Pulse and Digital Circuits

Size: px
Start display at page:

Download "Pulse and Digital Circuits"

Transcription

1 Second Edition Pulse and Digital Circuits A. Anand Kumar

2 PULSE AND DIGITAL CIRCUITS SECOND EDITION A. ANAND KUMAR Dean K.L. University Vijayawada, Andhra Pradesh New Delhi

3 PULSE AND DIGITAL CIRCUITS, 2nd ed. A. Anand Kumar 2008 by PHI Learning Private Limited, New Delhi. All rights reserved. No part of this book may be reproduced in any form, by mimeograph or any other means, without permission in writing from the publisher. ISBN The export rights of this book are vested solely with the publisher. Fifteenth Printing (Second Edition) January, 20 Published by Asoke K. Ghosh, PHI Learning Private Limited, M-97, Connaught Circus, New Delhi-000 and Printed by Jay Print Pack Private Limited, New Delhi-005.

4 To the memory of my parents Shri A. Nagabhushanam and Smt. A. Ushamani (Freedom Fighters)

5 Contents Preface. LINEAR WAVE SHAPING 03. The Low-Pass RC Circuit.. Sinusoidal Input 2..2 Step-Voltage Input 3..3 Pulse Input 5..4 Square-Wave Input 7..5 Ramp Input 9..6 Exponential Input.2 The Low-Pass RC Circuit as an Integrator 2.3 The High-Pass RC Circuit 3.3. Sinusoidal Input Step Input Pulse Input Square-Wave Input Ramp Input Exponential Input 39.4 The High-Pass RC Circuit as a Differentiator 42.5 Double Differentiation 43.6 Attenuators Application of Attenuator as a CRO Probe 69.7 RL Circuits 76.8 RLC Circuits RLC Series Circuit RLC Parallel Circuit 79.9 Ringing Circuit 80 Short Questions and Answers 8 Review Questions 88 Fill in the Blanks 89 Objective Type Questions 9 Problems 00 v xi

6 vi Contents 2. NONLINEAR WAVE SHAPING Clipping Circuits Diode Clippers Shunt Clippers Series Clippers Clipping at Two Independent Levels Series and Shunt Noise Clippers Compensation for Variation of Temperature Transistor Clippers Emitter-Coupled Clipper Comparators Clamping Circuits The Clamping Operation Negative Clamper Positive Clamper Biased Clamping Clamping Circuit Taking Source and Diode Resistances into Account Clamping Circuit Theorem Practical Clamping Circuit Effect of Diode Characteristics on Clamping Voltage Synchronized Clamping Design of a Clamping Circuit 75 Short Questions and Answers 8 Review Questions 85 Fill in the Blanks 86 Objective Type Questions 88 Problems 9 3. SWITCHING CHARACTERISTICS OF DEVICES Junction Diode Switching Times Piece-Wise Linear Diode Characteristics Breakdown in p-n Junction Diodes Transistor as a Switch Transistor Switching Times Breakdown Voltages of a Transistor The Transistor Switch in Saturation Temperature Sensitivity of Saturation Parameters Design of Transistor Switch 209 Short Questions and Answers 26 Review Questions 29 Fill in the Blanks 29 Objective Type Questions 22

7 Contents vii 4. MULTIVIBRATORS Bistable Multivibrator A Fixed-Bias Bistable Multivibrator A Self-Biased Transistor Binary Commutating Capacitors A Non-Saturating Binary Triggering the Binary Triggering Unsymmetrically through a Unilateral Device (Diode) Triggering Symmetrically through a Unilateral Device A Direct-Connected Binary The Emitter-Coupled Binary (the Schmitt Trigger Circuit) Monostable Multivibrator The Collector Coupled Monostable Multivibrator The Emitter-Coupled Monostable Multivibrator Triggering the Monostable Multivibrator Astable Multivibrator The Collector-Coupled Astable Multivibrator The Emitter-Coupled Astable Multivibrator 32 Short Questions and Answers 36 Review Questions 322 Fill in the Blanks 323 Objective Type Questions 325 Problems TIME-BASE GENERATORS General Features of a Time-Base Signal Methods of Generating a Time-Base Waveform Exponential Sweep Circuit Unijunction Transistor Sweep Circuit Using UJT Sweep Circuit Using a Transistor Switch A Transistor Constant-Current Sweep Miller and Bootstrap Time-Base Generators Basic Principles The Transistor Miller Time-Base Generator The Transistor Bootstrap Time-Base Generator Current Time-Base Generators A Simple Current Sweep Linearity Correction Through Adjustment of Driving Waveform A Transistor Current Time-Base Generator 377 Short Questions and Answers 380 Review Questions 383 Fill in the Blanks 384 Objective Type Questions 385 Problems 387

8 viii Contents 6. SYNCHRONIZATION AND FREQUENCY DIVISION Pulse Synchronization of Relaxation Devices Frequency Division in the Sweep Circuit Other Astable Relaxation Circuits Monostable Relaxation Circuits as Dividers Phase Delay and Phase Jitters Synchronization of a Sweep Circuit with Symmetrical Signals Sine Wave Frequency Division with a Sweep Circuit 40 Short Questions and Answers 402 Review Questions 404 Fill in the Blanks 404 Objective Type Questions SAMPLING GATES Basic Operating Principles of Sampling Gates Unidirectional Diode Gate Unidirectional Diode Gates to Accommodate More than One Input Signal Bidirectional Sampling Gates Using Transistors Reduction of Pedestal in a Gate Circuit Bidirectional Diode Sampling Gate Four-Diode Sampling Gate Four-Diode Gate (Alternative Form) Six-Diode Sampling Gate Applications of Sampling Gates Chopper Amplifier Sampling Scope 426 Short Questions and Answers 427 Review Questions 429 Fill in the Blanks 429 Objective Type Questions LOGIC GATES The Basic Gates The OR Gate The AND Gate The NOT Gate (Inverter) The Universal Gates The NAND Gate The NOR Gate The Derived Gates The Exclusive-OR (X-OR) Gate The Exclusive-NOR (X-NOR) Gate 447

9 Contents ix 8.4 Inhibit Circuits Pulsed Operation of Logic Gates 453 Short Questions and Answers 456 Review Questions 459 Fill in the Blanks 460 Objective Type Questions 46 Problems LOGIC FAMILIES Digital IC Specification Terminology Logic Families Transistor Transistor Logic (TTL) Two-Input TTL NAND Gate (Standard TTL) Totem-Pole Output Open-Collector Gates Tri-State (3-State) TTL Schottky TTL Integrated Injection Logic (IIL or I 2 L) I 2 L Inverter I 2 L NAND Gate I 2 L NOR Gate Emitter-Coupled Logic (ECL) ECL OR/NOR Gate Metal Oxide Semiconductor (MOS) Logic Symbols and Switching Action of NMOS and PMOS Resistor NMOS Inverter NMOS NAND Gate NMOS NOR Gate Complementary Metal Oxide Semiconductor (CMOS) Logic CMOS Inverter CMOS NAND Gate CMOS NOR Gate Transmission Gate Dynamic MOS Logic Dynamic MOS Inverter Dynamic MOS NAND Gate Dynamic MOS NOR Gate 486 Short Questions and Answers 487 Review Questions 49 Fill in the Blanks 492 Objective Type Questions 493

