TSEK38 Radio Frequency Transceiver Design: Project work B

Size: px
Start display at page:

Download "TSEK38 Radio Frequency Transceiver Design: Project work B"

Transcription

1 TSEK38 Project Work: Task specification A 1(15) TSEK38 Radio Frequency Transceiver Design: Project work B Course home page: Course responsible: Ted Johansson (ted.johansson@liu.se) LINKÖPING UNIVERSITY

2 2(15) Contents 1 Introduction and transceiver specification Selected architecture and design details Receiver calculations Calculation of the reference noise figure (NF) Linearity requirement on IIP Blocking and linearity requirement on IIP Selectivity requirement Receiver gain, automatic gain control (AGC), and ADC Architecture specification and system line-up analysis Transmitter calculations Estimation of the modulation accuracy by EVM Adjacent and Alternate channel power and linearity Transmitter gain, AGC, and DACs Architecture specification and line-up analysis Receiver performance verification in ADS Transmitter performance verification in ADS Supervision and reporting... 15

3 3(15) 1 Introduction and transceiver specification In this project you will design an RF transceiver (TRx) at the system level of abstraction. The familiarity with RF integrated circuits and especially understanding their specs and physical limitations is indispensable to successfully complete this design. The TRx should operate as 8-PSK system in half duplex mode (TDD). In this case the receiver (Rx) performance is not affected by the companion transmitter (TX). Moreover, different bands are assigned to TX and Rx so that a receiver does not suffer from adjacent/alternate power leakage due to other mobile transmitters in the system. As this TRx is supposed to implement Low-IF/Superheterodyne architecture, you should begin with a good frequency plan. Based on the minimum performance specs defined in Table 1, you will be able to derive the fundamental Rx and TX metrics like gain, noise figure, linearity, selectivity, local oscillator phase noise, adjacent channel rejection, etc. Next, you will distribute these metrics among the Rx and TX stages by using line-up analysis. In some cases you will be able to assign some of them to the TRx blocks directly, like noise figure of a passive filter or LO phase noise. Your design should match mature and low-cost CMOS technology that would typically be used in an industrial project. The detailed block specs should reflect the performances of the Rx/TX blocks reported in references given in Section 4 in the Transmitter Testbench document. Once all the TRx blocks are specified your design should be verified by simulation. For this purpose you should develop adequate models of the Rx and TX and simulate them using ADS software. Should some TRx specs go beyond limits, corrections in your design will be necessary.

4 4(15) Table 1. Transceiver specifications TRx type Modulation Channel BW /Spacing Data rate Transceiver, project B Half duplex (TDD) 8-PSK 1 MHz 600 kb/sec Receiver Transmitter Rx architecture Low-IF Tx architecture Superheterodyne Rx band MHz Tx band MHz Sensitivity -100 dbm, BER 10-3 Max output power 30 dbm Max input signal -20 dbm Min output power 5 dbm Intermodulation IIP dbm Output power switch 5 db 3 &6 MHz offset step Adjacent channel selectivity (*) 18 dbc ACPR Adj -38 dbc, 100 khz Alternate channel selectivity (*) 42 dbc ACPR Alt -48 dbc, 100 khz Blocking (*) MHz EVM (modulation accuracy) Blocking (*) 67 >10 MHz Residual AM 5 % (*) S in = -97 dbm, BER %

5 5(15) 2 Selected architecture and design details When writing the report, since you have probably already decided on the main features of the transceiver architecture, please start the report with an overview + diagram of the transceiver architecture. Also discuss the details of your chosen architecture, IF frequency selection, and other design considerations. The calculations will be easier to follow after the architecture overview.

6 6(15) 3 Receiver calculations In this section, the Rx parameters will be calculated by hand. The Rx calculations (and the corresponding TX calculations in section 4), are to be documented in a report and handed in to the examiner. When the report is OK from the examiner, then continue verifying the calculations using ADS simulations, as described in section 5. The design procedure of the Rx part can be performed as follows. 3.1 Calculation of the reference noise figure (NF) A small reserve should be taken. 3.2 Linearity requirement on IIP 3 Here, the effect of the Rx noise floor and local oscillator (LO) phase noise (PN) should be included. A reasonable PN value of LO should be assumed. Begin the calculation with the SNR budget (how much noise + distortion can be tolerated). 3.3 Blocking and linearity requirement on IIP 2 To estimate this spec the IQ down-conversion mixer should be addressed as it is the main contributor of IM2 distortions in Zero-IF receiver. For this purpose the gain of the Rx stages preceding the down-converter should be specified (at least roughly at this step). The strongest in-band blocker should be considered in terms of PN and LO spurious emission (reciprocal mixing effect). Also a leakage from RF to LO port should be taken into account in this case. A realistic isolation between the RF and LO port of the mixer should be assumed. The blocker can be modeled as a two-tone signal. Observe that the required IIP2 can largely surpass the achievable figures in chip design (< 40 dbm) so IP2 calibration technique should be put in perspective.

7 7(15) 3.4 Selectivity requirement Here, the adjacent/alternate channel effect on the wanted signal (wanted channel) must be verified in terms of the PN and LO spurious emission. Recall that the mechanism is again the reciprocal mixing. 3.5 Receiver gain, automatic gain control (AGC), and ADC Observe that AGC introduced at BB (in I and Q branches) tends to increase the IQ mismatch in the Rx, so a combination of AGC implemented at RF and at BB is an option. For practical reasons it would be a stepwise AGC which provides several levels of gain. Observe that for reduced gain the amplifier linearity improves. Besides, the channel filter rejection helps to limit the ADC dynamic range. Use, however, a low-order filter to simplify the analog front-end design. The ADC dynamic range and the respective ENOB should be chosen according to the channel filter rejection and the blocking profile. Derive the necessary ENOB with some reserve taking into account among others incomplete DC offset cancelation. 3.6 Architecture specification and system line-up analysis After the Rx architecture is specified, including passives between TRx and antenna, the DC offset cancellation mechanism and ADCs, then the Rx gain, NF and IIP3/IIP2 can be distributed among the Rx blocks. Consider IP3/IP2 of the blocks following channel filters with respect to their limited rejection. The DC offset cancellation and IP2 calibration can be embedded into the downconversion mixer resulting in approximately 1 db degradation of its NF and IIP3. Recall that passive mixers have been usually preferred for their low 1/f noise and better IIP3. The line-up analysis can be supported by Exel or Matlab programs to facilitate calculations performed in an iterative way. For simplicity assume the Rx blocks are impedance matched or their individual specs can be measured under the actual loading conditions in the Rx chain. Observe that no unique solution exists in this case. You should avoid extreme performance figures when exploring the design space as they might be difficult to achieve in practice, power-hungry, and also costly. Rather, try to use typical values for gain, NF, IIP3 of the Rx blocks in a given technology. Also the phase noise of the frequency synthesizer (LO) should not be extremely low.

