2012 LitePoint Corp LitePoint, A Teradyne Company. All rights reserved.

Size: px
Start display at page:

Download "2012 LitePoint Corp LitePoint, A Teradyne Company. All rights reserved."

Transcription

1 LTE TDD What to Test and Why 2012 LitePoint Corp LitePoint, A Teradyne Company. All rights reserved.

2 Agenda LTE Overview LTE Measurements Testing LTE TDD Where to Begin? Building a LTE TDD Verification Plan Optimizing a LTE TDD Verification Plan 2012 LitePoint Corp. 32

3 Why LTE? Something for Everyone For the user.. Higher Performance (Data Rate) Instantaneous downlink peak data rate: 150 Mbit/s in a 20MHz downlink spectrum (5 bit/s/hz) Instantaneous uplink peak data rate: 75 Mbit/s in a 20MHz uplink spectrum (2.5 bit/s/hz) /H For the service provider Cell capacity more users per cell up to 200 active users per cell (5 MHz) (i.e., 200 active data clients) 1 st all-data network: packet-switched Simplifies network architecture no difference between voice & data 2012 LitePoint Corp. 33

4 Key Features of LTE Multiple access scheme Downlink (DL): OFDMA enables maximum spectrum utilization by the base station Uplink (UL): SC-FDMA relaxes the linearity requirements for the handset Multiple Uplink Transmission Modes FDD: balanced DL / UL data traffic by using different channels TDD: enables asymmetric DL / UL capacity, sharing a single channel Adaptive Modulation and Coding LTE dynamically changes modulation based on channel conditions to optimize its capacity DL modulations: QPSK, 16QAM, and 64QAM UL modulations: QPSK and 16QAM Channel Bandwidth Scalability Scalable channel bandwidth allows efficient operation in differently-sized allocated spectrum bands Multiple Antenna Technology MiMo Multiple Antenna techniques enables higher data rate, improve network reliability and data capacity 2012 LitePoint Corp. 34

5 OFDM meets Cellular LTE is the first cellular standard to use OFDMA modulation - Combining time and frequency multiplexing, enabling multiple users to operate in a single time slot OFDMA OFDM Modulation 2012 LitePoint Corp. 35

6 OFDMA Highlights LTE uses OFDMA for the downlink - Uses a large number of narrow sub-carriers for multi-carrier transmission - Resource blocks and elements Each resource block and element is defined in frequency and time (1 block = 180 khz; 0.5 ms) - Dynamically assigns these resource blocks to LTE users, thus improving spectrum utilization - Subcarrier spacing 15 khz compared to khz for WLAN The basic LTE downlink physical resource can be seen as a time-frequency grid: 2012 LitePoint Corp. 36

7 SC-FDMA The LTE uplink transmission scheme based on a pre-coded version of OFDMA known as SC-FDMA (Single Carrier Frequency Division Multiple Access). SC-FDMA operates with a lower Peak to Average Power Ratio (PAPR) than OFDM - High PAPR requires expensive and inefficient power amplifiers SC-FDMA reduces the linearity requirement for power amplifier Two LTE UL transmission modes: - FDD - TDD 2012 LitePoint Corp. 37

8 LTE-FDD & LTE-TDD FDD downlink and uplink traffic is transmitted simultaneously at separate carrier frequencies is the preferred mode by most cellular systems, wherever paired spectrum is available easy transition from existing 3G networks TDD transmission in uplink and downlink is at the same carrier frequency is a good option where spectrum (carriers) availability is lower is necessary when pair spectrum is not available FDD f DL TDD f UL f DL/UL time time 2012 LitePoint Corp. 38

9 LTE-FDD vs. LTE-TDD The two versions of LTE are actually quite similar The only differences are in the physical layer, enabling support of both TDD and FDD with a single chipset - All major LTE chipset vendors have released chipsets that support both FDD and TDD Parameter LTE-FDD LTE-TDD Paired spectrum UL / DL asymmetry Guard interval impact on data capacity Requires spectrum pairs TX and RX on different frequencies Data capacity determined by spectrum allocations Increasing guard interval (due to distance from base station) does not impact data capacity No spectrum pair required TX and RX on the same frequency Possible to dynamically change UL / DL to meet capacity demand Increasing guard interval (due to distance from base station) reduces data capacity 2012 LitePoint Corp. 39

10 LTE Growth China and LTE-TDD will play a key role It is expected that t by 2016, China Mobile will represent over 15 percent of the total t LTE market, with its TDD LTE deployment LitePoint Corp. Source: Signals and Systems Telecom 4/

11 New Challenges in LTE More Bands Band Frequency Range 33 to 41 <2.69 GHz Channel Bandwidths 1.4, 3, 5, 10, 15, 20 MHz Mode TDD More bands means more test time 2012 LitePoint Corp. 41

12 New Challenges in LTE More Configurations LTE has many configurations to test more test time - Per channel 2012 LitePoint Corp. Modulation RB Config PWR Levels QPSK 50,0 4 QPSK 12,0 4 QPSK 12,38 2 QPSK 1,0 1 QPSK 1,24 1 QPSK 149 1, QAM 50, QAM 12, QAM 12, QAM 50, QAM 50,0 1 LTE threatens to reduce test throughput Higher cost test? 42

13 New Challenges in LTE More Bandwidth Spectrum Emission Mask (SEM): Adjacent Channel Leakage Ratio (ACLR): SE Mask Limit: -25 db 20 MHz Channel 25 MHz 25 MHz SEM = 70 MHz Total Bandwidth 2012 LitePoint Corp. 43

14 Testing LTE: Key Requirements RF Frequency Range The test equipment must support the frequency bands 698 MHz MHz The test equipment must support handsets with an increasing number of antennas VSA / VSG Bandwidth The test equipment must have at least 20 MHz VSA/VSG bandwidth - LTE requires support for six channel bandwidths (from 1.4 to 20 MHz) - With LTE-Advanced, this requirement will become 100 MHz - >70 MHz required for single-shot LTE ACLR & Spectrum Emission Mask testing MiMo Technology Support for accurate MiMo testing is necessary in both R&D and MFG In particular, it is essential to have multiple l VSA / VSG ports for DL / UL MIMO signal Transmission Schemes Support two transmission i schemes for downlink and uplink (OFDMA, SC-FDMA) Support two transmission modes (FDD and TDD) 2012 LitePoint Corp. 44