10 x Contents 0. BLOCKING OSCILLATORS Monostable Blocking Oscillator (Base Timing) Monostable Blocking Oscillator (Emitter Timing) Astable Blocking Oscillator (Diode Controlled) Astable Blocking Oscillator (RC Controlled) Applications of Blocking Oscillators 53 Short Questions and Answers 53 Review Questions 55 Fill in the Blanks 56 Objective Type Questions 57 Problems 57 GLOSSARY ANSWERS TO FILL IN THE BLANKS ANSWERS TO OBJECTIVE TYPE QUESTIONS ANSWERS TO PROBLEMS INDEX

11 Preface After nearly thirty years of my experience in the classroom, I have strived to develop this comprehensive text on pulse circuitry in order to provide students with a solid grounding in the foundations of analysis and design of pulse and digital circuits. The second edition of this textbook with various new features is suitable for use as one-semester course material by undergraduate students of Electronics and Communication Engineering, Electrical and Electronics Engineering, Electronics and Instrumentation Engineering, and Telecommunication Engineering. Appropriate for self-study, the book will also be useful to AMIE and IETE students. The text is organized into 0 chapters. The outline of the book is as follows. When non-sinusoidal signals are transmitted through a linear network, the shape of the waveform undergoes a change. This process called linear wave shaping is discussed in Chapter. Particularly in communication systems, quite often, it is required to remove a part of the waveform above or below some reference level. This process is called clipping. In many pulse systems, quite often a dc level is required to be added to a waveform to fix the top or bottom of the waveform at some reference level. This process is called clamping. Clipping and clamping together is called nonlinear wave shaping. Chapter 2 deals with the various clipping and clamping circuits. The switching characteristics of junction diodes and transistors as required for a clear understanding of the pulse circuits are covered in Chapter 3. Memory is the basic requirement of all computers. The basic memory element is a flipflop, i.e. the bistable multivibrator. The monostable multivibrator is the basic gating circuit. The astable multivibrator is used as a master oscillator, and the Schmitt trigger circuit as a basic voltage comparator. The various types of multivibrators are discussed in Chapter 4. Time-base generators are essential for display of signals on the screen. Voltage and current time-base generators are presented in Chapter 5. A large pulse and digital system consists of a number of waveform generators which need to be synchronized with or without frequency division. Synchronization and frequency division of various generators with pulse type as well as symmetrical signals are the topics treated in Chapter 6. xi

12 xii Preface When signals are to be transmitted only for specified intervals of time and are to be blocked during other intervals of time, we require sampling gates. Various types of sampling gates are explained in Chapter 7. Logic gates are the fundamental building blocks of any digital system. Realization of logic gates using diodes and transistors is discussed in Chapter 8. Most of the logic gates, flip-flops, counters, shift registers, arithmetic circuits, encoders, decoders, etc. are available in several digital families. The TTL, ECL, IIL, MOS and CMOS class of logic families are discussed in Chapter 9. When pulses of very large peak power are to be generated, we require blocking oscillators. Several types of monostable and astable blocking oscillators are discussed in Chapter 0. A large number of design examples have been worked out to help students understand each new concept or analysis method as it is introduced. Extensive short questions and answers and also review questions are included at the end of each chapter to enable the students to prepare for examinations confidently. Fill-in-the-blank type questions, objective type multiple choice questions and numerical problems are provided at the chapter-ends to enable students to build a clear understanding of the subject matter discussed in the text and also to assess their learning. Answers to fill-in-the-blanks, objective type questions and numerical problems are given at the end of the book. Most of the solved and unsolved problems presented in this book have been classroom tested. I express my profound gratitude to all those individuals without whose assistance and cooperation this book would not have been completed. First of all, I thank Sri. V. Srinivasa Rao, Technician of Adam s Engineering College, Palvancha who typed the entire original manuscript and drew all the figures in this book. I also thank Mr. P. Venkateswara Rao of our college for helping me in the revision of this book. I am grateful to Mr. Burugupalli Venugopala Krishna, Chairman Sasi Educational Society, Velivennu for encouraging and providing me with all the facilities for the revision of this book. I also thank Mr. B. Ravi Kumar, our Executive Director, for his cooperation. I thank Mr. Koneru Satyanarayana, Chancellor, K.L. University, Vijayawada, AP for his constant encouragement. I express my sincere appreciation to my brother Mr. A. Vijaya Kumar and to my friends, Dr. K. Koteswara Rao, Chairman, Gowtham Educational Society, Gudivada and Mr. Y. Ramesh Babu and Smt. Y. Krishna Kumari of Detroit for their encouragement. I thank Dr. K. Raja Rajeswari, Professor, ECE Department and Dr. K.S. Lingamurthy, Professor and Head of EEE Department of Andhra University College of Engineering, Visakhapatnam for their constant words of encouragement. I thank my publishers PHI Learning and their staff, in particular Mr. Darshan Kumar, senior editor, who edited the manuscript for the first edition and Mr. Sudarshan Das, editor, who made this second edition possible. Finally, I am indebted to my wife, A. Jhansi, for putting up with my spending countless hours working on the manuscript. Our sons Dr. A. Anil Kumar and Mr. A. Sunil Kumar and daughters-in-law Dr. A. Anureet Kaur and A. Apurupa and granddaughter Khushi supported me with their constant words of encouragement. The author will gratefully acknowledge constructive criticism from both students and teachers for further improvement of this book. A. Anand Kumar

13 Linear Wave Shaping Chapter Linear Wave Shaping A linear network is a network made up of linear elements only. A linear network can be described by linear differential equations. The principle of superposition and the principle of homogeneity hold good for linear networks. In pulse circuitry, there are a number of waveforms, which appear very frequently. The most important of these are sinusoidal, step, pulse, square wave, ramp, and exponential waveforms. The response of RC, RL, and RLC circuits to these signals is described in this chapter. Out of these signals, the sinusoidal signal has a unique characteristic that it preserves its shape when it is transmitted through a linear network, i.e. under steady state, the output will be a precise reproduction of the input sinusoidal signal. There will only be a change in the amplitude of the signal and there may be a phase shift between the input and the output waveforms. The influence of the circuit on the signal may then be completely specified by the ratio of the output to the input amplitude and by the phase angle between the output and the input. No other periodic waveform preserves its shape precisely when transmitted through a linear network, and in many cases the output signal may bear very little resemblance to the input signal. The process whereby the form of a non-sinusoidal signal is altered by transmission through a linear network is called linear wave shaping.. THE LOW-PASS RC CIRCUIT Figure. shows a low-pass RC circuit. A low-pass circuit is a circuit, which transmits only low-frequency signals and attenuates or stops high-frequency signals. At zero frequency, the + R + v t i () it () C vo () t Figure. The low-pass RC circuit.