8 8(15) In this project basically we stick to the CMOS technology. Going more into details you should compare with the reported designs what the typical and extreme specs of the building blocks are. Your design should match the performances of the Rx/Tx blocks reported in references given in Section 4 in the Transmitter Testbench document. As a result, minimum performance values of all the Rx blocks should be derived.

9 9(15) 4 Transmitter calculations In this section, the Tx parameters will be calculated by hand. The Tx calculations (and the corresponding Rx calculations in section 3), are to be documented in a report and handed in to the examiner. When the report is OK from the examiner, then continue verifying the calculations using ADS simulations, as described in section 6. The design procedure of the Tx part can be performed as follows. 4.1 Estimation of the modulation accuracy by EVM The contribution of the LO phase noise and IQ imbalance can be calculated directly. Contributions by other factors such as ISI, carrier leakage, nonlinearities, etc. would be limited by the target EVM value. 4.2 Adjacent and Alternate channel power and linearity The transmitter OIP3 and OIP5 will be estimated to meet the ACPR requirements. The minimum compression P1dB can be estimated directly from PTx maximum value, but OIP3 is likely to impose more stringent condition on P1dB, as demonstrated in the lecture notes. 4.3 Transmitter gain, AGC, and DACs The Tx output stages, especially the PA, can be supplied using a higher voltage (to keep current low) and it is more practical to discuss Tx gain in terms of power rather than voltage. To save power of a mobile Tx or to cope with the near-far problem, the base station would command the Tx to reduce its power gain whenever possible. Stepwise gain control can be introduced at RF in the PA and in PA driver rather than at analog BB. In this way a possible extra IQ imbalance degrading the Tx signal can be avoided. Some gain control at BB is an option. The DAC dynamic range (ENOB) and operation frequency should be chosen with respect to the pulse shaping and also the possible gain control). Up-sampling (actually interpolation) is recommended in order to relax the requirements for the reconstruction filter. Discuss how those problems can be solved in your design.

10 10(15) 4.4 Architecture specification and line-up analysis Take advantage of the well-known figures such as passive filter loss or maximum signal levels. Then distribute the gain and IP3 over the Tx blocks.

11 11(15) 5 Receiver performance verification in ADS When the Rx line-up analysis is completed, the Rx performance should be verified. For this purpose you should develop an ADS high-level model of your Rx where performances of all the Rx blocks including LO are well defined. Some blocks can be simplified, specifically the AGC can be replaced by a fixed gain amplifier. A/D conversion can be omitted in this model, too. Next, the Rx model would be exposed to all the tests (for sensitivity, linearity, interference, phase noise effect, etc.) discussed above in Intermodulation and blocking effects should be verified under LO phase noise. As it is cumbersome to model the LO spurious content, instead the PN level can be raised accordingly (typically by 3 db). While IP3 can be verified by two-tone tests, for IP2 the strongest blocker should be used and modeled by closely spaced two-tones. Recall that the available mixer model in ADS needs to be modified to mimic IM2 effects at baseband. Adjacent and Alternate channel selectivity should be verified like blockers (including PN and IM2 distortion). IQ imbalance should also be addressed and its effect on various tests should be measured. That is, the tests should be rerun for typical IQ mismatch values (such as 2-3 deg and db). Note that in practice, the IQ mismatch can be reduced by correction techniques but not completely eliminated. For each test the ADS simulation modes (HB/ENV) and conditions should be chosen appropriately. Observe that in most cases the measurement of the output SNR or SNDR would be sufficient to verify the Rx correctness (recommended). Alternatively, the BER measurement can be used but it is more CPU intensive (Ptolemy simulation is necessary) and the test setup requires compensation of delay between the Rx baseband and the reference test pattern. Should SNR (SNDR) go beyond the limit in some tests, corrections in your design will be necessary until all the tests are passed. The available ADS test benchmarks should facilitate your work. Once the transmitter (Tx) model in Ptolemy is also available, the receiver can be tested with the modulated RF signal using a power attenuator block. While keeping the Tx ideal (so called golden transmitter ), the effect of different Rx imperfections on the received constellation can be observed and measured also by EVM.

12 12(15) To summarize the Rx ADS simulations, what (at least) is required are the following simulations: a. Gain, SNR, NF. b. IIP3 and IIP2 (simulate and calculate). c. Adjacent and alternate channel selectivity (include LO PN, RF-LO mixer isolation). Include errors from Tx leakage for FDD receivers, PN. d. blocking. Finally, connect an ideal Tx output to the Rx input through an attenuator (representing an ideal link) and run baseband to baseband.

13 TSEK38 Project Work: Task specification B (15)

14 TSEK38 Project Work: Task specification A (15) 6 Transmitter performance verification in ADS Once an ADS model is set up, the tests for EVM and ACPR should be run. Some blocks like AGC can be simplified, i.e. replaced by fixed-gain amplifiers. DAC can be excluded from the simulation model. All Tx basic specs, esp. nonlinearities, PN, IQ imbalance should be accounted for. Also the carrier leakage should be verified by simulation and its effect on the constellation should be shown. Under all specified conditions the EVM and ACPR requirements should be met. In ACPR test (with Ptolemy), the power leakage should be integrated over the predefined bandwidth. Recall that no filter after PA can reduce this leakage so it is the power level and PA linearity that decides ACPR. The residual AM can be verified with respect to the PAs PM-AM conversion, as well as due to carrier feedthrough. The effect of IQ imbalance on EVM should also be verified (how much imbalance can be tolerated). Should your Tx fail some tests, appropriate revisions in the analytical model will be necessary and the respective simulations repeated. As it also happens in practical testing the Tx can be connected through an attenuator block to a golden receiver which can be the receiver that you have designed, but ideally with removed imperfections. In this case you can observe and measure the Tx performance at baseband, i.e. at the Rx output. To summarize the Tx ADS simulations, what (at least) is required are the following simulations: a. Gain, output power. b. ACPR, EVM. Include and verify errors from IQ imbalance, LO PN, carrier leakage from RF to LO in the mixer. LINKÖPING UNIVERSITY

