JFET Application Current Source

Size: px
Start display at page:

Download "JFET Application Current Source"

Transcription

1 MOSFET Op mps, 5 Imperfections Opamp applications Daylight sags cknowledgements: on oscoe, Neamen, Donald: Microelectronics Circuit nalysis and Design, rd Edition JFET pplication Current Source Household application: battery charger (car, laptop, mp players) Differential amplifier current source amp waeform generator High Speed D conerter usg capacitors Simple circuit: N559 Nchannel JFET I DSS current with GS 0 P pchoff oltage i GS D I DSS P N Sprg 08 i D 0 Quiz Design Question Design a circuit such that when a momentary push button switch is closed, switched 9 will be supplied to your design under test for exactly two mutes. You hae aailable a N000 (n channel MOSFET) and a ZP0 which is a pchannel complement to the N000. You hae a 00uf capacitor that is exactly 00uf with negligible leakage current. ased on measurements, your N000 has a GS (th).0 olts and the ZP0 has a GS (th).0. The 9 battery is a constant 9 durg the test. ln(.).098 ln(.).50 ln(.).9 [one or more of these constants may be required for your design]

2 Opmps ctie deice: 0 a( ); note that it is the difference of the put oltage! aopen loop ga ~ Most applications use negatie feedback. Comparator: no feedback ctie deice requires power. No shown for simplicity. Classics opamps:, 5 ~ $0.0; one, two or four a package. Newer opamps operate at <. (OP9.8) o LF5 Opmp Packagg LM 5 5 JFET Input Opamp JFET Differential Pair Small Signal Model.0 Sprg 08 8

3 Circuit Discrete transistors, resistors, capacitor, diode 9 0 Discrete Differential (Emitter Coupled) Pair JT Diff Pair Small Signal Model.0 Sprg 08

4 Differential Pair Common Mode oltage Differential Pair Differential Mode oltage Small Signal Model.0 Sprg 08.0 Sprg 08 MOSFET Differential Pair irtual Node nalysis Small Signal Model a( ) a ga β feedback or loop function a If a>> and a>> β then ~ Current to put termals zero by design x β x β x β aβ a ( a β ) a x β! $! aβ $ x # &# & " aβ % " aβ % Typical alues: a~00,000 & a β >> ok for aa(s) and β β(s) as long as a(s) β(s) >> β is the loop transfer function (not to be confused of β of a JT) a β is the loop ga.0 Sprg Sprg 08 Lecture

5 Op mps irtual Node With negatie feedback, put will drie the put oltage difference to zero > Input current 0 enefits of Feedback Stabilize ga agast deice ariations, temperature, agg Input and put impedances adjusted by (aβ) educe distortion by the feedback factor [(aβ)] Ga determed by passie components Op mp Max atgs common mode oltage appears at both puts Need cc, ee for operation Disadantages of Feedback Loss of ga; need more stages Greater tendency for stability (oscillations) Idiot proof a x aβ aβ 8 Electrical Characteristics LF5 lmost zero not rail to rail.0 Sprg 08 Lecture 9 0

6 LM ail to ail Output ail to ail Input Decibel (d) Open Loop Frequency Ga o d 0 log i Po d 0 log Pi log 0 ().0 00 d 00, d 0,000 0 d pot half power pot 0 d, d 00 0

7 s NonInertg mplifer 5 5 β (not to be confused with β of a JT) for fite Zero put current; therefore.0 Sprg 08 5 so or β β but ; 5 s 5 Open Loop Frequency Ga Examples at Hz, 000 Hz, and 0kHz oltage ga 0d 00; 00kΩ, kω; [0 0.d!] β0.0 t Hz, ol 00 d x , d 5 β t 000 Hz, ol 0 d d β t 0 khz, ol d. x d β.0.. β is the loop transfer function aβ is the loop ga s 5 Comparison So Why JT Opamps? 5 Input deice JT JFET Input bias current 0.5u 0.000u Input resistance 0. MΩ 0 MΩ Slew rate* 0.5 /µs.5 /µs Ga andwidth product Mhz 5 Mhz Output short circuit duration contuous contuous JTs hae higher transconductance (ga), better consistency spec between pieces, and some applications, lower noise than FETs. Like most JFET op amps, the LF5 has a relatiely high offset oltage, and relatiely high drifts. JT opamps tend to hae much lower offset oltage and drifts. Identical p * comparators hae >50 /µs slew rate.0 Sprg 08 8

8 Ga andwidth Product Constant (No free lunch) Opmp Imperfections eal World Ga: 0d 0 andwidth 5x0 Ga andwidth product 5x0 Input offset oltage Input Current ias Input Offset Current Fite Output oltage Swg Fite Current Fite Ga, ga bandwidth product oltage Noise Johnson Noise Phase Shifts Slew ate 9 0 Input Offset oltage * Offset djustments : 000µ 5: 0,000µ Current technology: 0µ * nalog Deices MT0 Tutorial