14 2 Pulse and Digital Circuits reactance of the capacitor is infinity (i.e. the capacitor acts as an open circuit) so the entire input appears at the output, i.e. the input is transmitted to the output with zero attenuation. So the output is the same as the input, i.e. the gain is unity. As the frequency increases the capacitive reactance (X C = /2pfC) decreases and so the output decreases. At very high frequencies the capacitor virtually acts as a short-circuit and the output falls to zero... Sinusoidal Input The Laplace transformed low-pass RC circuit is shown in Figure.2(a). The gain versus frequency curve of a low-pass circuit excited by a sinusoidal input is shown in Figure.2(b). This curve is obtained by keeping the amplitude of the input sinusoidal signal constant and varying its frequency and noting the output at each frequency. At low frequencies the output is equal to the input and hence the gain is unity. As the frequency increases, the output decreases and hence the gain decreases. The frequency at which the gain is / 2 (= 0.707) of its maximum value is called the cut-off frequency. For a low-pass circuit, there is no lower cut-off frequency. It is zero itself. The upper cut-off frequency is the frequency (in the high-frequency range) at which the gain is / 2, i.e. 70.7%, of its maximum value. The bandwidth of the low-pass circuit is equal to the upper cut-off frequency f 2 itself. R + + V Is () i () s /Cs V o () s Figure.2 (a) A Bandwidth 0 f 2 f (a) Laplace transformed low-pass RC circuit and (b) its frequency response. For the network shown in Figure.2(a), the magnitude of the steady-state gain A is given by Vo() s Cs A = = = Vi () s R + + RCs = = + jw RC + j2p frc Cs (b) \ A = +(2 p frc) 2 At the upper cut-off frequency f 2, A = 2 \ 2 = 2 +(2 p f RC) 2

15 Linear Wave Shaping 3 Squaring both sides and equating the denominators, \ The upper cut-off frequency, f 2 = 2 = + (2pf 2 RC) 2. 2p RC So A = and A = f + j f f 2 + f2 The angle q by which the output leads the input is given by f q = tan f..2 Step-Voltage Input A step signal is one which maintains the value zero for all times t < 0, and maintains the value V for all times t > 0. The transition between the two voltage levels takes place at t = 0 and is accomplished in an arbitrarily small time interval. Thus, in Figure.3(a), v i = 0 immediately before t = 0 (to be referred to as time t = 0 ) and v i = V, immediately after t = 0 (to be referred to as time t = 0 + ). In the low-pass RC circuit shown in Figure., if the capacitor is initially uncharged, when a step input is applied, since the voltage across the capacitor cannot change instantaneously, the output will be zero at t = 0, and then, as the capacitor charges, the output voltage rises exponentially towards the steadystate value V with a time constant RC as shown in Figure.3(b). v i V 0 (a) 2 t v o t=5rc v i V v 0.9V o 90% t = RC 0.632V 63.2% 0.V 0% 0 t t tr = 2.2 RC t 2 (b) 2 5t 99.3% t Figure.3 (a) Step input and (b) step response of the low-pass RC circuit. Let V be the initial voltage across the capacitor. Writing KVL around the loop in Figure., vi () t = Ri() t + i() t dt C Differentiating this equation, dvi () t di() t = R + i( t) dt dt C

16 Pulse And Digital Circuits 25% OFF Publisher : PHI Learning ISBN : Author : A. Anand Kumar Type the URL : Get this ebook

SET - 1 1. a) Write the application of attenuator b) State the clamping theorem c) Write the application of Monostable multi vibrator d) Draw the diagram for Diode two input AND gate e) Define the terms

More information

R a) Explain the operation of RC high-pass circuit when exponential input is applied.

R a) Explain the operation of RC high-pass circuit when exponential input is applied. SET - 1 1. a) Explain the operation of RC high-pass circuit when exponential input is applied. 2x V ( e 1) V b) Verify V2 = = tanhx for a symmetrical square wave applied to a RC low 2x 2 ( e + 2 pass circuit.

More information

R05. For the circuit shown in fig.1, a sinusoidal voltage of peak 75V is applied. Assume ideal diodes. Obtain the output waveforms.

R05. For the circuit shown in fig.1, a sinusoidal voltage of peak 75V is applied. Assume ideal diodes. Obtain the output waveforms. Code.No: 33051 R05 SET-1 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD II.B.TECH - I SEMESTER SUPPLEMENTARY EXAMINATIONS NOVEMBER, 2009 (Common to EEE, ECE, EIE, ETM) Time: 3hours Max.Marks:80 Answer

More information

UNIT I LINEAR WAVESHAPING

UNIT I LINEAR WAVESHAPING UNIT I LINEAR WAVESHAPING. High pass, low pass RC circuits, their response for sinusoidal, step, pulse, square and ramp inputs. RC network as differentiator and integrator, attenuators, its applications

More information

SET - 1 Code No: II B. Tech II Semester Regular Examinations, April/May 2009

SET - 1 Code No: II B. Tech II Semester Regular Examinations, April/May 2009 SET - 1 Code No: 3220401 II B. Tech II Semester Regular Examinations, April/May 2009 PULSE AND DIGITAL CIRCUITS ( Common to E.C.E, B.M.E, E.Con.E, I.C.E ) Time: 3 hours Max Marks: 80 Answer Any FIVE Questions

More information

11. What is fall time (tf) in transistor? The time required for the collector current to fall from 90% to 10% of its DEPARTMENT OF ECE EC 6401 Electronic Circuits II UNIT-IV WAVE SHAPING AND MULTIVIBRATOR

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Course Title Course Code INTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 04 ELECTRONIC AND COMMUNICATION ENGINEERING COURE DECRIPTION Pulse and Digital Circuits A4045 Academic Year 06 07

More information

PULSE AND DIGITAL CIRCUITS

PULSE AND DIGITAL CIRCUITS LECTURE NOTES ON PULSE AND DIGITAL CIRCUITS B.Tech IV semester (Autonomous) (2017-18) Ms. J Sravana Assistant Professor Ms. N Anusha Assistant Professor Ms. P Saritha Associate Professor Mr. B Naresh Associate