15 (15) 7 Supervision and reporting The project is supervised by the technical assistant. Three seminar occasions are available in the course schedule to support your design work. This work should run in two stages: 1. In the first stage, the Rx/Tx system analysis including the line-up analysis should be completed and the detailed results summarized in Report 1 (following Section 3 for the Rx, and Section 4 for the Tx). Please name the report as: TSEK38_2018_Project_B_Report1_nnnnn_Vx.pdf where Vx is your version number (just to be sure of which version it is, if needed to be updated after feedback from the examiner) and where nnnnn is your student-id (unique part of your student address). Reports should present good technical quality, with the used equations and calculations, and submitted in PDF format. Poor-quality reports (e.g. handwritten) will not be accepted. Mail "Report 1" to the examiner at ted.johansson@liu.se. 2. When the first report is approved, you should develop the Rx and Tx model in ADS to verify your TRx design by simulation as indicated in Section 5 for the Rx, and Section 6 for the Tx according to the design specs defined in Table 1. When all the tests are successfully completed the final report (Report 2) should be prepared and mailed to the examiner. To easily follow the calculations and simulations, extend Report 1 with the simulations results and comparison between calculated and simulated data into Report 2. Please name the report as: TSEK38_2018_Project_B_Report2_nnnnn_Vx.pdf

TSEK38: Radio Frequency Transceiver Design Lecture 7: Receiver Synthesis (II)

TSEK38: Radio Frequency Transceiver Design Lecture 7: Receiver Synthesis (II) TSEK38: Radio Frequency Transceiver Design Lecture 7: Receiver Synthesis (II) Ted Johansson, ISY ted.johansson@liu.se Systematic Receiver Synthesis (II) 4.3 Intermodulation characteristics Phase noise

More information

TSEK38: Radio Frequency Transceiver Design Lecture 3: Superheterodyne TRX design

TSEK38: Radio Frequency Transceiver Design Lecture 3: Superheterodyne TRX design TSEK38: Radio Frequency Transceiver Design Lecture 3: Superheterodyne TRX design Ted Johansson, ISY ted.johansson@liu.se 2 Outline of lecture 3 Introduction RF TRX architectures (3) Superheterodyne architecture

More information

ELEN 701 RF & Microwave Systems Engineering. Lecture 8 November 8, 2006 Dr. Michael Thorburn Santa Clara University

ELEN 701 RF & Microwave Systems Engineering. Lecture 8 November 8, 2006 Dr. Michael Thorburn Santa Clara University ELEN 701 RF & Microwave Systems Engineering Lecture 8 November 8, 2006 Dr. Michael Thorburn Santa Clara University System Noise Figure Signal S1 Noise N1 GAIN = G Signal G x S1 Noise G x (N1+No) Self Noise

More information

TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation. Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation. Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation Ted Johansson, EKS, ISY 2 RX Nonlinearity Issues, Demodulation RX nonlinearities (parts of 2.2) System Nonlinearity Sensitivity

More information

TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation. Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation. Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation Ted Johansson, EKS, ISY RX Nonlinearity Issues: 2.2, 2.4 Demodulation: not in the book 2 RX nonlinearities System Nonlinearity

More information

TSEK38: Radio Frequency Transceiver Design Lecture 6: Receiver Synthesis (I)

TSEK38: Radio Frequency Transceiver Design Lecture 6: Receiver Synthesis (I) TSEK38: Radio Frequency Transceiver Design Lecture 6: Receiver Synthesis (I) Ted Johansson, ISY ted.johansson@liu.se Systematic Receiver Synthesis (1) 4.1 Introduction 4. Sensitivity, Noise Figure Receiver

More information

ELEN 701 RF & Microwave Systems Engineering. Lecture 4 October 11, 2006 Dr. Michael Thorburn Santa Clara University

ELEN 701 RF & Microwave Systems Engineering. Lecture 4 October 11, 2006 Dr. Michael Thorburn Santa Clara University ELEN 7 RF & Microwave Systems Engineering Lecture 4 October, 26 Dr. Michael Thorburn Santa Clara University Lecture 5 Receiver System Analysis and Design, Part II Key Parameters Intermodulation Characteristics

More information

Receiver Architecture

Receiver Architecture Receiver Architecture Receiver basics Channel selection why not at RF? BPF first or LNA first? Direct digitization of RF signal Receiver architectures Sub-sampling receiver noise problem Heterodyne receiver

More information

ELT Receiver Architectures and Signal Processing Exam Requirements and Model Questions 2018

ELT Receiver Architectures and Signal Processing Exam Requirements and Model Questions 2018 TUT/ICE 1 ELT-44006 Receiver Architectures and Signal Processing Exam Requirements and Model Questions 2018 General idea of these Model Questions is to highlight the central knowledge expected to be known

More information

ADI 2006 RF Seminar. Chapter II RF/IF Components and Specifications for Receivers

ADI 2006 RF Seminar. Chapter II RF/IF Components and Specifications for Receivers ADI 2006 RF Seminar Chapter II RF/IF Components and Specifications for Receivers 1 RF/IF Components and Specifications for Receivers Fixed Gain and Variable Gain Amplifiers IQ Demodulators Analog-to-Digital

More information

Bridging the Gap between System & Circuit Designers

Bridging the Gap between System & Circuit Designers Bridging the Gap between System & Circuit Designers October 27, 2004 Presented by: Kal Kalbasi Q & A Marc Petersen Copyright 2003 Agilent Technologies, Inc. The Gap System Communication System Design System

More information

Receiver Architectures

Receiver Architectures 83080RA/1 Receiver Architectures Markku Renfors Tampere University of Technology Digital Media Institute/Telecommunications 83080RA/2 Topics 1. Main analog components for receivers - amplifiers - filters

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK 17 Product Application Notes Introduction

More information

Radio Receiver Architectures and Analysis

Radio Receiver Architectures and Analysis Radio Receiver Architectures and Analysis Robert Wilson December 6, 01 Abstract This article discusses some common receiver architectures and analyzes some of the impairments that apply to each. 1 Contents