9 Input ias Current * Inertg mplifier ias Current Compensation The put offset current, I OS, is the difference between I and I, or I OS I I. F I I F I 5 I 5 OUT OFF but with no put signal, and we want I thus : OFF I I OFF OFF ; F I I I F OFF 0 0 I I OUT 0, so : F asa condtion for no offset at o F F OUT : 00na 5: 0.05na Current technology: 00pa LT0 F // 5 I DIFF OL I 5 OUT OUT OUT [ I F // I ] OUT 0 if // F [ I F // I ] OUT 0 if // F OL OL * nalog Deices MT08 Tutorial Common Mode ejection atio CM CM: ratio of the commonmode ga to differentialmode ga. Example, if a differential put change of Y olts produces a change of at the put, and a commonmode change of X olts produces a similar change of, then the CM is X/Y. CM often expressed d: CM 0 log OL CM Inertg mplifer irtual Ground nalysis i i f 5 5 f ssumptions Infite put impedance: i 0; i 0 0 because is grounded. >> f i i f f f 0 5

10 Schmitt Trigger 05 Quiz Question Digital Clock Usg 0Hz The 0 Hz waeform crosses the reference oltage multiple times because of the 00m noise. o Schmitt trigger hae different triggers pots for risg edge and fallg edge. Design a circuit with a Schmitt trigger ( Your design ) usg a LM with the thresholds greater than 00m to fix the problem. LM805 oltage regulator IC is used to proide a 5 put to power the digital clock circuit (modeled as a resistor) as well as to supply 5 for the LM Your design. Can be used to reduce false triggerg This is NOT a negatie feedback circuit. 8 Schmitt Trigger C Feedback Oscillator High Pass Filter HPF (d) 0K opamp. 0k,.k, 0K, C. uf C 0 d slope d / octae slope 0 d / decade 0.uf 0K Display and on the scope. Set.k. Predict what happens to the frequency. j ωc s C j ωc s C j ωc 90 o Degrees f LO or f d PHSE LED 5 o 0 o.k 5 o f LO or f d 9 0

11 Differentiator Insights Low Pass Filter LPF (d) (d) 0 d slope d / octae slope 0 d / decade C 0 d slope d / octae slope 0 d / decade sc ; s jω; sc sc at low frequency sc << sc Degrees 90 o 5 o 0 o 5 o f LO or f d f LO or f d PHSE LED j X C j X sc C j ωc j ωc j ωc 0 o 5 o 90 o Degrees PHSE LG f HI or f d f HI or f d multiplyg by s equals differentiation differentiation works only at f << f lo Integrator Insights (d) Why? 0 d Degrees slope d / octae slope 0 d / decade f HI or f d With, any DC bias current will saturate sce the DC ga is the open loop ga 0 o PHSE LG ; sc s jω; 5 o 90 o at high frequency sc >> f HI or f d sc sc tegration works only at f >> f HI sc >> diidg by s equals tegration

12 Integration and differentiation easy to understand time doma Frequency Doma Insight In frequency doma, difference between square wae and triangle wae is amplitude and phase same harmonics. Integrator (LPF) rolls off harmonics and phase shift to create a triangle wae Differentiator (HPF) amplifies harmonics and phase shift to create a square wae. oltage Follower (buffer) Differential Input asic Opmp Circuits Nonertg Integrator C 5 ( ) C t dt Crossoer Distortion (hole) Diode iasg 0kΩ 0kΩ 0kΩ 0.µF LF5 0.µF?kΩ [a] 5 5 N90 5 0kΩ N90 L 5 LF5?kΩ [b] 0.µF 0.µF N N L C [From Preamplifier]?opamp D 9 D N9 N9 E 5.Ω / watt E 5.Ω / watt N905 N00 N00 L Why is [b] better? F Lecture.0 Sprg 08 Lecture.0 Sprg 08 8

Lab 1 - Revisited. Oscilloscope demo IAP Lecture 2 1

Lab 1 - Revisited. Oscilloscope demo IAP Lecture 2 1 Lab 1 - Revisited Display signals on scope Measure the time, frequency, voltage visually and with the scope Voltage measurement* Build simple circuits on a protoboard.* Oscilloscope demo 6.091 IAP Lecture

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:04 Electronic Circuits Lecture -5 eiew of Op-Amps Sections of Chapters 9 & 4 A. Kruger Op-Amp eiew- eal-world Op-Amp In earlier courses, op-amp were often considered ideal Infinite input resistance

More information

ECE:3410 Electronic Circuits

ECE:3410 Electronic Circuits ECE:3410 Electronic Circuits Reiew of Op-Amps Sections of Chapters 9 & 14 A. Kruger Op-Amp Reiew-1 Real-World Op-Amp In earlier courses, op-amp were often considered ideal Infinite input resistance Infinite

More information

Circuit produces an amplified negative version of v IN = R R R

Circuit produces an amplified negative version of v IN = R R R Inerting Amplifier Circuit produces an amplified negatie ersion of i = i, = 2 0 = 2 OUT OUT = 2 Example: Calculate OUT / and I for = 0.5V Solution: A V OUT 2 = = = 0 kω = 0 kω i 05. V = = = kω 05. ma

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits Reiew of Op-Amps Sections of Chapters 9 & 14 A. Kruger Op-Amp Reiew-1 Real-World Op-Amp In earlier courses, op-amp were often considered ideal Infinite input resistance Infinite