More information

Electronic Devices and Circuits

Electronic Devices and Circuits Electronic Devices and Circuits I.J. Nagrath Electronic Devices and Circuits I.J. NAGRATH Adjunct Professor Former Deputy Director Birla Institute of Technology & Science Pilani New Delhi-110001 2012 ELECTRONIC

More information

HIGH LOW Astable multivibrators HIGH LOW 1:1

HIGH LOW Astable multivibrators HIGH LOW 1:1 1. Multivibrators A multivibrator circuit oscillates between a HIGH state and a LOW state producing a continuous output. Astable multivibrators generally have an even 50% duty cycle, that is that 50% of

More information

Microelectronic Circuits

Microelectronic Circuits SECOND EDITION ISHBWHBI \ ' -' Microelectronic Circuits Adel S. Sedra University of Toronto Kenneth С Smith University of Toronto HOLT, RINEHART AND WINSTON HOLT, RINEHART AND WINSTON, INC. New York Chicago

More information

multivibrator; Introduction to silicon-controlled rectifiers (SCRs).

multivibrator; Introduction to silicon-controlled rectifiers (SCRs). Appendix The experiments of which details are given in this book are based largely on a set of 'modules' specially designed by Dr. K.J. Close. These 'modules' are now made and marketed by Irwin-Desman

More information

Introductory Electronics for Scientists and Engineers

Introductory Electronics for Scientists and Engineers Introductory Electronics for Scientists and Engineers Second Edition ROBERT E. SIMPSON University of New Hampshire Allyn and Bacon, Inc. Boston London Sydney Toronto Contents Preface xiü 1 Direct Current

More information

M.D. Singh J.G. Joshi MECHATRONICS

M.D. Singh J.G. Joshi MECHATRONICS M.D. Singh J.G. Joshi MECHATRONICS MECHATRONICS MECHATRONICS M.D. SINGH Formerly Principal Sagar Institute of Technology and Research Bhopal J.G. JOSHI Lecturer Department of Electronics and Telecommunication

More information

e base generators Tim 1

e base generators Tim 1 Time base generators 1 LINEAR TIME BASE GENERATORS Circuits thatprovide An Output Waveform Which Exhibits Linear Variation Of Voltage or current With Time. Linear variation of Voltage :Voltage time base

More information

Figure 2a (b) Compare series diode clipper and shunt diode clipper. [8+8]

Figure 2a (b) Compare series diode clipper and shunt diode clipper. [8+8] Code No: 07A30401 Set No. 1 II B.Tech I Semester Regular Examinations, November 2008 PULSE AND DIGITAL CIRCUITS ( Common to Electrical & Electronic Engineering and Electronics & Instrumentation Engineering)

More information

Multivibrators. Department of Electrical & Electronics Engineering, Amrita School of Engineering

Multivibrators. Department of Electrical & Electronics Engineering, Amrita School of Engineering Multivibrators Multivibrators Multivibrator is an electronic circuit that generates square, rectangular, pulse waveforms. Also called as nonlinear oscillators or function generators. Multivibrator is basically

More information

1. LINEAR WAVE SHAPING

1. LINEAR WAVE SHAPING Aim: 1. LINEAR WAVE SHAPING i) To design a low pass RC circuit for the given cutoff frequency and obtain its frequency response. ii) To observe the response of the designed low pass RC circuit for the

More information

Chapter 1 Semiconductors and the p-n Junction Diode 1

Chapter 1 Semiconductors and the p-n Junction Diode 1 Preface xiv Chapter 1 Semiconductors and the p-n Junction Diode 1 1-1 Semiconductors 2 1-2 Impure Semiconductors 5 1-3 Conduction Processes in Semiconductors 7 1-4 Thep-nJunction 9' 1-5 The Meta1-Semiconductor

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad P a g e INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING TUTORIAL QUESTION BANK Name : PULSE AND DIGITAL CIRCIUTS Code : AEC006

More information

Veer Narmad South Gujarat University, Surat

Veer Narmad South Gujarat University, Surat Unit I: Passive circuit elements (With effect from June 2017) Syllabus for: F Y B Sc (Electronics) Semester- 1 PAPER I: Basic Electrical Circuits Resistors, resistor types, power ratings, resistor colour

More information

LECTURE NOTES ELECTRONIC CIRCUITS II SYLLABUS

LECTURE NOTES ELECTRONIC CIRCUITS II SYLLABUS FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Madurai Sivagangai Main Road Madurai - 625 020. [An ISO 9001:2008 Certified Institution] LECTURE NOTES EC6401 ELECTRONIC CIRCUITS - II SEMESTER: IV /

More information

K. MAHADEVAN. Professor Electrical and Electronics Engineering PSNA College of Engineering and Technology Dindigul, Tamil Nadu C.

K. MAHADEVAN. Professor Electrical and Electronics Engineering PSNA College of Engineering and Technology Dindigul, Tamil Nadu C. Electrical Circuit Analysis K. MAHADEVAN Professor Electrical and Electronics Engineering PSNA College of Engineering and Technology Dindigul, Tamil Nadu C. CHITRA Professor Electronics and Communication

More information

Preface... iii. Chapter 1: Diodes and Circuits... 1

Preface... iii. Chapter 1: Diodes and Circuits... 1 Table of Contents Preface... iii Chapter 1: Diodes and Circuits... 1 1.1 Introduction... 1 1.2 Structure of an Atom... 2 1.3 Classification of Solid Materials on the Basis of Conductivity... 2 1.4 Atomic

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad 1 INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING TUTORIAL QUESTION BANK Course Name : PULSE AND DIGITAL CIRCUITS Course Code : A40415 Class

More information

PROPOSED SCHEME OF COURSE WORK

PROPOSED SCHEME OF COURSE WORK PROPOSED SCHEME OF COURSE WORK Course Details: Course Title : LINEAR AND DIGITAL IC APPLICATIONS Course Code : 13EC1146 L T P C : 4 0 0 3 Program: : B.Tech. Specialization: : Electrical and Electronics

More information

Exam Booklet. Pulse Circuits

Exam Booklet. Pulse Circuits Exam Booklet Pulse Circuits Pulse Circuits STUDY ASSIGNMENT This booklet contains two examinations for the six lessons entitled Pulse Circuits. The material is intended to provide the last training sought

More information

GATE: Electronics MCQs (Practice Test 1 of 13)

GATE: Electronics MCQs (Practice Test 1 of 13) GATE: Electronics MCQs (Practice Test 1 of 13) 1. Removing bypass capacitor across the emitter leg resistor in a CE amplifier causes a. increase in current gain b. decrease in current gain c. increase