More information

Full Duplex CMOS Transceiver with On-Chip Self-Interference Cancelation. Seyyed Amir Ayati

Full Duplex CMOS Transceiver with On-Chip Self-Interference Cancelation. Seyyed Amir Ayati Full Duplex CMOS Transceiver with On-Chip Self-Interference Cancelation by Seyyed Amir Ayati A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved

More information

Agilent Highly Accurate Amplifier ACLR and ACPR Testing with the Agilent N5182A MXG Vector Signal Generator. Application Note

Agilent Highly Accurate Amplifier ACLR and ACPR Testing with the Agilent N5182A MXG Vector Signal Generator. Application Note Agilent Highly Accurate Amplifier ACLR and ACPR Testing with the Agilent N5182A MXG Vector Signal Generator Application Note Introduction 1 0 0 1 Symbol encoder I Q Baseband filters I Q IQ modulator Other

More information

SSB0260A Single Sideband Mixer GHz

SSB0260A Single Sideband Mixer GHz Single Sideband Mixer.2 6. GHz FEATURES LO/RF Frequency: Input IP3: Sideband Suppression: LO Leakage: LO Power: DC Power:.2 6. GHz +32 dbm -45 dbc (Typical) -5 dbm (Typical) -1 to +1 dbm +5V @ 5 ma DESCRIPTION

More information

6.976 High Speed Communication Circuits and Systems Lecture 20 Performance Measures of Wireless Communication

6.976 High Speed Communication Circuits and Systems Lecture 20 Performance Measures of Wireless Communication 6.976 High Speed Communication Circuits and Systems Lecture 20 Performance Measures of Wireless Communication Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott

More information

ADI 2006 RF Seminar. Chapter VI A Detailed Look at Wireless Signal Chain Architectures

ADI 2006 RF Seminar. Chapter VI A Detailed Look at Wireless Signal Chain Architectures DI 2006 R Seminar Chapter VI Detailed Look at Wireless Chain rchitectures 1 Receiver rchitectures Receivers are designed to detect and demodulate the desired signal and remove unwanted blockers Receiver

More information

1 Introduction to Highly Integrated and Tunable RF Receiver Front Ends

1 Introduction to Highly Integrated and Tunable RF Receiver Front Ends 1 Introduction to Highly Integrated and Tunable RF Receiver Front Ends 1.1 Introduction With the ever-increasing demand for instant access to data over wideband communication channels, the quest for a

More information

26.8: A 1.9GHz Single-Chip CMOS PHS Cellphone

26.8: A 1.9GHz Single-Chip CMOS PHS Cellphone 26.8: A 1.9GHz Single-Chip CMOS PHS Cellphone William W. Si, Srenik Mehta, Hirad Samavati, Manolis Terrovitis, Michael Mack, KeithOnodera, SteveJen, Susan Luschas, Justin Hwang, SuniMendis, DavidSu, BruceWooley

More information

Linköping University Post Print. Built-in Loopback Test for IC RF Transceivers

Linköping University Post Print. Built-in Loopback Test for IC RF Transceivers Linköping University Post Print Built-in Loopback Test for IC RF Transceivers Jerzy Dabrowski and Rashad Ramzan N.B.: When citing this work, cite the original article. 2009 IEEE. Personal use of this material

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v01.05.00 HMC141/142 MIXER OPERATION

More information

RF Integrated Circuits

RF Integrated Circuits Introduction and Motivation RF Integrated Circuits The recent explosion in the radio frequency (RF) and wireless market has caught the semiconductor industry by surprise. The increasing demand for affordable

More information

ELEN 701 RF & Microwave Systems Engineering. Lecture 2 September 27, 2006 Dr. Michael Thorburn Santa Clara University

ELEN 701 RF & Microwave Systems Engineering. Lecture 2 September 27, 2006 Dr. Michael Thorburn Santa Clara University ELEN 701 RF & Microwave Systems Engineering Lecture 2 September 27, 2006 Dr. Michael Thorburn Santa Clara University Lecture 2 Radio Architecture and Design Considerations, Part I Architecture Superheterodyne

More information

Session 3. CMOS RF IC Design Principles

Session 3. CMOS RF IC Design Principles Session 3 CMOS RF IC Design Principles Session Delivered by: D. Varun 1 Session Topics Standards RF wireless communications Multi standard RF transceivers RF front end architectures Frequency down conversion

More information

TestData Summary of 5.2GHz WLAN Direct Conversion RF Transceiver Board

TestData Summary of 5.2GHz WLAN Direct Conversion RF Transceiver Board Page 1 of 16 ========================================================================================= TestData Summary of 5.2GHz WLAN Direct Conversion RF Transceiver Board =========================================================================================

More information

Radio Research Directions. Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles

Radio Research Directions. Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles Radio Research Directions Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles Outline Introduction Millimeter-Wave Transceivers - Applications

More information

Full Duplex Radios. Sachin Katti Kumu Networks & Stanford University 4/17/2014 1

Full Duplex Radios. Sachin Katti Kumu Networks & Stanford University 4/17/2014 1 Full Duplex Radios Sachin Katti Kumu Networks & Stanford University 4/17/2014 1 It is generally not possible for radios to receive and transmit on the same frequency band because of the interference that

More information

Receiver Design. Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21

Receiver Design. Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21 Receiver Design Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21 MW & RF Design / Prof. T. -L. Wu 1 The receiver mush be very sensitive to -110dBm

More information

RF Receiver Hardware Design

RF Receiver Hardware Design RF Receiver Hardware Design Bill Sward bsward@rtlogic.com February 18, 2011 Topics Customer Requirements Communication link environment Performance Parameters/Metrics Frequency Conversion Architectures

More information

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 20.5 A 2.4GHz CMOS Transceiver and Baseband Processor Chipset for 802.11b Wireless LAN Application George Chien, Weishi Feng, Yungping

More information

An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver

An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver Farbod Behbahani John Leete Alexandre Kral Shahrzad Tadjpour Karapet Khanoyan Paul J. Chang Hooman Darabi Maryam Rofougaran

More information

Interference Issues between UMTS & WLAN in a Multi-Standard RF Receiver

Interference Issues between UMTS & WLAN in a Multi-Standard RF Receiver Interference Issues between UMTS & WLAN in a Multi-Standard RF Receiver Nastaran Behjou, Basuki E. Priyanto, Ole Kiel Jensen, and Torben Larsen RISC Division, Department of Communication Technology, Aalborg