15 Testing LTE TDD: Where to Begin? LTE complexity introduces more than 10x configurations to test - Testing every scenario is not practical In production, we are looking to validate manufacturing quality Goal is to exercise the mobile as much as possible while minimizing test time 2012 LitePoint Corp. 45

16 Testing LTE TDD: Where to Begin? What to test in mobile manufacturing verification: - Physical layer RF measurements - TX power - TX modulation quality - TX frequency - TX / RX timing - RX sensitivity (min / max) What NOT to test in mobile manufacturing verification - Software - Digital Design - Redundant (overlapping) tests or configurations 2012 LitePoint Corp. 46

17 LTE UE Transmitter Tests Measurement TX Power Error Vector Magnitude Frequency Error ACLR Occupied Bandwidth Spectrum Emissions Mask Carrier Leakage Transmit Time Mask In-Band Emissions for non-allocated RBs 2012 LitePoint Corp. Why is this Important? LTE network performance is highly dependent on accurate power control Primary TX quality measurement detects distortions that will ultimately degrade accurate transmission of data Critically important to avoid communication interference Ensures that transmission does not interfere with neighboring channels Confirms that signal is contained within channel allocation Ensures that signal in adjacent channels rolls off to minimize interference An indication of mismatch in the I/Q modulator Verifies UE timing accuracy particularly important for LTE TDD since the UL/DL are on the same frequency Ensures that a UE s assigned RBs (within a channel) do not interfere with the unassigned RBs in the channel 3GPP Measurements 47

18 LTE UE Receiver Tests TX measurements give direct access to the signal via the UE antenna Unlike TX measurements, RX signal quality issues remain buried until the signal is fully decoded Measurement RX Bit Error Rate (BER) RX Sensitivity (RSSI) Notes Fundamental test of a receiver s ability to decode the inbound signal. Typically performed at both min & max RX input power Receive signal strength is a parameter often measured as part of calibration. Since the initial TX power level is calculated per the measured RSSI, accuracy of this measurement directly impacts UE power transmission 3GPP Measurements 2012 LitePoint Corp. 48

19 LTE Test Plan Development Several different approaches to develop a test plan: - Use the 3GPP standard s recommendations - Use the IC manufacturer s recommendations - Use historical data from similar devices - Apply some reasonable logic to look for likely failure modes and apply 3GPP spec conditions 2012 LitePoint Corp. 49

20 Building a LTE TDD TX Verification Test Plan Per-Band / Per-Channel A reasonable LTE test plan covered in 21 configurations Showing config 1-11 Varies in RB Offset for RB = 1, QPSK channel Varies TX Power for RB = 12 QPSK channel Test Configuration Parameters TX Power Modulation QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK RB RB Offset DL Power Measurements Power EVM EVM Flatness Frequency Accuracy Carrier Feedthrough TX Time Mask Occupied Bandwidth ACLR SEM In-Band Emissions for Non-Allocated RBs RB Offset Extremes 2012 LitePoint Corp. 50

21 Building a LTE TDD TX Verification Test Plan Per-Band / Per-Channel A reasonable LTE test plan covered in 21 configurations Showing config Min / Max Min / Max Min / Max Power Tests Absolute Power for 16 Power for 16 for QPSK Power Setting QAM QAM RB = 50 RB = 12 RB = 50 Test Configuration Parameters TX Power Modulation QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM 16QAM 16QAM 16QAM RB RB Offset DL Power Measurements Power EVM EVM Flatness Frequency Accuracy Carrier Feedthrough TX Time Mask Occupied Bandwidth ACLR SEM In-Band Emissions for Non-Allocated RBs RB Offset Extremes 2012 LitePoint Corp. 51

22 Optimizing the TX Test Plan Configurations 1, 3, 12, & 20 test the extremes of modulation and RB allocations / offsets Configuration 4 is a typical use case Test Configuration Parameters TX Power Modulation QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM 16QAM 16QAM 16QAM RB RB Offset DL Power Measurements Power EVM EVM Flatness Frequency Accuracy Carrier Feedthrough TX Time Mask Occupied Bandwidth ACLR SEM In-Band Emissions for Non-Allocated RBs No Need for Mid- Covered by Already Tested Band Covered by Channel Offset Config 21 Edges in Configs 1 & 3 Config 21 Can be covered by any absolute power setting Covered by Config 20 & 21, do not need mid-rb Configurations we definitely want to keep 2012 LitePoint Corp. 52

23 Condensed Test Plan Reduced to 7 TX configurations Added RX tests Increases number of measurements while reducing test time Test Configuration Parameters T1 T2 T3 T4 T5 T6 T7 TX Power Modulation QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM RB (UL / DL) RB Offset DL Power Measurements TX1 TX2 TX3 TX4 TX5 TX6 TX7 Power MPR MPR MPR EVM EVM Flatness Frequency Accuracy Carrier Feedthrough TX Time Mask Occupied Bandwidth ACLR SEM In-Band Emissions for Non-Allocated drbs Measurements RX1 RX2 RX3 RX BER RX Level 2012 LitePoint Corp. 53

24 LTE TDD Manufacturing Test LTE increases test complexity 5 to 10X - More measurements, more antennas, wider bandwidth, higher performance - IQxstream s unique architecture makes LTE test simple and fast Test plan development for LTE needs to focus on exercising the mobile device with the minimum test time A test plan can be created to maximize the coverage of the device by using the test equipment in an efficient manner - Number of configurations take more test time than number of tests - Scale test plan to multi-dut through turnkey non-signaling solutions - No sacrifice in product quality with shorter per-dut test times 2012 LitePoint Corp. 54

From 2G to 4G UE Measurements from GSM to LTE. David Hall RF Product Manager

From 2G to 4G UE Measurements from GSM to LTE. David Hall RF Product Manager From 2G to 4G UE Measurements from GSM to LTE David Hall RF Product Manager Agenda: Testing 2G to 4G Devices The progression of standards GSM/EDGE measurements WCDMA measurements LTE Measurements LTE theory