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING TUTORIAL QUESTION BANK : PULSE AND DIGITAL

More information

BHARATHIDASAN ENGINEERING COLLEGE

BHARATHIDASAN ENGINEERING COLLEGE BHARATHIDASAN ENGINEERING COLLEGE DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6401 - ELECTRONIC CIRCUITS - II QUESTION BANK II- YEAR IV SEM ACDEMIC YEAR: 2016-2017 EVEN SEMESTER EC6401 ELECTRONIC

More information

Semiconductor Devices

Semiconductor Devices Semiconductor Devices Modelling and Technology Source Electrons Gate Holes Drain Insulator Nandita DasGupta Amitava DasGupta SEMICONDUCTOR DEVICES Modelling and Technology NANDITA DASGUPTA Professor Department

More information

State the application of negative feedback and positive feedback (one in each case)

State the application of negative feedback and positive feedback (one in each case) (ISO/IEC - 700-005 Certified) Subject Code: 073 Model wer Page No: / N Important Instructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer

More information

For reference, the readers can browse through our ELECTRONIC CIRCUITS tutorial at https://www.tutorialspoint.com/electronic_circuits/index.htm.

For reference, the readers can browse through our ELECTRONIC CIRCUITS tutorial at https://www.tutorialspoint.com/electronic_circuits/index.htm. About the Tutorial In this tutorial, we will discuss all the important circuits that are related to pulse signals. In addition, we will also cover the circuits that generate and work with pulse signals.

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6401 ELECTRONICS CIRCUITS-II SEM / YEAR: IV / II year B.E.

More information

Associate In Applied Science In Electronics Engineering Technology Expiration Date:

Associate In Applied Science In Electronics Engineering Technology Expiration Date: PROGRESS RECORD Study your lessons in the order listed below. Associate In Applied Science In Electronics Engineering Technology Expiration Date: 1 2330A Current and Voltage 2 2330B Controlling Current

More information

Electronic Circuits EE359A

Electronic Circuits EE359A Electronic Circuits EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 1 Memory and Advanced Digital Circuits - 2 Chapter 11 2 Figure 11.1 (a) Basic latch. (b) The latch with the feedback loop opened.

More information

NOORUL ISLAM COLLEGE OF ENGG, KUMARACOIL. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGG. SUBJECT CODE: EC 1251 SUBJECT NAME: ELECTRONIC CIRCUITS-II

NOORUL ISLAM COLLEGE OF ENGG, KUMARACOIL. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGG. SUBJECT CODE: EC 1251 SUBJECT NAME: ELECTRONIC CIRCUITS-II NOORUL ISLAM COLLEGE OF ENGG, KUMARACOIL. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGG. SUBJECT CODE: EC 1251 SUBJECT NAME: ELECTRONIC CIRCUITS-II Prepared by, C.P.SREE BALA LEKSHMI (Lect/ECE) ELECTRONICS

More information

i Intelligent Digitize Emulated Achievement Lab

i Intelligent Digitize Emulated Achievement Lab Electronics Circuits Equipment Intelligent Digitize Emulated Achievement Lab intelligent digitize emulated achievement lab is a digitized-based training system, which utilizes integrated Hardware Platform,

More information

Time: 3 hours Max. Marks: 70 Answer any FIVE questions All questions carry equal marks

Time: 3 hours Max. Marks: 70 Answer any FIVE questions All questions carry equal marks Code: 9A02401 PRINCIPLES OF ELECTRICAL ENGINEERING (Common to EIE, E.Con.E, ECE & ECC) Time: 3 hours Max. Marks: 70 1 In a series RLC circuit, R = 5 Ω, L = 1 H and C = 1 F. A dc v ltage f 20 V is applied

More information

Government Polytechnic Muzaffarpur Name of the Lab: Applied Electronics Lab

Government Polytechnic Muzaffarpur Name of the Lab: Applied Electronics Lab Government Polytechnic Muzaffarpur Name of the Lab: Applied Electronics Lab Subject Code: 1620408 Experiment-1 Aim: To obtain the characteristics of field effect transistor (FET). Theory: The Field Effect

More information

Introduction to Simulation using EDWinXP

Introduction to Simulation using EDWinXP Introduction to Simulation using EDWinXP Introduction to Simulation using EDWinXP First Edition Copyright Notice ALL RIGHTS RESERVED. Any unauthorized reprint or use of this material is prohibited. No

More information

Basic Electrical Engineering

Basic Electrical Engineering Basic Electrical Engineering S.N. Singh Basic Electrical Engineering S.N. Singh Professor Department of Electrical Engineering Indian Institute of Technology Kanpur PHI Learning Private Limited New Delhi-110001

More information

ELECTRONIC CIRCUITS. Time: Three Hours Maximum Marks: 100

ELECTRONIC CIRCUITS. Time: Three Hours Maximum Marks: 100 EC 40 MODEL TEST PAPER - 1 ELECTRONIC CIRCUITS Time: Three Hours Maximum Marks: 100 Answer five questions, taking ANY TWO from Group A, any two from Group B and all from Group C. All parts of a question

More information

R & D Electronics DIGITAL IC TRAINER. Model : DE-150. Feature: Object: Specification:

R & D Electronics DIGITAL IC TRAINER. Model : DE-150. Feature: Object: Specification: DIGITAL IC TRAINER Model : DE-150 Object: To Study the Operation of Digital Logic ICs TTL and CMOS. To Study the All Gates, Flip-Flops, Counters etc. To Study the both the basic and advance digital electronics

More information

ELECTRONICS ADVANCED SUPPLEMENTARY LEVEL

ELECTRONICS ADVANCED SUPPLEMENTARY LEVEL ELECTRONICS ADVANCED SUPPLEMENTARY LEVEL AIMS The general aims of the subject are : 1. to foster an interest in and an enjoyment of electronics as a practical and intellectual discipline; 2. to develop

More information

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Post-lab Forms

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Post-lab Forms Facility of Engineering Biomedical Engineering Department Medical Electronic Lab BME (317) Post-lab Forms Prepared by Eng.Hala Amari Spring 2014 Facility of Engineering Biomedical Engineering Department

More information

DEPARTMENT OF ELECTRONICS

DEPARTMENT OF ELECTRONICS DEPARTMENT OF ELECTRONICS Academic Planner for odd Semesters Semester : I Subject : Electronics(ELT1). Course: B.Sc. (PME) Introduction to Number systems B Construction and types, working Review of P type

More information

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. ELECTRONIC PRINCIPLES AND APPLICATIONS

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. ELECTRONIC PRINCIPLES AND APPLICATIONS R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. DEPARTMENT OF PHYSICS QUESTION BANK FOR SEMESTER V PHYSICS PAPER VI (A) ELECTRONIC PRINCIPLES AND APPLICATIONS UNIT I: SEMICONDUCTOR DEVICES