More information

THE BASICS OF RADIO SYSTEM DESIGN

THE BASICS OF RADIO SYSTEM DESIGN THE BASICS OF RADIO SYSTEM DESIGN Mark Hunter * Abstract This paper is intended to give an overview of the design of radio transceivers to the engineer new to the field. It is shown how the requirements

More information

Digital Signal Analysis

Digital Signal Analysis Digital Signal Analysis Objectives - Provide a digital modulation overview - Review common digital radio impairments Digital Modulation Overview Signal Characteristics to Modify Polar Display / IQ Relationship

More information

Introduction to Receivers

Introduction to Receivers Introduction to Receivers Purpose: translate RF signals to baseband Shift frequency Amplify Filter Demodulate Why is this a challenge? Interference Large dynamic range required Many receivers must be capable

More information

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 678A 40MHZ TO 900MHZ DIRECT CONVERSION QUADRATURE DEMODULATOR

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 678A 40MHZ TO 900MHZ DIRECT CONVERSION QUADRATURE DEMODULATOR DESCRIPTION QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 678A LT5517 Demonstration circuit 678A is a 40MHz to 900MHz Direct Conversion Quadrature Demodulator featuring the LT5517. The LT 5517 is a direct

More information

TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 1a: Course Introduction

TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 1a: Course Introduction TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 1a: Course Introduction Ted Johansson, ISY ted.johansson@liu.se RFIC Main Objectives Advanced continuation of TSEK02 Radio Electronics Main focus

More information

Keywords: GPS, receiver, GPS receiver, MAX2769, 2769, 1575MHz, Integrated GPS Receiver, Global Positioning System

Keywords: GPS, receiver, GPS receiver, MAX2769, 2769, 1575MHz, Integrated GPS Receiver, Global Positioning System Maxim > Design Support > Technical Documents > User Guides > APP 3910 Keywords: GPS, receiver, GPS receiver, MAX2769, 2769, 1575MHz, Integrated GPS Receiver, Global Positioning System USER GUIDE 3910 User's

More information

APPLICATION NOTE 3942 Optimize the Buffer Amplifier/ADC Connection

APPLICATION NOTE 3942 Optimize the Buffer Amplifier/ADC Connection Maxim > Design Support > Technical Documents > Application Notes > Communications Circuits > APP 3942 Maxim > Design Support > Technical Documents > Application Notes > High-Speed Interconnect > APP 3942

More information

Combining filters and self-interference cancellation for mixer-first receivers in Full Duplex and Frequency-Division Duplex transceiver systems

Combining filters and self-interference cancellation for mixer-first receivers in Full Duplex and Frequency-Division Duplex transceiver systems Combining filters and self-interference cancellation for mixer-first receivers in Full Duplex and Frequency-Division Duplex transceiver systems Gert-Jan Groot Wassink, bachelor student Electrical Engineering

More information

Reconfigurable 6 GHz Vector Signal Transceiver with I/Q Interface

Reconfigurable 6 GHz Vector Signal Transceiver with I/Q Interface SPECIFICATIONS PXIe-5645 Reconfigurable 6 GHz Vector Signal Transceiver with I/Q Interface Contents Definitions...2 Conditions... 3 Frequency...4 Frequency Settling Time... 4 Internal Frequency Reference...

More information

A 1.7-to-2.2GHz Full-Duplex Transceiver System with >50dB Self-Interference Cancellation over 42MHz Bandwidth

A 1.7-to-2.2GHz Full-Duplex Transceiver System with >50dB Self-Interference Cancellation over 42MHz Bandwidth A 1.7-to-2.2GHz Full-Duplex Transceiver System with >50dB Self-Interference Cancellation Tong Zhang, Ali Najafi, Chenxin Su, Jacques C. Rudell University of Washington, Seattle Feb. 8, 2017 International

More information

A 1.9GHz Single-Chip CMOS PHS Cellphone

A 1.9GHz Single-Chip CMOS PHS Cellphone A 1.9GHz Single-Chip CMOS PHS Cellphone IEEE JSSC, Vol. 41, No.12, December 2006 William Si, Srenik Mehta, Hirad Samavati, Manolis Terrovitis, Michael Mack, Keith Onodera, Steve Jen, Susan Luschas, Justin

More information

Today s communication

Today s communication From October 2009 High Frequency Electronics Copyright 2009 Summit Technical Media, LLC Selecting High-Linearity Mixers for Wireless Base Stations By Stephanie Overhoff Maxim Integrated Products, Inc.

More information

TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 1a: Introduction

TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 1a: Introduction TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 1a: Introduction Ted Johansson, EKS, ISY ted.johansson@liu.se RFIC Main Objectives Advanced continuation of TSEK02 Radio Electronics Main focus

More information

Analog and RF circuit techniques in nanometer CMOS

Analog and RF circuit techniques in nanometer CMOS Analog and RF circuit techniques in nanometer CMOS Bram Nauta University of Twente The Netherlands http://icd.ewi.utwente.nl b.nauta@utwente.nl UNIVERSITY OF TWENTE. Outline Introduction Balun-LNA-Mixer

More information

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2 ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2 20.2 A Digitally Calibrated 5.15-5.825GHz Transceiver for 802.11a Wireless LANs in 0.18µm CMOS I. Bouras 1, S. Bouras 1, T. Georgantas

More information

Today s mobile devices

Today s mobile devices PAGE 1 NOVEMBER 2013 Highly Integrated, High Performance Microwave Radio IC Chipsets cover 6-42 GHz Bands Complete Upconversion & Downconversion Chipsets for Microwave Point-to-Point Outdoor Units (ODUs)

More information

Radioelectronics RF CMOS Transceiver Design

Radioelectronics RF CMOS Transceiver Design Radioelectronics RF CMOS Transceiver Design http://www.ek.isy.liu.se/ courses/tsek26/ Jerzy Dąbrowski Division of Electronic Devices Department of Electrical Engineering (ISY) Linköping University e-mail:

More information

RF/IF Terminology and Specs

RF/IF Terminology and Specs RF/IF Terminology and Specs Contributors: Brad Brannon John Greichen Leo McHugh Eamon Nash Eberhard Brunner 1 Terminology LNA - Low-Noise Amplifier. A specialized amplifier to boost the very small received