More information

PXI LTE FDD and LTE TDD Measurement Suites Data Sheet

PXI LTE FDD and LTE TDD Measurement Suites Data Sheet PXI LTE FDD and LTE TDD Measurement Suites Data Sheet The most important thing we build is trust A production ready ATE solution for RF alignment and performance verification UE Tx output power Transmit

More information

Keysight Technologies Performing LTE and LTE-Advanced RF Measurements with the E7515A UXM Wireless Test Set

Keysight Technologies Performing LTE and LTE-Advanced RF Measurements with the E7515A UXM Wireless Test Set Keysight Technologies Performing LTE and LTE-Advanced RF Measurements with the E7515A UXM Wireless Test Set Based on 3GPP TS 36.521-1 Application Note 02 Keysight Performing LTE and LTE-Advanced Measurements

More information

University of Bristol - Explore Bristol Research. Link to publication record in Explore Bristol Research PDF-document.

University of Bristol - Explore Bristol Research. Link to publication record in Explore Bristol Research PDF-document. Mansor, Z. B., Nix, A. R., & McGeehan, J. P. (2011). PAPR reduction for single carrier FDMA LTE systems using frequency domain spectral shaping. In Proceedings of the 12th Annual Postgraduate Symposium

More information

Technical Aspects of LTE Part I: OFDM

Technical Aspects of LTE Part I: OFDM Technical Aspects of LTE Part I: OFDM By Mohammad Movahhedian, Ph.D., MIET, MIEEE m.movahhedian@mci.ir ITU regional workshop on Long-Term Evolution 9-11 Dec. 2013 Outline Motivation for LTE LTE Network

More information

PXI Maestro PXI Maestro, software that accelerates wireless device test speed and reduces ATE system development time.

PXI Maestro PXI Maestro, software that accelerates wireless device test speed and reduces ATE system development time. PXI Maestro PXI Maestro, software that accelerates wireless device test speed and reduces ATE system development time. Highlights End-to-end ATE for multi-up non signalling RF test Supports single or dual

More information

Planning of LTE Radio Networks in WinProp

Planning of LTE Radio Networks in WinProp Planning of LTE Radio Networks in WinProp AWE Communications GmbH Otto-Lilienthal-Str. 36 D-71034 Böblingen mail@awe-communications.com Issue Date Changes V1.0 Nov. 2010 First version of document V2.0

More information

PXI LTE/LTE-A Downlink (FDD and TDD) Measurement Suite Data Sheet

PXI LTE/LTE-A Downlink (FDD and TDD) Measurement Suite Data Sheet PXI LTE/LTE-A Downlink (FDD and TDD) Measurement Suite Data Sheet The most important thing we build is trust Designed for the production test of the base station RF, tailored for the evolving small cell

More information

LTE Signal Quality Analysis. BTS Master, Cell Master,, Spectrum Master

LTE Signal Quality Analysis. BTS Master, Cell Master,, Spectrum Master LTE Signal Quality Analysis BTS Master, Cell Master,, Spectrum Master Slide 1 Anritsu LTE Test Instrument Portfolio Signaling Tester Fading Simulator Signal Analyzers Vector Signal Generator Radio Communication

More information

Addressing Design and Test Challenges for new LTE-Advanced Standard

Addressing Design and Test Challenges for new LTE-Advanced Standard Addressing Design and Test Challenges for new LTE-Advanced Standard Sheri DeTomasi Modular Program Manager LTE-A Multi-channel Apps Updated December 15, 2014 The Data Challenge Internet Email Navigation

More information

Interference management Within 3GPP LTE advanced

Interference management Within 3GPP LTE advanced Interference management Within 3GPP LTE advanced Konstantinos Dimou, PhD Senior Research Engineer, Wireless Access Networks, Ericsson research konstantinos.dimou@ericsson.com 2013-02-20 Outline Introduction

More information

Radio Performance of 4G-LTE Terminal. Daiwei Zhou

Radio Performance of 4G-LTE Terminal. Daiwei Zhou Radio Performance of 4G-LTE Terminal Daiwei Zhou Course Objectives: Throughout the course the trainee should be able to: 1. get a clear overview of the system architecture of LTE; 2. have a logical understanding

More information

Top 5 Challenges for 5G New Radio Device Designers

Top 5 Challenges for 5G New Radio Device Designers WHITE PAPER Top 5 Challenges for 5G New Radio Device Designers 5G New Radio (NR) Release-15, introduced in December 2017, lays the foundation for ultra-fast download speeds, reliable low latency connections,

More information

VST 6 GHz RF Vector Signal Transceiver (VST)

VST 6 GHz RF Vector Signal Transceiver (VST) VST 6 GHz RF Vector Signal Transceiver (VST) 2016 Datasheet The most important thing we build is trust Key features Vector signal analyser and generator in a single 3U x 3 slot wide PXIe module 65 MHz

More information

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications COMM 907: Spread Spectrum Communications Lecture 10 - LTE (4G) -Technologies used in 4G and 5G The Need for LTE Long Term Evolution (LTE) With the growth of mobile data and mobile users, it becomes essential

More information

RF chipset verification for UMTS LTE (FDD) with R&S SMU200A and R&S FSQ Application Note

RF chipset verification for UMTS LTE (FDD) with R&S SMU200A and R&S FSQ Application Note RF chipset verification for UMTS LTE (FDD) with R&S SMU200A and R&S FSQ Application Note Products: R&S SMU200A R&S SMU-K55 R&S EX-IQ-Box R&S FSQ R&S FSQ-K100 R&S FSQ-K101 This application note describes

More information

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE Overview 18-759: Wireless Networks Lecture 9: OFDM, WiMAX, LTE Dina Papagiannaki & Peter Steenkiste Departments of Computer Science and Electrical and Computer Engineering Spring Semester 2009 http://www.cs.cmu.edu/~prs/wireless09/

More information

Transmitter Design and Measurement Challenges

Transmitter Design and Measurement Challenges Transmitter Design and Measurement Challenges Based on the book: LTE and the Evolution to 4G Wireless Chapter 6.4 4G World 2009 presented by: David L. Barner www/agilent.com/find/4gworld 1 Agilent Technologies,