More information

ELECTRONICS WITH DISCRETE COMPONENTS

ELECTRONICS WITH DISCRETE COMPONENTS ELECTRONICS WITH DISCRETE COMPONENTS Enrique J. Galvez Department of Physics and Astronomy Colgate University WILEY John Wiley & Sons, Inc. ^ CONTENTS Preface vii 1 The Basics 1 1.1 Foreword: Welcome to

More information

Number of Lessons:155 #14B (P) Electronics Technology with Digital and Microprocessor Laboratory Completion Time: 42 months

Number of Lessons:155 #14B (P) Electronics Technology with Digital and Microprocessor Laboratory Completion Time: 42 months PROGRESS RECORD Study your lessons in the order listed below. Number of Lessons:155 #14B (P) Electronics Technology with Digital and Microprocessor Laboratory Completion Time: 42 months 1 2330A Current

More information

Transistor Design & Analysis (Inverter)

Transistor Design & Analysis (Inverter) Experiment No. 1: DIGITAL ELECTRONIC CIRCUIT Transistor Design & Analysis (Inverter) APPARATUS: Transistor Resistors Connecting Wires Bread Board Dc Power Supply THEORY: Digital electronics circuits operate

More information

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET) Difference between BJTs and FETs Transistors can be categorized according to their structure, and two of the more commonly known transistor structures, are the BJT and FET. The comparison between BJTs

More information

Syllabus for: Electronics for F Y B Sc (Electronics) Semester- 1 (With effect from June 2014) PAPER I: Basic Electrical Circuits

Syllabus for: Electronics for F Y B Sc (Electronics) Semester- 1 (With effect from June 2014) PAPER I: Basic Electrical Circuits Unit I: Passive Devices Syllabus for: Electronics for F Y B Sc (Electronics) Semester- 1 (With effect from June 2014) PAPER I: Basic Electrical Circuits Resistors, Fixed resistors & variable resistors,

More information

OBJECTIVE TYPE QUESTIONS

OBJECTIVE TYPE QUESTIONS OBJECTIVE TYPE QUESTIONS Q.1 The breakdown mechanism in a lightly doped p-n junction under reverse biased condition is called (A) avalanche breakdown. (B) zener breakdown. (C) breakdown by tunnelling.

More information

ASTABLE MULTIVIBRATOR

ASTABLE MULTIVIBRATOR 555 TIMER ASTABLE MULTIIBRATOR MONOSTABLE MULTIIBRATOR 555 TIMER PHYSICS (LAB MANUAL) PHYSICS (LAB MANUAL) 555 TIMER Introduction The 555 timer is an integrated circuit (chip) implementing a variety of

More information

LINEAR IC APPLICATIONS

LINEAR IC APPLICATIONS 1 B.Tech III Year I Semester (R09) Regular & Supplementary Examinations December/January 2013/14 1 (a) Why is R e in an emitter-coupled differential amplifier replaced by a constant current source? (b)

More information

Q1. Explain the Astable Operation of multivibrator using 555 Timer IC.

Q1. Explain the Astable Operation of multivibrator using 555 Timer IC. Q1. Explain the Astable Operation of multivibrator using 555 Timer I. Answer: The following figure shows the 555 Timer connected for astable operation. A V PIN 8 PIN 7 B 5K PIN6 - S Q 5K PIN2 - Q PIN3

More information

Sub Code & Name: EC2251- ELECTRONIC CIRCUITS II Unit : I Branch : ECE Year:II

Sub Code & Name: EC2251- ELECTRONIC CIRCUITS II Unit : I Branch : ECE Year:II Unit : I Branch : ECE Year:II Page 01 of 06 UNIT 1 FEEDBACK AMPLIFIERS 9 Block diagram, Loop gain, Gain with feedback, Effects of negative feedback Sensitivity and desensitivity of gain, Cut-off frequencies,

More information

PREFACE xvii PRACTICAL TRANSISTOR CIRCUIT THEORY 1.1 Iterated Circuits 1.2 Symbols 1.3 Feedback 1.4 The Miller Effect 1.5 Transistors 1.6 The transistor gain-impedance relation 1.7 Ohm's law and dc current-voltage

More information

DIGITAL ELECTRONICS ANALOG ELECTRONICS

DIGITAL ELECTRONICS ANALOG ELECTRONICS DIGITAL ELECTRONICS 1. N10 4 Bit Binary Universal shift register. 2. N22- Random Access Memory (16*4). 3. N23- Read Only Memory. 4. N4-R-S/D-T Flip flop, characteristic and comparison. 5. Master Slave

More information

CMOS Digital Integrated Circuits Lec 11 Sequential CMOS Logic Circuits

CMOS Digital Integrated Circuits Lec 11 Sequential CMOS Logic Circuits Lec Sequential CMOS Logic Circuits Sequential Logic In Combinational Logic circuit Out Memory Sequential The output is determined by Current inputs Previous inputs Output = f(in, Previous In) The regenerative

More information

UPSC Electrical Engineering Syllabus

UPSC Electrical Engineering Syllabus UPSC Electrical Engineering Syllabus UPSC Electrical Engineering Syllabus PAPER I 1. Circuit Theory: Circuit components; network graphs; KCL, KVL; circuit analysis methods: nodal analysis, mesh analysis;

More information

Question Bank EC6401 ELECTRONIC CIRCUITS - II

Question Bank EC6401 ELECTRONIC CIRCUITS - II FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Madurai Sivagangai Main Road Madurai - 625 020. [An ISO 9001:2008 Certified Institution] SEMESTER: IV / ECE Question Bank EC6401 ELECTRONIC CIRCUITS -

More information

Multiple Category Scope and Sequence: Scope and Sequence Report For Course Standards and Objectives, Content, Skills, Vocabulary

Multiple Category Scope and Sequence: Scope and Sequence Report For Course Standards and Objectives, Content, Skills, Vocabulary Multiple Category Scope and Sequence: Scope and Sequence Report For Course Standards and Objectives, Content, Skills, Vocabulary Wednesday, August 20, 2014, 1:16PM Unit Course Standards and Objectives

More information

1. LINEAR WAVE SHAPING

1. LINEAR WAVE SHAPING 1. LINEAR WAVE SHAPING Aim: i) To design a low pass RC circuit for the given cutoff frequency and obtain its frequency response. ii) To observe the response of the designed low pass RC circuit for the

More information

ANALOG INTEGRATED CIRCUITS FOR COMMUNICATION Principles, Simulation and Design

ANALOG INTEGRATED CIRCUITS FOR COMMUNICATION Principles, Simulation and Design ANALOG INTEGRATED CIRCUITS FOR COMMUNICATION Principles, Simulation and Design ANALOG INTEGRATED CIRCUITS FOR COMMUNICATION Principles, Simulation and Design by Donald 0. Pederson University of California