More information

Modeling Physical PCB Effects 5&

Modeling Physical PCB Effects 5& Abstract Getting logical designs to meet specifications is the first step in creating a manufacturable design. Getting the physical design to work is the next step. The physical effects of PCB materials,

More information

Introduction to CMOS RF Integrated Circuits Design

Introduction to CMOS RF Integrated Circuits Design II. RFIC System Overview Fall 0, Prof. JianJun Zhou II- Outline Introduction RF Transceiver rchitectures RF System Considerations Sensitivity and Selectivity Noise Figure Dynamic Range -db CP and IP Fall

More information

A CMOS Sigma-Delta Digital Intermediate Frequency. to Radio Frequency Transmitter. Yongping Han

A CMOS Sigma-Delta Digital Intermediate Frequency. to Radio Frequency Transmitter. Yongping Han A CMOS Sigma-Delta Digital Intermediate Frequency to Radio Frequency Transmitter by Yongping Han A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

More information

A 60GHz Transceiver RF Front-End

A 60GHz Transceiver RF Front-End TAMU ECEN625 FINAL PROJECT REPORT 1 A 60GHz Transceiver RF Front-End Xiangyong Zhou, UIN 421002457, Qiaochu Yang, UIN 221007758, Abstract This final report presents a 60GHz two-step conversion heterodyne

More information

Chapter 6. Case Study: 2.4-GHz Direct Conversion Receiver. 6.1 Receiver Front-End Design

Chapter 6. Case Study: 2.4-GHz Direct Conversion Receiver. 6.1 Receiver Front-End Design Chapter 6 Case Study: 2.4-GHz Direct Conversion Receiver The chapter presents a 0.25-µm CMOS receiver front-end designed for 2.4-GHz direct conversion RF transceiver and demonstrates the necessity and

More information

UNIVERSITY OF PAVIA. Self-interference Cancellation Techniques. for SAW-less Transceivers PHD THESIS IN MICROELECTRONICS XXX CYCLE

UNIVERSITY OF PAVIA. Self-interference Cancellation Techniques. for SAW-less Transceivers PHD THESIS IN MICROELECTRONICS XXX CYCLE UNIVERSITY OF PAVIA Department of Electrical, Computer and Biomedical Engineering PHD THESIS IN MICROELECTRONICS XXX CYCLE Self-interference Cancellation Techniques for SAW-less Transceivers Supervisor:

More information

3GPP Radio Prototyping Using Radio420X. Technical Article. 3GPP Radio Prototyping Using Radio420X. nutaq.com

3GPP Radio Prototyping Using Radio420X. Technical Article. 3GPP Radio Prototyping Using Radio420X. nutaq.com Technical Article 3GPP Radio Prototyping Using Radio420X 1 3GPP Radio Prototyping Using Radio420X Written by M. Ahmed Ouameur, PhD, MBA Abstract This application note addresses 3GPP radio design and prototyping

More information

General configuration

General configuration Transmitter General configuration In some cases the modulator operates directly at the transmission frequency (no up conversion required) In digital transmitters, the information is represented by the

More information

Keysight Technologies

Keysight Technologies Keysight Technologies Generating Signals Basic CW signal Block diagram Applications Analog Modulation Types of analog modulation Block diagram Applications Digital Modulation Overview of IQ modulation

More information

Transceiver Architectures (III)

Transceiver Architectures (III) Image-Reject Receivers Transceiver Architectures (III) Since the image and the signal lie on the two sides of the LO frequency, it is possible to architect the RX so that it can distinguish between the

More information

Fully integrated UHF RFID mobile reader with power amplifiers using System-in-Package (SiP)

Fully integrated UHF RFID mobile reader with power amplifiers using System-in-Package (SiP) Fully integrated UHF RFID mobile reader with power amplifiers using System-in-Package (SiP) Hyemin Yang 1, Jongmoon Kim 2, Franklin Bien 3, and Jongsoo Lee 1a) 1 School of Information and Communications,

More information

Keysight Technologies Making Accurate Intermodulation Distortion Measurements with the PNA-X Network Analyzer, 10 MHz to 26.5 GHz

Keysight Technologies Making Accurate Intermodulation Distortion Measurements with the PNA-X Network Analyzer, 10 MHz to 26.5 GHz Keysight Technologies Making Accurate Intermodulation Distortion Measurements with the PNA-X Network Analyzer, 10 MHz to 26.5 GHz Application Note Overview This application note describes accuracy considerations

More information

LTE: System Specifications and Their Impact on RF & Base Band Circuits Application Note

LTE: System Specifications and Their Impact on RF & Base Band Circuits Application Note LTE: System Specifications and Their Impact on RF & Base Band Circuits Application Note Products: R&S FSW R&S SMU R&S SFU R&S FSV R&S SMJ R&S FSUP RF physical layer specifications (such as 3GPP TS36.104)

More information

PTX-0350 RF UPCONVERTER, MHz

PTX-0350 RF UPCONVERTER, MHz PTX-0350 RF UPCONVERTER, 300 5000 MHz OPERATING MODES I/Q upconverter RF = LO + IF upconverter RF = LO - IF upconverter Synthesizer 10 MHz REFERENCE INPUT/OUTPUT EXTERNAL LOCAL OSCILLATOR INPUT I/Q BASEBAND

More information

APPLICATION NOTE 1962 Mar 26, 2003 Figure 1

APPLICATION NOTE 1962 Mar 26, 2003 Figure 1 Maxim > Design Support > Technical Documents > Application Notes > Wireless and RF > APP 1962 Keywords: rf, rfic, wireless, td-scdma, evm, acir, acs, rf ics, rfics APPLICATION NOTE 1962 TD-SCDMA Reference

More information

RF, Microwave & Wireless. All rights reserved

RF, Microwave & Wireless. All rights reserved RF, Microwave & Wireless All rights reserved 1 Non-Linearity Phenomenon All rights reserved 2 Physical causes of nonlinearity Operation under finite power-supply voltages Essential non-linear characteristics

More information

2012 LitePoint Corp LitePoint, A Teradyne Company. All rights reserved.

2012 LitePoint Corp LitePoint, A Teradyne Company. All rights reserved. LTE TDD What to Test and Why 2012 LitePoint Corp. 2012 LitePoint, A Teradyne Company. All rights reserved. Agenda LTE Overview LTE Measurements Testing LTE TDD Where to Begin? Building a LTE TDD Verification