More information

Test Range Spectrum Management with LTE-A

Test Range Spectrum Management with LTE-A Test Resource Management Center (TRMC) National Spectrum Consortium (NSC) / Spectrum Access R&D Program Test Range Spectrum Management with LTE-A Bob Picha, Nokia Corporation of America DISTRIBUTION STATEMENT

More information

Integrated Solutions for Testing Wireless Communication Systems

Integrated Solutions for Testing Wireless Communication Systems TOPICS IN RADIO COMMUNICATIONS Integrated Solutions for Testing Wireless Communication Systems Dingqing Lu and Zhengrong Zhou, Agilent Technologies Inc. ABSTRACT Wireless communications standards have

More information

802.11ax introduction and measurement solution

802.11ax introduction and measurement solution 802.11ax introduction and measurement solution Agenda IEEE 802.11ax 802.11ax overview & market 802.11ax technique / specification 802.11ax test items Keysight Product / Solution Demo M9421A VXT for 802.11ax

More information

LTE Aida Botonjić. Aida Botonjić Tieto 1

LTE Aida Botonjić. Aida Botonjić Tieto 1 LTE Aida Botonjić Aida Botonjić Tieto 1 Why LTE? Applications: Interactive gaming DVD quality video Data download/upload Targets: High data rates at high speed Low latency Packet optimized radio access

More information

TECHNICAL SPECIFICATIONS. LitePoint IQxstream LitePoint, A Teradyne Company. All rights reserved.

TECHNICAL SPECIFICATIONS. LitePoint IQxstream LitePoint, A Teradyne Company. All rights reserved. TECHNICAL SPECIFICATIONS LitePoint IQxstream 2017 LitePoint, A Teradyne Company. All rights reserved. IQxstream is a manufacturing oriented, physical layer communication system tester, tailored to verifying

More information

3GPP Long Term Evolution LTE

3GPP Long Term Evolution LTE Chapter 27 3GPP Long Term Evolution LTE Slides for Wireless Communications Edfors, Molisch, Tufvesson 630 Goals of IMT-Advanced Category 1 2 3 4 5 peak data rate DL / Mbit/s 10 50 100 150 300 max DL modulation

More information

Application Note. LTE Measurement. MT8820C Radio Communication Analyzer

Application Note. LTE Measurement. MT8820C Radio Communication Analyzer Application Note LTE Measurement MT8820C Radio Communication Analyzer Revision History Ver. No Date Contents Related product software version 1.00 2010/June First edition M882012C/42C Ver. 20.10 2.00 2010/August

More information

Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis,

Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, mobilegt, PowerQUICC, Processor Expert, QorIQ, Qorivva, StarCore,

More information

LitePoint IQxstream-M

LitePoint IQxstream-M TECHNICAL SPECIFICATIONS LitePoint IQxstream-M 2017 LitePoint, A Teradyne Company. All rights reserved. IQxstream-M is a manufacturing-oriented, multi-device, physical layer communication system tester,

More information

M A R C H 2 6, Sheri DeTomasi 5G New Radio Solutions Lead Keysight Technologies. 5G New Radio Challenges and Redefining Test

M A R C H 2 6, Sheri DeTomasi 5G New Radio Solutions Lead Keysight Technologies. 5G New Radio Challenges and Redefining Test M A R C H 2 6, 2 0 1 8 Sheri DeTomasi 5G New Radio Solutions Lead Keysight Technologies 1 5G Market Trends 5G New Radio Specification and Implications New Measurement Challenges and Redefining Test Summary

More information

3G/4G Mobile Communications Systems. Dr. Stefan Brück Qualcomm Corporate R&D Center Germany

3G/4G Mobile Communications Systems. Dr. Stefan Brück Qualcomm Corporate R&D Center Germany 3G/4G Mobile Communications Systems Dr. Stefan Brück Qualcomm Corporate R&D Center Germany Chapter VI: Physical Layer of LTE 2 Slide 2 Physical Layer of LTE OFDM and SC-FDMA Basics DL/UL Resource Grid

More information

VIAVI VST. Data Sheet. 6 GHz RF Vector Signal Transceiver (VST)

VIAVI VST. Data Sheet. 6 GHz RF Vector Signal Transceiver (VST) Data Sheet VIAVI 6 GHz RF Vector Signal Transceiver () VIAVI Solutions The Vector Signal Transceiver () is an essential building block in RF communications test solutions supplied by VIAVI Solutions. Overview

More information

802.11ax Design Challenges. Mani Krishnan Venkatachari

802.11ax Design Challenges. Mani Krishnan Venkatachari 802.11ax Design Challenges Mani Krishnan Venkatachari Wi-Fi: An integral part of the wireless landscape At the center of connected home Opening new frontiers for wireless connectivity Wireless Display

More information

Keysight Technologies M9080B & M9082B LTE & LTE-Advanced FDD/TDD

Keysight Technologies M9080B & M9082B LTE & LTE-Advanced FDD/TDD Keysight Technologies M9080B & M9082B LTE & LTE-Advanced FDD/TDD X-Series Measurement Applications for PXIe Vector Signal Analyzers Technical Overview Perform LTE plus LTE-Advanced FDD and TDD base station

More information

PXI. TD-SCDMA Measurement Suite Data Sheet. The most important thing we build is trust. Total Average Power plus Midamble / Data Power

PXI. TD-SCDMA Measurement Suite Data Sheet. The most important thing we build is trust. Total Average Power plus Midamble / Data Power PXI TD-SCDMA Measurement Suite Data Sheet The most important thing we build is trust Total Average Power plus Midamble / Data Power Transmit On/Off Time Mask Transmit Closed Loop Power Control (CLPC) Spectrum

More information

PXI WiMAX Measurement Suite Data Sheet

PXI WiMAX Measurement Suite Data Sheet PXI WiMAX Measurement Suite Data Sheet The most important thing we build is trust Transmit power Spectral mask Occupied bandwidth EVM (all, data only, pilots only) Frequency error Gain imbalance, Skew