More information

Chapter 11 Operational Amplifiers and Applications

Chapter 11 Operational Amplifiers and Applications Chapter Operational Amplifiers and Applications Chapter Goals Understand the magic of negatie feedback and the characteristics of ideal op amps. Understand the conditions for non-ideal op amp behaior so

More information

ELC224 Final Review (12/10/2009) Name:

ELC224 Final Review (12/10/2009) Name: ELC224 Final Review (12/10/2009) Name: Select the correct answer to the problems 1 through 20. 1. A common-emitter amplifier that uses direct coupling is an example of a dc amplifier. 2. The frequency

More information

Lecture 3: Opamp Review. Basic Opamp

Lecture 3: Opamp Review. Basic Opamp Lecture 3: Opamp eview Invertg amplifier Generalized impedances Invertg tegrator Invertg differentiator Weighted summer Non-vertg amplifier oltage buffer Non-lear amplifiers First, assume ideal op amp.

More information

Introduction to Analog Interfacing. ECE/CS 5780/6780: Embedded System Design. Various Op Amps. Ideal Op Amps

Introduction to Analog Interfacing. ECE/CS 5780/6780: Embedded System Design. Various Op Amps. Ideal Op Amps Introduction to Analog Interfacing ECE/CS 5780/6780: Embedded System Design Scott R. Little Lecture 19: Operational Amplifiers Most embedded systems include components that measure and/or control real-world

More information

Common mode rejection ratio

Common mode rejection ratio Common mode rejection ratio Definition: Common mode rejection ratio represents the ratio of the differential voltage gaina d tothecommonmodevoltagegain,a cm : Common mode rejection ratio Definition: Common

More information

UNIT I. Operational Amplifiers

UNIT I. Operational Amplifiers UNIT I Operational Amplifiers Operational Amplifier: The operational amplifier is a direct-coupled high gain amplifier. It is a versatile multi-terminal device that can be used to amplify dc as well as

More information

OPERATIONAL AMPLIFIER PREPARED BY, PROF. CHIRAG H. RAVAL ASSISTANT PROFESSOR NIRMA UNIVRSITY

OPERATIONAL AMPLIFIER PREPARED BY, PROF. CHIRAG H. RAVAL ASSISTANT PROFESSOR NIRMA UNIVRSITY OPERATIONAL AMPLIFIER PREPARED BY, PROF. CHIRAG H. RAVAL ASSISTANT PROFESSOR NIRMA UNIVRSITY INTRODUCTION Op-Amp means Operational Amplifier. Operational stands for mathematical operation like addition,

More information

Lecture #4 Basic Op-Amp Circuits

Lecture #4 Basic Op-Amp Circuits Summer 2015 Ahmad El-Banna Faculty of Engineering Department of Electronics and Communications GEE336 Electronic Circuits II Lecture #4 Basic Op-Amp Circuits Instructor: Dr. Ahmad El-Banna Agenda Some

More information

School of Sciences. ELECTRONICS II ECE212A 2 nd Assignment

School of Sciences. ELECTRONICS II ECE212A 2 nd Assignment School of Sciences SPRING SEMESTER 2010 INSTRUCTOR: Dr Konstantinos Katzis COURSE / SECTION: ECE212N COURSE TITLE: Electronics II OFFICE RM#: 124 (1 st floor) OFFICE TEL#: 22713296 OFFICE HOURS: Monday

More information

Special-Purpose Operational Amplifier Circuits

Special-Purpose Operational Amplifier Circuits Special-Purpose Operational Amplifier Circuits Instrumentation Amplifier An instrumentation amplifier (IA) is a differential voltagegain device that amplifies the difference between the voltages existing

More information

Chapter Goal. Zulfiqar Ali

Chapter Goal. Zulfiqar Ali Chapter Goal Understand behaior and characteristics of ideal differential and op amps. Demonstrate circuit analysis techniques for ideal op amps. Characterize inerting, non-inerting, summing and instrumentation

More information

HOME ASSIGNMENT. Figure.Q3

HOME ASSIGNMENT. Figure.Q3 HOME ASSIGNMENT 1. For the differential amplifier circuit shown below in figure.q1, let I=1 ma, V CC =5V, v CM = -2V, R C =3kΩ and β=100. Assume that the BJTs have v BE =0.7 V at i C =1 ma. Find the voltage

More information

Operational Amplifier as A Black Box

Operational Amplifier as A Black Box Chapter 8 Operational Amplifier as A Black Box 8. General Considerations 8.2 Op-Amp-Based Circuits 8.3 Nonlinear Functions 8.4 Op-Amp Nonidealities 8.5 Design Examples Chapter Outline CH8 Operational Amplifier

More information

Amplifiers with Negative Feedback

Amplifiers with Negative Feedback 13 Amplifiers with Negatie Feedback 335 Amplifiers with Negatie Feedback 13.1 Feedback 13.2 Principles of Negatie Voltage Feedback In Amplifiers 13.3 Gain of Negatie Voltage Feedback Amplifier 13.4 Adantages