More information

DC/AC CIRCUITS: CONVENTIONAL FLOW TEXTBOOKS

DC/AC CIRCUITS: CONVENTIONAL FLOW TEXTBOOKS 4 PEARSON CUSTOM ELECTRONICS TECHNOLOGY DC/AC CIRCUITS: CONVENTIONAL FLOW TEXTBOOKS AVAILABLE MARCH 2009 Boylestad Introductory Circuit Analysis, 11/e, 0-13-173044-4 Introduction 32 LC4501 Voltage and

More information

JEFFERSON COLLEGE COURSE SYLLABUS ETC255 INTRODUCTION TO DIGITAL CIRCUITS. 6 Credit Hours. Prepared by: Dennis Eimer

JEFFERSON COLLEGE COURSE SYLLABUS ETC255 INTRODUCTION TO DIGITAL CIRCUITS. 6 Credit Hours. Prepared by: Dennis Eimer JEFFERSON COLLEGE COURSE SYLLABUS ETC255 INTRODUCTION TO DIGITAL CIRCUITS 6 Credit Hours Prepared by: Dennis Eimer Revised Date: August, 2007 By Dennis Eimer Division of Technology Dr. John Keck, Dean

More information

DIGITAL ELECTRONICS WAVE SHAPING AND PULSE CIRCUITS. September 2012

DIGITAL ELECTRONICS WAVE SHAPING AND PULSE CIRCUITS. September 2012 AM 5-403 DIGITAL ELECTRONICS WAVE SHAPING AND PULSE CIRCUITS September 2012 DISTRIBUTION RESTRICTION: Approved for public release. Distribution is unlimited. DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO

More information

NORTH MAHARASHTRA UNIVERSITY, JALGAON

NORTH MAHARASHTRA UNIVERSITY, JALGAON , JALGAON Syllabus for F.Y.B.Sc. Semester I and II ELECTRONICS (w. e. f. June 2012) F.Y. B. Sc. Subject Electronics Syllabus Structure Semester Code Title Number of Lectures ELE-111 Paper I : Analog Electronics

More information

ENGINEERING TRIPOS PART II A ELECTRICAL AND INFORMATION ENGINEERING TEACHING LABORATORY EXPERIMENT 3B2-B DIGITAL INTEGRATED CIRCUITS

ENGINEERING TRIPOS PART II A ELECTRICAL AND INFORMATION ENGINEERING TEACHING LABORATORY EXPERIMENT 3B2-B DIGITAL INTEGRATED CIRCUITS ENGINEERING TRIPOS PART II A ELECTRICAL AND INFORMATION ENGINEERING TEACHING LABORATORY EXPERIMENT 3B2-B DIGITAL INTEGRATED CIRCUITS OBJECTIVES : 1. To interpret data sheets supplied by the manufacturers

More information

Fig 1: The symbol for a comparator

Fig 1: The symbol for a comparator INTRODUCTION A comparator is a device that compares two voltages or currents and switches its output to indicate which is larger. They are commonly used in devices such as They are commonly used in devices

More information

The steeper the phase shift as a function of frequency φ(ω) the more stable the frequency of oscillation

The steeper the phase shift as a function of frequency φ(ω) the more stable the frequency of oscillation It should be noted that the frequency of oscillation ω o is determined by the phase characteristics of the feedback loop. the loop oscillates at the frequency for which the phase is zero The steeper the

More information

Electronic PRINCIPLES

Electronic PRINCIPLES MALVINO & BATES Electronic PRINCIPLES SEVENTH EDITION Chapter 22 Nonlinear Op-Amp Circuits Topics Covered in Chapter 22 Comparators with zero reference Comparators with non-zero references Comparators

More information

UNIT 1. 9 What is the Causes of Free Response in Electrical Circuit. 12 Write the Expression for transient current and voltages of RL circuit.

UNIT 1. 9 What is the Causes of Free Response in Electrical Circuit. 12 Write the Expression for transient current and voltages of RL circuit. SUB: Electric Circuits and Electron Devices Course Code: UBEE309 UNIT 1 PART A 1 State Transient and Transient Time? 2 What is Tansient State? 3 What is Steady State? 4 Define Source Free Response 5 Define

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad 1 P a g e INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING TUTORIAL QUESTION BANK Name : INTEGRATED CIRCUITS APPLICATIONS Code

More information

Unit/Standard Number. LEA Task # Alignment

Unit/Standard Number. LEA Task # Alignment 1 Secondary Competency Task List 100 SAFETY 101 Demonstrate an understanding of State and School safety regulations. 102 Practice safety techniques for electronics work. 103 Demonstrate an understanding

More information

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Linear Integrated Circuits Applications

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Linear Integrated Circuits Applications About the Tutorial Linear Integrated Circuits are solid state analog devices that can operate over a continuous range of input signals. Theoretically, they are characterized by an infinite number of operating

More information

Summer 2015 Examination

Summer 2015 Examination Summer 2015 Examination Subject Code: 17445 Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

More information

SYLLABUS. osmania university CHAPTER - 1 : OPERATIONAL AMPLIFIER CHAPTER - 2 : OP-AMP APPLICATIONS ARATORS AND CONVERTERS

SYLLABUS. osmania university CHAPTER - 1 : OPERATIONAL AMPLIFIER CHAPTER - 2 : OP-AMP APPLICATIONS ARATORS AND CONVERTERS Contents i SYLLABUS osmania university UNIT - I CHAPTER - 1 : OPERATIONAL AMPLIFIER Operational Amplifiers-Characteristics, Open Loop Voltage Gain, Output Impedance, Input Impedance, Common Mode Rejection

More information

SUMMER 13 EXAMINATION Subject Code: Model Answer Page No: / N

SUMMER 13 EXAMINATION Subject Code: Model Answer Page No: / N Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

Gechstudentszone.wordpress.com

Gechstudentszone.wordpress.com 8.1 Operational Amplifier (Op-Amp) UNIT 8: Operational Amplifier An operational amplifier ("op-amp") is a DC-coupled high-gain electronic voltage amplifier with a differential input and, usually, a single-ended

More information

Solapur University, Solapur Syllabus for B.Sc. II Electronics Semester System To be implemented from Academic Year ) Course Structure: -

Solapur University, Solapur Syllabus for B.Sc. II Electronics Semester System To be implemented from Academic Year ) Course Structure: - 1 Solapur University, Solapur Syllabus for B.Sc. II Electronics Semester System To be implemented from Academic Year 2011-12 1) Course Structure: - Sr. Semester Paper Title Total No No. 1. Semester-III

More information

Index. Small-Signal Models, 14 saturation current, 3, 5 Transistor Cutoff Frequency, 18 transconductance, 16, 22 transit time, 10