More information

Radio Interface and Radio Access Techniques for LTE-Advanced

Radio Interface and Radio Access Techniques for LTE-Advanced TTA IMT-Advanced Workshop Radio Interface and Radio Access Techniques for LTE-Advanced Motohiro Tanno Radio Access Network Development Department NTT DoCoMo, Inc. June 11, 2008 Targets for for IMT-Advanced

More information

3GPP TS V8.0.0 ( )

3GPP TS V8.0.0 ( ) TS 36.104 V8.0.0 (2007-12) Technical Specification 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station

More information

Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA. OFDM-Based Radio Access in Downlink. Features of Evolved UTRA and UTRAN

Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA. OFDM-Based Radio Access in Downlink. Features of Evolved UTRA and UTRAN Evolved UTRA and UTRAN Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA Evolved UTRA (E-UTRA) and UTRAN represent long-term evolution (LTE) of technology to maintain continuous

More information

M9080A & M9082A LTE FDD/TDD. Challenge the Boundaries of Test Agilent Modular Products. Technical Overview

M9080A & M9082A LTE FDD/TDD. Challenge the Boundaries of Test Agilent Modular Products. Technical Overview M9080A & M9082A LTE FDD/TDD X-Series Measurement Application for M9391A PXIe Vector Signal Analyzer Technical Overview Challenge the Boundaries of Test Agilent Modular Products Perform LTE FDD and TDD

More information

Long Term Evolution (LTE)

Long Term Evolution (LTE) 1 Lecture 13 LTE 2 Long Term Evolution (LTE) Material Related to LTE comes from 3GPP LTE: System Overview, Product Development and Test Challenges, Agilent Technologies Application Note, 2008. IEEE Communications

More information

LTE systems: overview

LTE systems: overview LTE systems: overview Luca Reggiani LTE overview 1 Outline 1. Standard status 2. Signal structure 3. Signal generation 4. Physical layer procedures 5. System architecture 6. References LTE overview 2 Standard

More information

1. Document scope. 2. Introduction. 3. General assumptions. 4. Open loop power control. UE output power dynamics (TDD)

1. Document scope. 2. Introduction. 3. General assumptions. 4. Open loop power control. UE output power dynamics (TDD) TSG-RAN Working Group 4 meeting #6 TSGR4#6(99) 362 Queensferry, 26. 29. July 1999 Agenda Item: Source: Title: Document for: SIEMENS UE output power dynamics (TDD) Discussion and Decision 1. Document scope

More information

(COMPUTER NETWORKS & COMMUNICATION PROTOCOLS) Ali kamil Khairullah Number:

(COMPUTER NETWORKS & COMMUNICATION PROTOCOLS) Ali kamil Khairullah Number: (COMPUTER NETWORKS & COMMUNICATION PROTOCOLS) Ali kamil Khairullah Number: 15505071 22-12-2016 Downlink transmission is based on Orthogonal Frequency Division Multiple Access (OFDMA) which converts the

More information

Ten Things You Should Know About MIMO

Ten Things You Should Know About MIMO Ten Things You Should Know About MIMO 4G World 2009 presented by: David L. Barner www/agilent.com/find/4gworld Copyright 2009 Agilent Technologies, Inc. The Full Agenda Intro System Operation 1: Cellular

More information

R&S CMW100 Communications Manufacturing Test Set Specifications

R&S CMW100 Communications Manufacturing Test Set Specifications R&S CMW100 Communications Manufacturing Test Set Specifications R&S CMW100 model.k06 Data Sheet Version 03.00 CONTENTS Definitions... 4 General technical specifications... 5 RF generator... 6 RF analyzer...

More information

LTE-Advanced research in 3GPP

LTE-Advanced research in 3GPP LTE-Advanced research in 3GPP GIGA seminar 8 4.12.28 Tommi Koivisto tommi.koivisto@nokia.com Outline Background and LTE-Advanced schedule LTE-Advanced requirements set by 3GPP Technologies under investigation

More information

R&S CMW100 Communications Manufacturing Test Set Specifications

R&S CMW100 Communications Manufacturing Test Set Specifications R&S CMW100 Communications Manufacturing Test Set Specifications Data Sheet Version 02.00 CONTENTS Definitions... 6 General technical specifications... 7 RF generator... 8 Modulation source: arbitrary waveform

More information

Fading & OFDM Implementation Details EECS 562

Fading & OFDM Implementation Details EECS 562 Fading & OFDM Implementation Details EECS 562 1 Discrete Mulitpath Channel P ~ 2 a ( t) 2 ak ~ ( t ) P a~ ( 1 1 t ) Channel Input (Impulse) Channel Output (Impulse response) a~ 1( t) a ~2 ( t ) R a~ a~

More information

2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,

2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising

More information

Submission on Proposed Methodology for Engineering Licenses in Managed Spectrum Parks

Submission on Proposed Methodology for Engineering Licenses in Managed Spectrum Parks Submission on Proposed Methodology and Rules for Engineering Licenses in Managed Spectrum Parks Introduction General This is a submission on the discussion paper entitled proposed methodology and rules

More information

Conformity and Interoperability Training Homologation Procedures and Type Approval Testing for Mobile Terminals

Conformity and Interoperability Training Homologation Procedures and Type Approval Testing for Mobile Terminals Conformity and Interoperability Training Homologation Procedures and Type Approval Testing for Mobile Terminals ITU C&I Programme Training Course on Testing Mobile Terminal Schedule RF Tests (Functional)

More information

K E Y S I G H T I N 5 G. Mombasawala Mohmedsaaed General Manager (Applications)

K E Y S I G H T I N 5 G. Mombasawala Mohmedsaaed General Manager (Applications) K E Y S I G H T I N 5 G Mombasawala Mohmedsaaed 18.05.2018 General Manager (Applications) EPC 1 e M B B m M T C u R L C C CP+ UP UP The first NR specification (3GPP Release 15) supports increased data

More information

Improving ax Performance in Real World by Comprehensive Test Solution

Improving ax Performance in Real World by Comprehensive Test Solution Improving 802.11ax Performance in Real World by Comprehensive Test Solution Brian Su, Sr. Project Manager Ben Ling, Business Development, Keysight Dense Wi-Fi deployments Public access & offloading Outdoor