More information

LINEAR IC APPLICATIONS

LINEAR IC APPLICATIONS 1 B.Tech III Year I Semester (R09) Regular & Supplementary Examinations December/January 2013/14 1 (a) Why is R e in an emitter-coupled differential amplifier replaced by a constant current source? (b)

More information

CHAPTER 2 OPERATIONAL AMPLIFIERS

CHAPTER 2 OPERATIONAL AMPLIFIERS CHPTE PETNL MPLFES Chapter utline. The deal p mp. The nerting Configuration. The Noninerting Configuration. Difference mplifiers.5 ntegrators and Differentiators.6 DC mperfections.7 Effect of Finite pen

More information

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2)

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2) EE 368 Electronics Lab Experiment 10 Operational Amplifier Applications (2) 1 Experiment 10 Operational Amplifier Applications (2) Objectives To gain experience with Operational Amplifier (Op-Amp). To

More information

Operational Amplifier BME 360 Lecture Notes Ying Sun

Operational Amplifier BME 360 Lecture Notes Ying Sun Operational Amplifier BME 360 Lecture Notes Ying Sun Characteristics of Op-Amp An operational amplifier (op-amp) is an analog integrated circuit that consists of several stages of transistor amplification

More information

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820 a FEATURES True Single Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single Supply Capability from + V to + V Dual Supply Capability from. V to 8 V Excellent Load

More information

Experiment 8 - Single Stage Amplifiers with Passive Loads - BJT

Experiment 8 - Single Stage Amplifiers with Passive Loads - BJT Experiment 8 - Single Stage Amplifiers with Passie Loads - BJT D. Yee, W.T. Yeung, C. Hsiung, S.M. Mehta, and R.T. Howe UC Berkeley EE 105 1.0 Objectie A typical integrated circuit contains a large number

More information

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820 a FEATURES True Single Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single Supply Capability from V to V Dual Supply Capability from. V to 8 V Excellent Load Drive

More information

CHARACTERIZATION OF OP-AMP

CHARACTERIZATION OF OP-AMP EXPERIMENT 4 CHARACTERIZATION OF OP-AMP OBJECTIVES 1. To sketch and briefly explain an operational amplifier circuit symbol and identify all terminals. 2. To list the amplifier stages in a typical op-amp

More information

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 019.101 Introductory Analog Electronics Laboratory Laboratory No. READING ASSIGNMENT

More information

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) 4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) The Metal Oxide Semitonductor Field Effect Transistor (MOSFET) has two modes of operation, the depletion mode, and the enhancement mode.

More information

Homework Assignment 07

Homework Assignment 07 Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A single-pole op-amp has an open-loop low-frequency gain of A = 10 5 and an open loop, 3-dB frequency of 4 Hz.

More information

LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers

LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers General Description The LM13600 series consists of two current controlled transconductance amplifiers each with

More information

Summer 2015 Examination

Summer 2015 Examination Summer 2015 Examination Subject Code: 17445 Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

More information

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET) Difference between BJTs and FETs Transistors can be categorized according to their structure, and two of the more commonly known transistor structures, are the BJT and FET. The comparison between BJTs

More information

Instrumentation Amplifiers Filters Integrators Differentiators Frequency-Gain Relation Non-Linear Op-Amp Applications DC Imperfections

Instrumentation Amplifiers Filters Integrators Differentiators Frequency-Gain Relation Non-Linear Op-Amp Applications DC Imperfections Lecture Op-Amp Building Blocks and Applications Instrumentation Amplifiers Filters Integrators Differentiators Frequency-Gain elation Non-Linear Op-Amp Applications DC Imperfections ELG439 Check List for

More information

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 019 Spring Term 00.101 Introductory Analog Electronics Laboratory Laboratory No.

More information

EE LINEAR INTEGRATED CIRCUITS & APPLICATIONS

EE LINEAR INTEGRATED CIRCUITS & APPLICATIONS UNITII CHARACTERISTICS OF OPAMP 1. What is an opamp? List its functions. The opamp is a multi terminal device, which internally is quite complex. It is a direct coupled high gain amplifier consisting of

More information

350MHz, Ultra-Low-Noise Op Amps

350MHz, Ultra-Low-Noise Op Amps 9-442; Rev ; /95 EVALUATION KIT AVAILABLE 35MHz, Ultra-Low-Noise Op Amps General Description The / op amps combine high-speed performance with ultra-low-noise performance. The is compensated for closed-loop

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Table of contents 1. Design 1.1. The Differential Amplifier 1.2. Level Shifter 1.3. Power Amplifier 2. Characteristics 3. The Opamp without NFB 4. Linear Amplifiers 4.1. The Non-Inverting

More information

Lecture #2 Operational Amplifiers

Lecture #2 Operational Amplifiers Spring 2015 Benha University Faculty of Engineering at Shoubra ECE-322 Electronic Circuits (B) Lecture #2 Operational Amplifiers Instructor: Dr. Ahmad El-Banna Agenda Introduction Op-Amps Input Modes and

More information

Concepts to be Reviewed

Concepts to be Reviewed Introductory Medical Device Prototyping Analog Circuits Part 3 Operational Amplifiers, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Reviewed Operational