More information

mm-wave Transceiver Challenges for the 5G and 60GHz Standards Prof. Emanuel Cohen Technion

mm-wave Transceiver Challenges for the 5G and 60GHz Standards Prof. Emanuel Cohen Technion mm-wave Transceiver Challenges for the 5G and 60GHz Standards Prof. Emanuel Cohen Technion November 11, 11, 2015 2015 1 mm-wave advantage Why is mm-wave interesting now? Available Spectrum 7 GHz of virtually

More information

Technology Trend of Ultra-High Data Rate Wireless CMOS Transceivers

Technology Trend of Ultra-High Data Rate Wireless CMOS Transceivers 2017.07.03 Technology Trend of Ultra-High Data Rate Wireless CMOS Transceivers Akira Matsuzawa and Kenichi Okada Tokyo Institute of Technology Contents 1 Demand for high speed data transfer Developed high

More information

Common RF Test On ATE

Common RF Test On ATE Common RF Test On ATE ICTEST8 the 10 th test symposium COE Expert Engineer (ADVANTEST) Kevin.Yan 2017/12/15 All Rights Reserved - ADVANTEST CORPORATION 1 Agenda RF Typical test items Introduction Test

More information

Co-existence. DECT/CAT-iq vs. other wireless technologies from a HW perspective

Co-existence. DECT/CAT-iq vs. other wireless technologies from a HW perspective Co-existence DECT/CAT-iq vs. other wireless technologies from a HW perspective Abstract: This White Paper addresses three different co-existence issues (blocking, sideband interference, and inter-modulation)

More information

RF TESTING OF MODEMS EMBEDDED IN RADIOS

RF TESTING OF MODEMS EMBEDDED IN RADIOS RF TESTING OF MODEMS EMBEDDED IN RADIOS J. W. Nieto Senior Scientist Harris Corporation RF Communications Division HFIA 2002, #1 Presentation Overview Overview Motivation Baseband Testing RF Testing RF

More information

Wideband Receiver for Communications Receiver or Spectrum Analysis Usage: A Comparison of Superheterodyne to Quadrature Down Conversion

Wideband Receiver for Communications Receiver or Spectrum Analysis Usage: A Comparison of Superheterodyne to Quadrature Down Conversion A Comparison of Superheterodyne to Quadrature Down Conversion Tony Manicone, Vanteon Corporation There are many different system architectures which can be used in the design of High Frequency wideband

More information

1 MHz 6 GHz RF Mixer with built in PLL Synthesizer

1 MHz 6 GHz RF Mixer with built in PLL Synthesizer Windfreak Technologies Preliminary Data Sheet v0.1a MixNV Active Mixer v1.4a $499.00US 1 MHz 6 GHz RF Mixer with built in PLL Synthesizer Features Open source Labveiw GUI software control via USB Run hardware

More information

RFIC Design ELEN 351 Lecture 2: RFIC Architectures

RFIC Design ELEN 351 Lecture 2: RFIC Architectures RFIC Design ELEN 351 Lecture 2: RFIC Architectures Instructor: Dr. Allen Sweet Copy right 2003 ELEN 351 1 RFIC Architectures Modulation Choices Receiver Architectures Transmitter Architectures VCOs, Phase

More information

RF Over Fiber Design Guide Overview. Provided by OPTICAL ZONU CORPORATION

RF Over Fiber Design Guide Overview. Provided by OPTICAL ZONU CORPORATION RF Over Fiber Design Guide Overview Provided by OPTICAL ZONU CORPORATION Why use fiber? Transmission of RF and Microwave Signals via waveguides or coaxial cable suffers high insertion loss and susceptibility

More information

Lecture 15: Introduction to Mixers

Lecture 15: Introduction to Mixers EECS 142 Lecture 15: Introduction to Mixers Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California, Berkeley EECS 142 Lecture

More information

Understanding RF and Microwave Analysis Basics

Understanding RF and Microwave Analysis Basics Understanding RF and Microwave Analysis Basics Kimberly Cassacia Product Line Brand Manager Keysight Technologies Agenda µw Analysis Basics Page 2 RF Signal Analyzer Overview & Basic Settings Overview

More information

TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 5-6: Mixers

TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 5-6: Mixers TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 5-6: Mixers Ted Johansson, EKS, ISY ted.johansson@liu.se Overview 2 Razavi: Chapter 6.1-6.3, pp. 343-398. Lee: Chapter 13. 6.1 Mixers general

More information

RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS

RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS FUNCTIONS OF A RADIO RECEIVER The main functions of a radio receiver are: 1. To intercept the RF signal by using the receiver antenna 2. Select the

More information

Digital predistortion with bandwidth limitations for a 28 nm WLAN ac transmitter

Digital predistortion with bandwidth limitations for a 28 nm WLAN ac transmitter Digital predistortion with bandwidth limitations for a 28 nm WLAN 802.11ac transmitter Ted Johansson, Oscar Morales Chacón Linköping University, Linköping, Sweden Tomas Flink Catena Wireless Electronics

More information

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 1455A 5MHZ TO 1600MHZ HIGH LINEARITY DIRECT QUADRATURE MODULATOR LTC5598 DESCRIPTION

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 1455A 5MHZ TO 1600MHZ HIGH LINEARITY DIRECT QUADRATURE MODULATOR LTC5598 DESCRIPTION LTC5598 DESCRIPTION Demonstration circuit 1455A is a high linearity direct quadrature modulator featuring the LTC5598. The LTC 5598 is a direct I/Q modulator designed for high performance wireless applications,

More information

Some Radio Implementation Challenges in 3G-LTE Context

Some Radio Implementation Challenges in 3G-LTE Context 1 (12) Dirty-RF Theme Some Radio Implementation Challenges in 3G-LTE Context Dr. Mikko Valkama Tampere University of Technology Institute of Communications Engineering mikko.e.valkama@tut.fi 2 (21) General

More information

NanoCom TR-600. Datasheet Nano-satellite transceiver

NanoCom TR-600. Datasheet Nano-satellite transceiver NanoCom TR-600 Datasheet Nano-satellite transceiver 1 Table of Contents 1 TABLE OF CONTENTS... 2 2 OVERVIEW... 3 2.1 HIGHLIGHTED FEATURES... 3 2.2 BLOCK DIAGRAM... 4 2.3 AD9361 TRANSCEIVER DATASHEET...