More information

Training Programme. 1. LTE Planning Overview. 2. Modelling a LTE Network. 3. LTE Predictions. 4. Frequency and PCI Plan Analysis

Training Programme. 1. LTE Planning Overview. 2. Modelling a LTE Network. 3. LTE Predictions. 4. Frequency and PCI Plan Analysis ATOLL LTE FEATURES Training Programme 1. LTE Planning Overview 2. Modelling a LTE Network 3. LTE Predictions 4. Frequency and PCI Plan Analysis 5. Monte-Carlo Based Simulations Slide 2 of 82 1. LTE Planning

More information

MIMO RFIC Test Architectures

MIMO RFIC Test Architectures MIMO RFIC Test Architectures Christopher D. Ziomek and Matthew T. Hunter ZTEC Instruments, Inc. Abstract This paper discusses the practical constraints of testing Radio Frequency Integrated Circuit (RFIC)

More information

Simulation for 5G New Radio System Design and Verification

Simulation for 5G New Radio System Design and Verification Simulation for 5G New Radio System Design and Verification WHITE PAPER The Challenge of the First Commercial 5G Service Deployment The 3rd Generation Partnership Project (3GPP) published its very first

More information

Technical Specifications for Narrowband Terminal Equipment of Mobile Broadband Business

Technical Specifications for Narrowband Terminal Equipment of Mobile Broadband Business Technical Specifications for Narrowband Terminal Equipment of Mobile Broadband Business National Communications Commission (NCC) 10 January 2018 1 Technical Specifications for Narrowband Terminal Equipment

More information

Multi-Signal, Multi-Format Analysis With Agilent VSA Software

Multi-Signal, Multi-Format Analysis With Agilent VSA Software Multi-Signal, Multi-Format Analysis With Agilent 89600 VSA Software Ken Voelker Agilent Technologies Inc. April 2012 1 April, 25 2012 Agenda Introduction: New Measurement Challenges Multi-Measurements

More information

RF Channel Characterization with Multiple Antenna Systems for LTE

RF Channel Characterization with Multiple Antenna Systems for LTE RF Channel Characterization with Multiple Antenna Systems for LTE Leonhard Korowajczuk CEO/CTO CelPlan Technologies leonhard@celplan.com www.celplan.com 703-259-4022 9/18/2012 Copyright CelPlan Technologies,

More information

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) Long Term Evolution (LTE) What is LTE? LTE is the next generation of Mobile broadband technology Data Rates up to 100Mbps Next level of

More information

June 09, 2014 Document Version: 1.1.0

June 09, 2014 Document Version: 1.1.0 DVB-T2 Analysis Toolkit Data Sheet An ideal solution for SFN network planning, optimization, maintenance and Broadcast Equipment Testing June 09, 2014 Document Version: 1.1.0 Contents 1. Overview... 3

More information

LTE and NB-IoT. Luca Feltrin. RadioNetworks, DEI, Alma Mater Studiorum - Università di Bologna. Telecom Italia Mobile S.p.a. - TIM

LTE and NB-IoT. Luca Feltrin. RadioNetworks, DEI, Alma Mater Studiorum - Università di Bologna. Telecom Italia Mobile S.p.a. - TIM LTE and NB-IoT Luca Feltrin RadioNetworks, DEI, Alma Mater Studiorum - Università di Bologna Telecom Italia Mobile S.p.a. - TIM Index Ø 3GPP and LTE Specifications Ø LTE o Architecture o PHY Layer o Procedures

More information

3G long-term evolution

3G long-term evolution 3G long-term evolution by Stanislav Nonchev e-mail : stanislav.nonchev@tut.fi 1 2006 Nokia Contents Radio network evolution HSPA concept OFDM adopted in 3.9G Scheduling techniques 2 2006 Nokia 3G long-term

More information

Envelope Tracking for TD-LTE terminals

Envelope Tracking for TD-LTE terminals Envelope Tracking for TD-LTE terminals TD-LTE pushes bandwidth up by 5x and doubles peak power consumption. ET restores the balance, making TD-LTE more energy efficient than FD-LTE, not less. White Paper

More information

LTE-Advanced and Release 10

LTE-Advanced and Release 10 LTE-Advanced and Release 10 1. Carrier Aggregation 2. Enhanced Downlink MIMO 3. Enhanced Uplink MIMO 4. Relays 5. Release 11 and Beyond Release 10 enhances the capabilities of LTE, to make the technology

More information

Keysight LTE and LTE-Advanced FDD/TDD X-Series Measurement Application N9080B and N9082B

Keysight LTE and LTE-Advanced FDD/TDD X-Series Measurement Application N9080B and N9082B Keysight LTE and LTE-Advanced FDD/TDD X-Series Measurement Application N9080B and N9082B Technical Overview Perform LTE plus LTE-Advanced FDD and TDD base station (enb) and user equipment (UE) transmitter

More information

Testing Carrier Aggregation in LTE-Advanced Network Infrastructure

Testing Carrier Aggregation in LTE-Advanced Network Infrastructure TM500 Family White Paper December 2015 Testing Carrier Aggregation in LTE-Advanced Network Infrastructure Contents Introduction... Error! Bookmark not defined. Evolution to LTE-Advanced... 3 Bandwidths...