More information

Linear IC s and applications

Linear IC s and applications Questions and Solutions PART-A Unit-1 INTRODUCTION TO OP-AMPS 1. Explain data acquisition system Jan13 DATA ACQUISITION SYSYTEM BLOCK DIAGRAM: Input stage Intermediate stage Level shifting stage Output

More information

LF411 Low Offset, Low Drift JFET Input Operational Amplifier

LF411 Low Offset, Low Drift JFET Input Operational Amplifier Low Offset, Low Drift JFET Input Operational Amplifier General Description These devices are low cost, high speed, JFET input operational amplifiers with very low input offset voltage and guaranteed input

More information

Chapter 9: Operational Amplifiers

Chapter 9: Operational Amplifiers Chapter 9: Operational Amplifiers The Operational Amplifier (or op-amp) is the ideal, simple amplifier. It is an integrated circuit (IC). An IC contains many discrete components (resistors, capacitors,

More information

Operational Amplifiers. Boylestad Chapter 10

Operational Amplifiers. Boylestad Chapter 10 Operational Amplifiers Boylestad Chapter 10 DC-Offset Parameters Even when the input voltage is zero, an op-amp can have an output offset. The following can cause this offset: Input offset voltage Input

More information

Homework Assignment 07

Homework Assignment 07 Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A single-pole op-amp has an open-loop low-frequency gain of A = 10 5 and an open loop, 3-dB frequency of 4 Hz.

More information

Physics 303 Fall Module 4: The Operational Amplifier

Physics 303 Fall Module 4: The Operational Amplifier Module 4: The Operational Amplifier Operational Amplifiers: General Introduction In the laboratory, analog signals (that is to say continuously variable, not discrete signals) often require amplification.

More information

Operational Amplifier Circuits

Operational Amplifier Circuits Operational Amplifier Circuits eview: deal Op-amp an open loop configuration p p + i _ + i + Ai o o n n _ An ideal op-amp is characterized with fite open loop ga A The other relevant conditions for an

More information

PHYS225 Lecture 10. Electronic Circuits

PHYS225 Lecture 10. Electronic Circuits PHYS225 Lecture 10 Electronic Circuits Last lecture Operational Amplifiers Many applications Use feedback for control Negative feedback Ideal case rules Output is whatever is needed to make inputs equal

More information

MICROELECTRONIC CIRCUIT DESIGN Third Edition

MICROELECTRONIC CIRCUIT DESIGN Third Edition MICROELECTRONIC CIRCUIT DESIGN Third Edition Richard C. Jaeger and Travis N. Blalock Answers to Selected Problems Updated 1/25/08 Chapter 1 1.3 1.52 years, 5.06 years 1.5 1.95 years, 6.46 years 1.8 113

More information

UNIT - 1 OPERATIONAL AMPLIFIER FUNDAMENTALS

UNIT - 1 OPERATIONAL AMPLIFIER FUNDAMENTALS UNIT - 1 OPERATIONAL AMPLIFIER FUNDAMENTALS 1.1 Basic operational amplifier circuit- hte basic circuit of an operational amplifier is as shown in above fig. has a differential amplifier input stage and

More information

Infrared Communications Lab

Infrared Communications Lab Infrared Communications Lab This lab assignment assumes that the student knows about: Ohm s Law oltage, Current and Resistance Operational Amplifiers (See Appendix I) The first part of the lab is to develop

More information

Model 176 and 178 DC Amplifiers

Model 176 and 178 DC Amplifiers Model 176 and 178 DC mplifiers Features*! Drifts to 100 MΩ! CMR: 120 db @! Gain Linearity of ±.005% *The key features of this amplifier series, listed above, do not necessarily apply

More information

Field Effect Transistors

Field Effect Transistors Field Effect Transistors Purpose In this experiment we introduce field effect transistors (FETs). We will measure the output characteristics of a FET, and then construct a common-source amplifier stage,

More information

PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook.

PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook. EE4902 Lab 9 CMOS OP-AMP PURPOSE: The purpose of this lab is to measure the closed-loop performance of an op-amp designed from individual MOSFETs. This op-amp, shown in Fig. 9-1, combines all of the major

More information

EE 230 Lecture 19. Nonideal Op Amp Characteristics. Offset Voltage Common-mode input range Compensation

EE 230 Lecture 19. Nonideal Op Amp Characteristics. Offset Voltage Common-mode input range Compensation EE 230 Lecture 19 Nonideal Op Amp Characteristics Offset Voltage Common-mode input range Compensation Quiz 13 The operational amplifier has a GB of 20MHz. Determine the 3dB bandwidth of the closed-loop

More information

Analog Electronics. Lecture Pearson Education. Upper Saddle River, NJ, All rights reserved.