Index. Small-Signal Models, 14 saturation current, 3, 5 Transistor Cutoff Frequency, 18 transconductance, 16, 22 transit time, 10 Index A absolute value, 308 additional pole, 271 analog multiplier, 190 B BiCMOS,107 Bode plot, 266 base-emitter voltage, 16, 50 base-emitter voltages, 296 bias current, 111, 124, 133, 137, 166, 185 bipolar

More information

the reactance of the capacitor, 1/2πfC, is equal to the resistance at a frequency of 4 to 5 khz.

the reactance of the capacitor, 1/2πfC, is equal to the resistance at a frequency of 4 to 5 khz. EXPERIMENT 12 INTRODUCTION TO PSPICE AND AC VOLTAGE DIVIDERS OBJECTIVE To gain familiarity with PSPICE, and to review in greater detail the ac voltage dividers studied in Experiment 14. PROCEDURE 1) Connect

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK IV SEMESTER EC6401 ELECTRONICS CIRCUITS-II Regulation 2013 Academic

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits Oscillators Sections of Chapter 15 + Additional Material A. Kruger Oscillators 1 Stability Recall definition of loop gain: T(jω) = βa A f ( j) A( j) 1 T( j) If T(jω) = -1, then

More information

CHAPTER 6 DIGITAL INSTRUMENTS

CHAPTER 6 DIGITAL INSTRUMENTS CHAPTER 6 DIGITAL INSTRUMENTS 1 LECTURE CONTENTS 6.1 Logic Gates 6.2 Digital Instruments 6.3 Analog to Digital Converter 6.4 Electronic Counter 6.6 Digital Multimeters 2 6.1 Logic Gates 3 AND Gate The

More information

Revised April Unit/Standard Number. Proficiency Level Achieved: (X) Indicates Competency Achieved to Industry Proficiency Level

Revised April Unit/Standard Number. Proficiency Level Achieved: (X) Indicates Competency Achieved to Industry Proficiency Level Unit/Standard Number Electrical, Electronic and Communications Engineering Technology/Technician CIP 15.0303 Task Grid Secondary Competency Task List 100 SAFETY 101 Demonstrate an understanding of state,

More information

MARIA COLLEGE OF ENGINEERING AND TECHNOLOGY, ATTOOR UNIT-1. Feedback Amplifiers

MARIA COLLEGE OF ENGINEERING AND TECHNOLOGY, ATTOOR UNIT-1. Feedback Amplifiers MARIA COLLEGE OF ENGINEERING AND TECHNOLOGY, ATTOOR DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING ELECTRONIC CIRCUITS-II 2 MARKS QUESTIONS & ANSWERS UNIT-1 Feedback Amplifiers 1. What is meant

More information

Careers in Electronics Using a Calculator Safety Precautions Dc Circuits p. 1 Fundamentals of Electricity p. 3 Matter, Elements, and Compounds p.

Careers in Electronics Using a Calculator Safety Precautions Dc Circuits p. 1 Fundamentals of Electricity p. 3 Matter, Elements, and Compounds p. Preface p. vii Careers in Electronics p. xii Using a Calculator p. xvi Safety Precautions p. xix Dc Circuits p. 1 Fundamentals of Electricity p. 3 Matter, Elements, and Compounds p. 4 A Closer Look at

More information

CMOS Digital Integrated Circuits Analysis and Design

CMOS Digital Integrated Circuits Analysis and Design CMOS Digital Integrated Circuits Analysis and Design Chapter 8 Sequential MOS Logic Circuits 1 Introduction Combinational logic circuit Lack the capability of storing any previous events Non-regenerative

More information

Devices and Op-Amps p. 1 Introduction to Diodes p. 3 Introduction to Diodes p. 4 Inside the Diode p. 6 Three Diode Models p. 10 Computer Circuit

Devices and Op-Amps p. 1 Introduction to Diodes p. 3 Introduction to Diodes p. 4 Inside the Diode p. 6 Three Diode Models p. 10 Computer Circuit Contents p. v Preface p. ix Devices and Op-Amps p. 1 Introduction to Diodes p. 3 Introduction to Diodes p. 4 Inside the Diode p. 6 Three Diode Models p. 10 Computer Circuit Analysis p. 16 MultiSIM Lab

More information

Clippers limiter circuits Vi > V Vi < V

Clippers limiter circuits Vi > V Vi < V Semiconductor Diode Clipper and Clamper Circuits Clippers Clipper circuits, also called limiter circuits, are used to eliminate portion of a signal that are above or below a specified level clip value.

More information

Paper No. Name of the Paper Theory marks Practical marks Periods per week Semester-I I Semiconductor

Paper No. Name of the Paper Theory marks Practical marks Periods per week Semester-I I Semiconductor Swami Ramanand Teerth Marathwada University, Nanded B. Sc. First Year Electronics Syllabus Semester system (To be implemented from Academic Year 2009-10) Name of the Theory marks Practical marks Periods

More information

1 Signals and systems, A. V. Oppenhaim, A. S. Willsky, Prentice Hall, 2 nd edition, FUNDAMENTALS. Electrical Engineering. 2.

1 Signals and systems, A. V. Oppenhaim, A. S. Willsky, Prentice Hall, 2 nd edition, FUNDAMENTALS. Electrical Engineering. 2. 1 Signals and systems, A. V. Oppenhaim, A. S. Willsky, Prentice Hall, 2 nd edition, 1996. FUNDAMENTALS Electrical Engineering 2.Processing - Analog data An analog signal is a signal that varies continuously.

More information

ELC224 Final Review (12/10/2009) Name:

ELC224 Final Review (12/10/2009) Name: ELC224 Final Review (12/10/2009) Name: Select the correct answer to the problems 1 through 20. 1. A common-emitter amplifier that uses direct coupling is an example of a dc amplifier. 2. The frequency

More information

Basic Logic Circuits

Basic Logic Circuits Basic Logic Circuits Required knowledge Measurement of static characteristics of nonlinear circuits. Measurement of current consumption. Measurement of dynamic properties of electrical circuits. Definitions

More information

Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET REV. NO. : REV.

Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET REV. NO. : REV. Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET LABORATORY MANUAL EXPERIMENT NO. ISSUE NO. : ISSUE DATE: July 200 REV. NO. : REV.

More information

Revised April Unit/Standard Number. High School Graduation Years 2016, 2017 and 2018

Revised April Unit/Standard Number. High School Graduation Years 2016, 2017 and 2018 Unit/Standard Number High School Graduation Years 2016, 2017 and 2018 Electrical, Electronic and Communications Engineering Technology/Technician CIP 15.0303 Task Grid Secondary Competency Task List 100

More information