More information

Multi-Cell Interference Coordination in LTE Systems using Beamforming Techniques

Multi-Cell Interference Coordination in LTE Systems using Beamforming Techniques Multi-Cell Interference Coordination in LTE Systems using Beamforming Techniques Sérgio G. Nunes, António Rodrigues Instituto Superior Técnico / Instituto de Telecomunicações Technical University of Lisbon,

More information

Simply configured Radio on Fiber link yielding positive gain for mobile phone system

Simply configured Radio on Fiber link yielding positive gain for mobile phone system LETTER IEICE Electronics Express, Vol.11, No.15, 1 6 Simply configured Radio on Fiber link yielding positive gain for mobile phone system Junji Higashiyama 1a), Yoshiaki Tarusawa 1, and Masafumi Koga 2

More information

LTE & LTE-A PROSPECTIVE OF MOBILE BROADBAND

LTE & LTE-A PROSPECTIVE OF MOBILE BROADBAND International Journal of Recent Innovation in Engineering and Research Scientific Journal Impact Factor - 3.605 by SJIF e- ISSN: 2456 2084 LTE & LTE-A PROSPECTIVE OF MOBILE BROADBAND G.Madhusudhan 1 and

More information

ARIB STD-T V Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception (Release 8)

ARIB STD-T V Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception (Release 8) ARIB STD-T63-36.104 V8.12.0 Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception (Release 8) Refer to Industrial Property Rights (IPR) in the preface

More information

TD-SCDMA DesignGuide May 2003

TD-SCDMA DesignGuide May 2003 TD-SCDMA DesignGuide May 2003 Notice The information contained in this document is subject to change without notice. Agilent Technologies makes no warranty of any kind with regard to this material, including,

More information

Keysight LTE FDD/TDD X-Series Measurement Application N9080A and W9080A N9082A and W9082A

Keysight LTE FDD/TDD X-Series Measurement Application N9080A and W9080A N9082A and W9082A Keysight LTE FDD/TDD X-Series Measurement Application N9080A and W9080A N9082A and W9082A Technical Overview Note: N9080A and N9082A have been replaced by N9080B and N9082B, respectively. Please refer

More information

MOBILE COMPUTING 4/8/18. Basic Call. Public Switched Telephone Network - PSTN. CSE 40814/60814 Spring Transit. switch. Transit. Transit.

MOBILE COMPUTING 4/8/18. Basic Call. Public Switched Telephone Network - PSTN. CSE 40814/60814 Spring Transit. switch. Transit. Transit. MOBILE COMPUTING CSE 40814/60814 Spring 2018 Public Switched Telephone Network - PSTN Transit switch Transit switch Long distance network Transit switch Local switch Outgoing call Incoming call Local switch

More information

Background: Cellular network technology

Background: Cellular network technology Background: Cellular network technology Overview 1G: Analog voice (no global standard ) 2G: Digital voice (again GSM vs. CDMA) 3G: Digital voice and data Again... UMTS (WCDMA) vs. CDMA2000 (both CDMA-based)

More information

LTE and the Evolution to LTE-Advanced Fundamentals - Part 2

LTE and the Evolution to LTE-Advanced Fundamentals - Part 2 LTE and the Evolution to LTE-Advanced Fundamentals - Part 2 Based on the 2 nd Edition book LTE and the Evolution to 4G Wireless Design and Measurement Challenges Jan Whitacre and Frank Palmer Agilent Technologies

More information

OFDMA and MIMO Notes

OFDMA and MIMO Notes OFDMA and MIMO Notes EE 442 Spring Semester Lecture 14 Orthogonal Frequency Division Multiplexing (OFDM) is a digital multi-carrier modulation technique extending the concept of single subcarrier modulation

More information

5G New Radio Design. Fall VTC-2017, Panel September 25 th, Expanding the human possibilities of technology to make our lives better

5G New Radio Design. Fall VTC-2017, Panel September 25 th, Expanding the human possibilities of technology to make our lives better 5G New Radio Design Expanding the human possibilities of technology to make our lives better Fall VTC-2017, Panel September 25 th, 2017 Dr. Amitabha Ghosh Head of Small Cell Research, Nokia Fellow, IEEE

More information

ECS455: Chapter 4 Multiple Access

ECS455: Chapter 4 Multiple Access ECS455: Chapter 4 Multiple Access Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th 1 Office Hours: BKD 3601-7 Tuesday 9:30-10:30 Tuesday 13:30-14:30 Thursday 13:30-14:30 ECS455: Chapter 4 Multiple

More information

FFT-Domain Signal Processing for Transparent Spectrum Enhancement in 5G New Radio

FFT-Domain Signal Processing for Transparent Spectrum Enhancement in 5G New Radio FFT-Domain Signal Processing for Transparent Spectrum Enhancement in 5G New Radio Markku Renfors Laboratory of Electronics and Communications Engineering Tampere University of Technology Finland Outline

More information

High-end vector signal generator creates complex multichannel scenarios

High-end vector signal generator creates complex multichannel scenarios Wireless technologies Signal generation and analysis High-end vector signal generator creates complex multichannel scenarios Fig. 1: The new R&S SMW200A vector signal generator combined with two R&S SGS100A

More information

Outline / Wireless Networks and Applications Lecture 7: Physical Layer OFDM. Frequency-Selective Radio Channel. How Do We Increase Rates?

Outline / Wireless Networks and Applications Lecture 7: Physical Layer OFDM. Frequency-Selective Radio Channel. How Do We Increase Rates? Page 1 Outline 18-452/18-750 Wireless Networks and Applications Lecture 7: Physical Layer OFDM Peter Steenkiste Carnegie Mellon University RF introduction Modulation and multiplexing Channel capacity Antennas

More information

3GPP TS V9.0.0 ( )

3GPP TS V9.0.0 ( ) Technical Specification 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission

More information

Agilent E6651A Mobile WiMAX Test Set

Agilent E6651A Mobile WiMAX Test Set Agilent E6651A Mobile WiMAX Test Set Preliminary Technical Overview Accelerate time-to-market for your IEEE802.16e subscriber station designs The E6651A represents a significant breakthrough in Mobile

More information

REPORT ITU-R M Characteristics of broadband wireless access systems operating in the land mobile service for use in sharing studies

REPORT ITU-R M Characteristics of broadband wireless access systems operating in the land mobile service for use in sharing studies Rep. ITU-R M.2116 1 REPORT ITU-R M.2116 Characteristics of broadband wireless access systems operating in the land mobile service for use in sharing studies (Questions ITU-R 1/8 and ITU-R 7/8) (2007) 1

More information

With release 12, the third generation. Is Your Handset PA Ready for LTE Device-to-Device Proximity Services?