Analog Electronics. Lecture Pearson Education. Upper Saddle River, NJ, All rights reserved. Analog Electronics V Lecture 5 V Operational Amplifers Op-amp is an electronic device that amplify the difference of voltage at its two inputs. V V 8 1 DIP 8 1 DIP 20 SMT 1 8 1 SMT Operational Amplifers

More information

Unit WorkBook 1 Level 4 ENG U22 Electronic Circuits and Devices 2018 UniCourse Ltd. All Rights Reserved. Sample

Unit WorkBook 1 Level 4 ENG U22 Electronic Circuits and Devices 2018 UniCourse Ltd. All Rights Reserved. Sample Pearson BTEC Level 4 Higher Nationals in Engineering (RQF) Unit 22: Electronic Circuits and Devices Unit Workbook 1 in a series of 4 for this unit Learning Outcome 1 Operational Amplifiers Page 1 of 23

More information

Microelectronics Circuit Analysis and Design. Differential Amplifier Intro. Differential Amplifier Intro. 12/3/2013. In this chapter, we will:

Microelectronics Circuit Analysis and Design. Differential Amplifier Intro. Differential Amplifier Intro. 12/3/2013. In this chapter, we will: Microelectronics Circuit Analysis and Design Donald A. Neamen Chapter 11 Differential Amplifiers In this chapter, we will: Describe the characteristics and terminology of the ideal differential amplifier.

More information

Section 6 Chapter 2: Operational Amplifiers

Section 6 Chapter 2: Operational Amplifiers 03 Section 6 Chapter : Operational Amplifiers eference : Microelectronic circuits Sedra sixth edition 4//03 4//03 Contents: - DC imperfections A. Offset voltage B. Solution of offset voltage C. Input bias

More information

Electronic Instrumentation Experiment 6 -- Digital Switching

Electronic Instrumentation Experiment 6 -- Digital Switching 1 Electronic Instrumentation Experiment 6 -- Digital Switching Part A: Transistor Switches Part B: Comparators and Schmitt Triggers Part C: Digital Switching Part D: Switching a elay Part A: Transistors

More information

LF442 Dual Low Power JFET Input Operational Amplifier

LF442 Dual Low Power JFET Input Operational Amplifier LF442 Dual Low Power JFET Input Operational Amplifier General Description The LF442 dual low power operational amplifiers provide many of the same AC characteristics as the industry standard LM1458 while

More information

Homework Assignment 03

Homework Assignment 03 Homework Assignment 03 Question 1 (Short Takes), 2 points each unless otherwise noted. 1. Two 0.68 μf capacitors are connected in series across a 10 khz sine wave signal source. The total capacitive reactance

More information

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C9 Applications with OpAmp - 1

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C9 Applications with OpAmp - 1 ELECTONIC DEVICES Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C9 Applications with OpAmp - C9 Applications with OpAmp - Contents Voltage domain conersion circuits Capacitiely coupled amplifiers Op-amp

More information

PIN CONFIGURATIONS FEATURES APPLICATION ORDERING INFORMATION. FE, N Packages

PIN CONFIGURATIONS FEATURES APPLICATION ORDERING INFORMATION. FE, N Packages DESCRIPTION The are monolithic sample-and-hold circuits which utilize high-voltage ion-implant JFET technology to obtain ultra-high DC accuracy with fast acquisition of signal and low droop rate. Operating

More information

11. Chapter: Amplitude stabilization of the harmonic oscillator

11. Chapter: Amplitude stabilization of the harmonic oscillator Punčochář, Mohylová: TELO, Chapter 10 1 11. Chapter: Amplitude stabilization of the harmonic oscillator Time of study: 3 hours Goals: the student should be able to define basic principles of oscillator

More information

Dual operational amplifier

Dual operational amplifier DESCRIPTION The 77 is a pair of high-performance monolithic operational amplifiers constructed on a single silicon chip. High common-mode voltage range and absence of latch-up make the 77 ideal for use

More information

2.996/6.971 Biomedical Devices Design Laboratory Lecture 7: OpAmps

2.996/6.971 Biomedical Devices Design Laboratory Lecture 7: OpAmps 2.996/6.971 Biomedical Devices Design Laboratory Lecture 7: OpAmps Instructor: Dr. Hong Ma Oct. 3, 2007 Fundamental Circuit: Source and Load Sources Power supply Signal Generator Sensor Amplifier output

More information

Experiment #2 OP-AMP THEORY & APPLICATIONS

Experiment #2 OP-AMP THEORY & APPLICATIONS Experiment #2 OP-MP THEOY & PPLICTIONS Jonathan oderick Scott Kilpatrick Burgess Introduction: Operational amplifiers (op-amps for short) are incredibly useful devices that can be used to construct a multitude

More information

Homework Assignment 03 Solution

Homework Assignment 03 Solution Homework Assignment 03 Solution Question 1 Determine the h 11 and h 21 parameters for the circuit. Be sure to supply the units and proper sign for each parameter. (8 points) Solution Setting v 2 = 0 h

More information

GATE SOLVED PAPER - IN

GATE SOLVED PAPER - IN YEAR 202 ONE MARK Q. The i-v characteristics of the diode in the circuit given below are : v -. A v 0.7 V i 500 07 $ = * 0 A, v < 0.7 V The current in the circuit is (A) 0 ma (C) 6.67 ma (B) 9.3 ma (D)

More information

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier TL082 Wide Bandwidth Dual JFET Input Operational Amplifier General Description These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage

More information

Section 4: Operational Amplifiers

Section 4: Operational Amplifiers Section 4: Operational Amplifiers Op Amps Integrated circuits Simpler to understand than transistors Get back to linear systems, but now with gain Come in various forms Comparators Full Op Amps Differential

More information

Single Supply, MicroPower INSTRUMENTATION AMPLIFIER

Single Supply, MicroPower INSTRUMENTATION AMPLIFIER Single Supply, MicroPower INSTRUMENTATION AMPLIFIER FEATURES LOW QUIESCENT CURRENT: µa WIDE POWER SUPPLY RANGE Single Supply:. to Dual Supply:.9/. to ± COMMON-MODE RANGE TO (). RAIL-TO-RAIL OUTPUT SWING

More information

Lecture 8: More on Operational Amplifiers (Op Amps)

Lecture 8: More on Operational Amplifiers (Op Amps) Lecture 8: More on Operational mplifiers (Op mps) Input Impedance of Op mps and Op mps Using Negative Feedback: Consider a general feedback circuit as shown. ssume that the amplifier has input impedance

More information

QUAD OPERATIONAL AMPLIFIERS FEATURES. SCHEMATIC DIAGRAM (One Section Only)

QUAD OPERATIONAL AMPLIFIERS FEATURES. SCHEMATIC DIAGRAM (One Section Only) S The LM248/LM348 is a true quad LM741. It consists of four independent, high-gain, internally compensated, low-power operational amplifiers which have been designed to provide functional characteristics

More information

Lecture 1. EE 215 Electronic Devices & Circuits. Semiconductor Devices: Diodes. The Ideal Diode

Lecture 1. EE 215 Electronic Devices & Circuits. Semiconductor Devices: Diodes. The Ideal Diode Lecture 1 EE 215 Electronic Deices & Circuits Asst Prof Muhammad Anis Chaudhary EE 215 Electronic Deices & Circuits Credit Hours: 3 1 Course Book: Adel S. Sedra and Kenneth C. Smith, Microelectronic Circuits,

More information

High Speed FET-Input INSTRUMENTATION AMPLIFIER

High Speed FET-Input INSTRUMENTATION AMPLIFIER High Speed FET-Input INSTRUMENTATION AMPLIFIER FEATURES FET INPUT: I B = 2pA max HIGH SPEED: T S = 4µs (G =,.%) LOW OFFSET VOLTAGE: µv max LOW OFFSET VOLTAGE DRIFT: µv/ C max HIGH COMMON-MODE REJECTION:

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers for Basic Electronics http://cktse.eie.polyu.edu.hk/eie209 by Prof. Michael Tse January 2005 Where do we begin? We begin with assuming that the op-amp is an ideal element satisfying

More information

Emitter Coupled Differential Amplifier

Emitter Coupled Differential Amplifier Emitter Coupled Differential Amplifier Returning to the transistor, a very common and useful circuit is the differential amplifier. It's basic circuit is: Vcc Q1 Q2 Re Vee To see how this circuit works,

More information

PHYS 536 The Golden Rules of Op Amps. Characteristics of an Ideal Op Amp

PHYS 536 The Golden Rules of Op Amps. Characteristics of an Ideal Op Amp PHYS 536 The Golden Rules of Op Amps Introduction The purpose of this experiment is to illustrate the golden rules of negative feedback for a variety of circuits. These concepts permit you to create and

More information

Operation of a Differential Amplifier

Operation of a Differential Amplifier ECE 35 IV. Operation of a Differential Amplifier Lab IV Operation of a Differential Amplifier In this lab we will construct and test the differential amplifier shown in Figure IV. IV.A. Deices You must

More information

Lecture 2: Non-Ideal Amps and Op-Amps

Lecture 2: Non-Ideal Amps and Op-Amps Lecture 2: Non-Ideal Amps and Op-Amps Prof. Ali M. Niknejad Department of EECS University of California, Berkeley Practical Op-Amps Linear Imperfections: Finite open-loop gain (A 0 < ) Finite input resistance

More information

Quad Picoampere Input Current Bipolar Op Amp AD704

Quad Picoampere Input Current Bipolar Op Amp AD704 a FEATURES High DC Precision 75 V max Offset Voltage V/ C max Offset Voltage Drift 5 pa max Input Bias Current.2 pa/ C typical I B Drift Low Noise.5 V p-p typical Noise,. Hz to Hz Low Power 6 A max Supply

More information

Applied Electronics II

Applied Electronics II Applied Electronics II Chapter 3: Operational Amplifier Part 1- Op Amp Basics School of Electrical and Computer Engineering Addis Ababa Institute of Technology Addis Ababa University Daniel D./Getachew

More information

Physics 116A Notes Fall 2004

Physics 116A Notes Fall 2004 Physics 116A Notes Fall 2004 David E. Pellett Draft v.0.9 beta Notes Copyright 2004 David E. Pellett unless stated otherwise. References: Text for course: Fundamentals of Electrical Engineering, second

More information

400MHz, Ultra-Low-Distortion Op Amps

400MHz, Ultra-Low-Distortion Op Amps 9; Rev ; /97 EVALUATION KIT AVAILABLE MHz, Ultra-Low-Distortion Op Amps General Description The MAX8/MAX9/MAX8/MAX9 op amps combine ultra-high-speed performance with ultra-lowdistortion operation. The