More information

Digitally-Controlled RF Self- Interference Canceller for Full-Duplex Radios

Digitally-Controlled RF Self- Interference Canceller for Full-Duplex Radios Digitally-Controlled RF Self- nterference Canceller for Full-Duplex Radios Joose Tamminen 1, Matias Turunen 1, Dani Korpi 1, Timo Huusari 2, Yang-Seok Choi 2, Shilpa Talwar 2, and Mikko Valkama 1 1 Dept.

More information

CMOS Analog to Digital Converters : State-of-the-Art and Perspectives in Digital Communications ADC

CMOS Analog to Digital Converters : State-of-the-Art and Perspectives in Digital Communications ADC CMOS Analog to Digital Converters : State-of-the-Art and Perspectives in Digital Communications ADC Hussein Fakhoury and Hervé Petit C²S Research Group Presentation Outline Introduction Basic concepts

More information

The best radio for worst events. Over HF links. Hana Rafi - CEO Eder Yehuda - VP R&D

The best radio for worst events. Over HF links. Hana Rafi - CEO Eder Yehuda - VP R&D MOBAT MICOM The best radio for worst events Increasing Data Throughput Over HF links Hana Rafi - CEO Eder Yehuda - VP R&D 1 Traditional HF Radio -Analog voice & 50,75 bps New Trends on HF - Digital voice,

More information

Keysight Technologies 8 Hints for Making Better Measurements Using RF Signal Generators. Application Note

Keysight Technologies 8 Hints for Making Better Measurements Using RF Signal Generators. Application Note Keysight Technologies 8 Hints for Making Better Measurements Using RF Signal Generators Application Note 02 Keysight 8 Hints for Making Better Measurements Using RF Signal Generators - Application Note

More information

System-Level Time-Domain Behavioral Modeling for A Mobile WiMax Transceiver

System-Level Time-Domain Behavioral Modeling for A Mobile WiMax Transceiver System-Level Time-Domain Behavioral Modeling for A Mobile WiMax Transceiver Jie He, Jun Seo Yang, Yongsup Kim, and Austin S. Kim HIDS Lab, Telecommunication R&D Center, Samsung Electronics jie.he@samung.com,

More information

Termination Insensitive Mixers By Howard Hausman President/CEO, MITEQ, Inc. 100 Davids Drive Hauppauge, NY

Termination Insensitive Mixers By Howard Hausman President/CEO, MITEQ, Inc. 100 Davids Drive Hauppauge, NY Termination Insensitive Mixers By Howard Hausman President/CEO, MITEQ, Inc. 100 Davids Drive Hauppauge, NY 11788 hhausman@miteq.com Abstract Microwave mixers are non-linear devices that are used to translate

More information

Understanding IP2 and IP3 Issues in Direct Conversion Receivers for WCDMA Wide Area Basestations

Understanding IP2 and IP3 Issues in Direct Conversion Receivers for WCDMA Wide Area Basestations L DESIGN FEATURES Understanding I and I3 Issues in Direct Conversion Receivers for Wide Area Basestations Introduction A direct conversion receiver architecture offers several advantages over the traditional

More information

EECS 290C: Advanced circuit design for wireless Class Final Project Due: Thu May/02/2019

EECS 290C: Advanced circuit design for wireless Class Final Project Due: Thu May/02/2019 EECS 290C: Advanced circuit design for wireless Class Final Project Due: Thu May/02/2019 Project: A fully integrated 2.4-2.5GHz Bluetooth receiver. The receiver has LNA, RF mixer, baseband complex filter,

More information

SDR-BASED TEST BENCH TO EVALUATE ANALOG CANCELLATION TECHNIQUES FOR IN-BAND FULL-DUPLEX TRANSCEIVER

SDR-BASED TEST BENCH TO EVALUATE ANALOG CANCELLATION TECHNIQUES FOR IN-BAND FULL-DUPLEX TRANSCEIVER SDR-BASED TEST BENCH TO EVALUATE ANALOG CANCELLATION TECHNIQUES FOR IN-BAND FULL-DUPLEX TRANSCEIVER Patrick Rosson, David Dassonville, Xavier Popon, Sylvie Mayrargue CEA-Leti Minatec Campus Cleen Workshop,

More information

Tanbir Haque Alpaslan Demir

Tanbir Haque Alpaslan Demir A Direct Conversion, All Digital Gain Control Radio Receiver Suitable For User Equipment Applications Tanbir Haque Alpaslan Demir Abbreviations DC-AAGC: Direct conversion, all analog gain control DC-ADGC:

More information

PXIe Contents SPECIFICATIONS. 14 GHz and 26.5 GHz Vector Signal Analyzer

PXIe Contents SPECIFICATIONS. 14 GHz and 26.5 GHz Vector Signal Analyzer SPECIFICATIONS PXIe-5668 14 GHz and 26.5 GHz Vector Signal Analyzer These specifications apply to the PXIe-5668 (14 GHz) Vector Signal Analyzer and the PXIe-5668 (26.5 GHz) Vector Signal Analyzer with

More information

Optimizing the Performance of Very Wideband Direct Conversion Receivers

Optimizing the Performance of Very Wideband Direct Conversion Receivers Optimizing the Performance of Very Wideband Direct Conversion Receivers Design Note 1027 John Myers, Michiel Kouwenhoven, James Wong, Vladimir Dvorkin Introduction Zero-IF receivers are not new; they have

More information

Low-Voltage IF Transceiver with Limiter/RSSI and Quadrature Modulator

Low-Voltage IF Transceiver with Limiter/RSSI and Quadrature Modulator 19-1296; Rev 2; 1/1 EVALUATION KIT MANUAL FOLLOWS DATA SHEET Low-Voltage IF Transceiver with General Description The is a highly integrated IF transceiver for digital wireless applications. It operates

More information

Reinventing the Transmit Chain for Next-Generation Multimode Wireless Devices. By: Richard Harlan, Director of Technical Marketing, ParkerVision

Reinventing the Transmit Chain for Next-Generation Multimode Wireless Devices. By: Richard Harlan, Director of Technical Marketing, ParkerVision Reinventing the Transmit Chain for Next-Generation Multimode Wireless Devices By: Richard Harlan, Director of Technical Marketing, ParkerVision Upcoming generations of radio access standards are placing

More information