With release 12, the third generation. Is Your Handset PA Ready for LTE Device-to-Device Proximity Services? Is Your Handset PA Ready for LTE Device-to-Device Proximity Services? Andreas Roessler Rohde & Schwarz, Munich, Germany With release 12, the third generation partnership project (3GPP) has taken on the

More information

Status of supporting low level output powers for FDD base stations within the 3GPP RAN specifications today

Status of supporting low level output powers for FDD base stations within the 3GPP RAN specifications today TSG-RAN meeting #19 Birmingham, Great Britain, 11 th -14 th March, 2003 RP-030194 Agenda Item: 9.10 Source: Title: Motorola Document for: Approval Introduction Status of supporting low level output powers

More information

Department of Computer Science Institute for System Architecture, Chair for Computer Networks

Department of Computer Science Institute for System Architecture, Chair for Computer Networks Department of Computer Science Institute for System Architecture, Chair for Computer Networks LTE, WiMAX and 4G Mobile Communication and Mobile Computing Prof. Dr. Alexander Schill http://www.rn.inf.tu-dresden.de

More information

IQxel-M TM Multi-DUT/Multicom Connectivity Test System

IQxel-M TM Multi-DUT/Multicom Connectivity Test System TECHNICAL SPECIFICATIONS IQxel-M TM Multi-DUT/Multicom Connectivity Test System 2017 LitePoint, A Teradyne Company. All rights reserved. Overview of IQxel-M The IQxel-M is a manufacturing oriented, Multi-DUT,

More information

PXI UMTS Uplink Measurement Suite Data Sheet

PXI UMTS Uplink Measurement Suite Data Sheet PXI UMTS Uplink Measurement Suite Data Sheet The most important thing we build is trust A production ready ATE solution for RF alignment and performance verification Tx Max Output Power Frequency Error

More information

RECOMMENDATION ITU-R BT.1832 * Digital video broadcast-return channel terrestrial (DVB-RCT) deployment scenarios and planning considerations

RECOMMENDATION ITU-R BT.1832 * Digital video broadcast-return channel terrestrial (DVB-RCT) deployment scenarios and planning considerations Rec. ITU-R BT.1832 1 RECOMMENDATION ITU-R BT.1832 * Digital video broadcast-return channel terrestrial (DVB-RCT) deployment scenarios and planning considerations (Question ITU-R 16/6) (2007) Scope This

More information

K E Y N O T E S P E E C H. Deputy General Manager / Keysight Technologies

K E Y N O T E S P E E C H. Deputy General Manager / Keysight Technologies //08 K E Y N O T E S P E E C H Jeffrey Chen Jeffrey-cy_chen@keysight.com 08.0. Deputy General Manager / Keysight Technologies M O R E S P E E D, L E S S P O W E R, P E R F E C T A C C U R A C Y NETWORKS/CLOUD

More information

Improving Peak Data Rate in LTE toward LTE-Advanced Technology

Improving Peak Data Rate in LTE toward LTE-Advanced Technology Improving Peak Data Rate in LTE toward LTE-Advanced Technology A. Z. Yonis 1, M.F.L.Abdullah 2, M.F.Ghanim 3 1,2,3 Department of Communication Engineering, Faculty of Electrical and Electronic Engineering

More information

Data and Computer Communications. Tenth Edition by William Stallings

Data and Computer Communications. Tenth Edition by William Stallings Data and Computer Communications Tenth Edition by William Stallings Data and Computer Communications, Tenth Edition by William Stallings, (c) Pearson Education - 2013 CHAPTER 10 Cellular Wireless Network

More information

ETSI TS V8.2.0 ( ) Technical Specification

ETSI TS V8.2.0 ( ) Technical Specification TS 136 104 V8.2.0 (2008-11) Technical Specification LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception (3GPP TS 36.104 version 8.2.0 Release 8)

More information

Keysight Technologies LTE, LTE-Advanced FDD/TDD, NB-IoT/eMTC FDD X-Series Measurement App, Multi-Touch

Keysight Technologies LTE, LTE-Advanced FDD/TDD, NB-IoT/eMTC FDD X-Series Measurement App, Multi-Touch Keysight Technologies LTE, LTE-Advanced FDD/TDD, NB-IoT/eMTC FDD X-Series Measurement App, Multi-Touch N9080C and N9082C Technical Overview Perform LTE and LTE-Advanced FDD and TDD, and NB-IoT and emtc

More information

3G Evolution HSPA and LTE for Mobile Broadband Part II

3G Evolution HSPA and LTE for Mobile Broadband Part II 3G Evolution HSPA and LTE for Mobile Broadband Part II Dr Stefan Parkvall Principal Researcher Ericsson Research stefan.parkvall@ericsson.com Outline Series of three seminars I. Basic principles Channel

More information

TECHTRAINED. Foundations Explained. Learn Technology in 10 minutes. Contact:

TECHTRAINED. Foundations Explained. Learn Technology in 10 minutes. Contact: TT 1608: LTE Air Interface Foundations Explained Contact: hello@techtrained.com 469-619-7419 918-908-0336 Course Overview: If you are trying to learn LTE and don t know where to start. You or your technical

More information

3GPP: Evolution of Air Interface and IP Network for IMT-Advanced. Francois COURAU TSG RAN Chairman Alcatel-Lucent

3GPP: Evolution of Air Interface and IP Network for IMT-Advanced. Francois COURAU TSG RAN Chairman Alcatel-Lucent 3GPP: Evolution of Air Interface and IP Network for IMT-Advanced Francois COURAU TSG RAN Chairman Alcatel-Lucent 1 Introduction Reminder of LTE SAE Requirement Key architecture of SAE and its impact Key

More information

NOISE, INTERFERENCE, & DATA RATES

NOISE, INTERFERENCE, & DATA RATES COMP 635: WIRELESS NETWORKS NOISE, INTERFERENCE, & DATA RATES Jasleen Kaur Fall 2015 1 Power Terminology db Power expressed relative to reference level (P 0 ) = 10 log 10 (P signal / P 0 ) J : Can conveniently

More information

IQgig-IF TM Technical Specifications

IQgig-IF TM Technical Specifications TECHNICAL SPECIFICATIONS IQgig-IF TM Technical Specifications 2018 LitePoint, A Teradyne Company. All rights reserved. Port Descriptions IQgig-IF Front Panel I/O Function Type Power Switch Power On/Off

More information