More information

DUAL ULTRA MICROPOWER RAIL-TO-RAIL CMOS OPERATIONAL AMPLIFIER

DUAL ULTRA MICROPOWER RAIL-TO-RAIL CMOS OPERATIONAL AMPLIFIER ADVANCED LINEAR DEVICES, INC. ALD276A/ALD276B ALD276 DUAL ULTRA MICROPOWER RAILTORAIL CMOS OPERATIONAL AMPLIFIER GENERAL DESCRIPTION The ALD276 is a dual monolithic CMOS micropower high slewrate operational

More information

Instrumentation amplifier

Instrumentation amplifier Instrumentationamplifieris a closed-loop gainblock that has a differential input and an output that is single-ended with respect to a reference terminal. Application: are intended to be used whenever acquisition

More information

High Common-Mode Rejection. Differential Line Receiver SSM2141 REV. B FUNCTIONAL BLOCK DIAGRAM FEATURES. High Common-Mode Rejection

High Common-Mode Rejection. Differential Line Receiver SSM2141 REV. B FUNCTIONAL BLOCK DIAGRAM FEATURES. High Common-Mode Rejection a FEATURES High Common-Mode Rejection DC: 100 db typ 60 Hz: 100 db typ 20 khz: 70 db typ 40 khz: 62 db typ Low Distortion: 0.001% typ Fast Slew Rate: 9.5 V/ s typ Wide Bandwidth: 3 MHz typ Low Cost Complements

More information

OPERATIONAL AMPLIFIERS and FEEDBACK

OPERATIONAL AMPLIFIERS and FEEDBACK Lab Notes A. La Rosa OPERATIONAL AMPLIFIERS and FEEDBACK 1. THE ROLE OF OPERATIONAL AMPLIFIERS A typical digital data acquisition system uses a transducer (sensor) to convert a physical property measurement

More information

Introduction to Operational Amplifiers

Introduction to Operational Amplifiers P. R. Nelson ECE 322 Fall 2012 p. 1/50 Introduction to Operational Amplifiers Phyllis R. Nelson prnelson@csupomona.edu Professor, Department of Electrical and Computer Engineering California State Polytechnic

More information

CHAPTER 3: OSCILLATORS AND WAVEFORM-SHAPING CIRCUITS

CHAPTER 3: OSCILLATORS AND WAVEFORM-SHAPING CIRCUITS CHAPTER 3: OSCILLATORS AND WAVEFORM-SHAPING CIRCUITS In the design of electronic systems, the need frequently arises for signals having prescribed standard waveforms (e.g., sinusoidal, square, triangle,

More information

Elektronika (TKE 4012)

Elektronika (TKE 4012) Operational Amplifier & aplikasinya Elektronika (TKE 40) Eka Maulana maulana.lecture.ub.ac.id Op Amp Op Amp is short for operational amplifier Amplifiers proide gains in oltage or current Op amps can conert

More information

Question Paper Code: 21398

Question Paper Code: 21398 Reg. No. : Question Paper Code: 21398 B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2013 Fourth Semester Electrical and Electronics Engineering EE2254 LINEAR INTEGRATED CIRCUITS AND APPLICATIONS (Regulation

More information

Chapter 6: Operational Amplifier (Op Amp)

Chapter 6: Operational Amplifier (Op Amp) Chapter 6: Operational Amplifier (Op Amp) 6.1 What is an Op Amp? 6.2 Ideal Op Amp 6.3 Nodal Analysis of Circuits with Op Amps 6.4 Configurations of Op Amp 6.5 Cascaded Op Amp 6.6 Op Amp Circuits & Linear

More information

Phy 335, Unit 4 Transistors and transistor circuits (part one)

Phy 335, Unit 4 Transistors and transistor circuits (part one) Mini-lecture topics (multiple lectures): Phy 335, Unit 4 Transistors and transistor circuits (part one) p-n junctions re-visited How does a bipolar transistor works; analogy with a valve Basic circuit

More information

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820 Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820 FEATURES True single-supply operation Output swings rail-to-rail Input voltage range extends below ground Single-supply capability from 5

More information

Each question is worth 4 points. ST07 One-hour Quiz #2 1 3/20/2007

Each question is worth 4 points. ST07 One-hour Quiz #2 1 3/20/2007 Name: Date: DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 Spring Term 2007 Quiz 2 6.101 Introductory Analog Electronics

More information

Combination Notch and Bandpass Filter

Combination Notch and Bandpass Filter Combination Notch and Bandpass Filter Clever filter design for graphic equalizer can perform both notch and bandpass functions Gain or attenuation is controlled by a potentiometer for specific frequency

More information

EE301 Electronics I , Fall

EE301 Electronics I , Fall EE301 Electronics I 2018-2019, Fall 1. Introduction to Microelectronics (1 Week/3 Hrs.) Introduction, Historical Background, Basic Consepts 2. Rewiev of Semiconductors (1 Week/3 Hrs.) Semiconductor materials

More information