UNIVERSITY, AURANGABAD SYLLABUS of B.Sc. FIRST & SECOND SEMESTER [ELECTRONICS (OPTIONAL)] {Effective from June- 2013 onwards} - 4 - B.Sc. Electronics

More information