PACS. PACS Photometer glitch analysis on the electronics. Herschel. PACS Photometer glitch analysis on the electronics Page 1. K.

Size: px
Start display at page:

Download "PACS. PACS Photometer glitch analysis on the electronics. Herschel. PACS Photometer glitch analysis on the electronics Page 1. K."

Transcription

1 PACS Photometer glitch analysis on the electronics Page 1 PACS Photometer glitch analysis on the electronics K. Okumura

2 PACS Photometer glitch analysis on the electronics Page 2 Req bis Glitches on electronics components 1.1.9bis - A. History Version Date Author(s) Change description SEP 2010 K.Okumura First issue 1.1.9bis - B. Summary At the beginning of the mission up to OD 160, we used the stabilisation time after switch on to measure the reference voltage VRL. Those measurements are affected by the slow stabilisation of the signal, but some usefull information can still be found in those data. Here we use those data to asses the glitch behaviour on electronics bis - C. Data Reference Sheet Table 1: Data used for the analyses OD date OBSID comment Jun Jul Jul Jul Jul Jul Aug Aug Aug Aug Aug Aug Aug Sep Sep Sep Sep no data Sep Sep Oct Oct bis - D. Test Description Right after the switch on of the PACS photometer, the detectors need about 35 minutes to stabilise. We take advantage of this stabilisation time to measure the signal coming out of the reference voltage VRL. This signal does not include the bolometer. However, the signal can be affected by the cosmic ray impacts on the electronics components and can contain some electronics specific glitches.

3 PACS Photometer glitch analysis on the electronics Page bis - E. Results In the signal from the reference voltage VRL there is no glitch comparable to the short time constant glitches seen on the bolometer signal (Fig. 1). However, glitches of long term recovery can be detected with a much less occurrence. Typical examples of those long therm glitches are shown in Figs. 2, where one observes negative glitches as well as positive ones. Figure 1: A typical example of the VRL signal after the bolometer switch on and during the stabilisation. No usual glitch is seen. In order to detect this type of signal behaviour the usual deglitching algorithm does not work in a optimum way. Here the detection is performed by a fixed threshold of the absolute value of the derivative of the signal. The threshold was fixed here to 10 times the standard deviation around the median value of the derivative of the signal. The number of detected glitches using this method is on average 33 over roughly 30 minutes on the whole blue detector area. Taking this small amount of glitches into account, one can construct a global view of the glitches over this time interval by looking at the largest glitch by pixel. A map of the time of impact can be constructed by mapping the frame number of the largest glitch for each pixel. This map allows to see the coincidence of the glitch on several pixels and their spatial distribution. Another map can also be constructed to show the amplitude of the largest glitch detected on each pixel, which allows to see, in particular, if the glitches are positive or negative. Figs. 3 to Figs. 22 show those maps for all the available data from OD26 to OD160. One thing is clearly noticeable in these maps: the pixels on the 11th line of the matrix 6 (upper inner left of the blue array) are almost always detected as glitches. This systematic detection suggest that this is not due to cosmic ray hits, but rather to the electric noise of this readout address.

4 PACS Photometer glitch analysis on the electronics Page 4 Figure 2: Example of glitches. [Top] typical positive and negative glitches, [Middle] glitches of a relatively large amplitude, [Bottom left] successive glitches (the first one affects only this pixel whereas the second one is seen on 16 pixels of the same readout address, [Bottom right] this should be considered rather as electric noise (see hereafter)

5 PACS Photometer glitch analysis on the electronics Page 5 Figure 3: Global view of the glitches OD 26. [Left] the frame sequence number where the largest glitch is detected, [Right] the amplitude in volts of the corresponding glitch, [Top] blue, [Bottom] red Figure 4: Global view of the glitches on OD 64. [Left] the frame sequence number where the largest glitch is detected, [Right] the amplitude in volts of the corresponding glitch, [Top] blue, [Bottom] red

6 PACS Photometer glitch analysis on the electronics Page 6 Figure 5: Global view of the glitches on OD 65. [Left] the frame sequence number where the largest glitch is detected, [Right] the amplitude in volts of the corresponding glitch, [Top] blue, [Bottom] red Figure 6: Global view of the glitches on OD 67. [Left] the frame sequence number where the largest glitch is detected, [Right] the amplitude in volts of the corresponding glitch. The result is only on the blue side, for no glitch was detected on the red side.

7 PACS Photometer glitch analysis on the electronics Page 7 Figure 7: Global view of the glitches on OD 72. [Left] the frame sequence number where the largest glitch is detected, [Right] the amplitude in volts of the corresponding glitch [Top] blue, [Bottom] red Figure 8: Global view of the glitches on OD 73. [Left] the frame sequence number where the largest glitch is detected, [Right] the amplitude in volts of the corresponding glitch. The result is only on the blue side, for no glitch was detected on the red side.

8 PACS Photometer glitch analysis on the electronics Page 8 Figure 9: Global view of the glitches on OD 86. [Left] the frame sequence number where the largest glitch is detected, [Right] the amplitude in volts of the corresponding glitch, [Top] blue, [Bottom] red Figure 10: Global view of the glitches on OD 92. [Left] the frame sequence number where the largest glitch is detected, [Right] the amplitude in volts of the corresponding glitch, [Top] blue, [Bottom] red

9 PACS Photometer glitch analysis on the electronics Page 9 Figure 11: Global view of the glitches on OD 93. [Left] the frame sequence number where the largest glitch is detected, [Right] the amplitude in volts of the corresponding glitch, [Top] blue, [Bottom] red Figure 12: Global view of the glitches on OD 96. [Left] the frame sequence number where the largest glitch is detected, [Right] the amplitude in volts of the corresponding glitch, [Top] blue, [Bottom] red

10 PACS Photometer glitch analysis on the electronics Page 10 Figure 13: Global view of the glitches on OD 101. [Left] the frame sequence number where the largest glitch is detected, [Right] the amplitude in volts of the corresponding glitch, [Top] blue, [Bottom] red Figure 14: Global view of the glitches on OD 104. [Left] the frame sequence number where the largest glitch is detected, [Right] the amplitude in volts of the corresponding glitch, [Top] blue, [Bottom] red

11 PACS Photometer glitch analysis on the electronics Page 11 Figure 15: Global view of the glitches on OD 107. [Left] the frame sequence number where the largest glitch is detected, [Right] the amplitude in volts of the corresponding glitch. The result is only on the blue side, for no glitch was detected on the red side. Figure 16: Global view of the glitches on OD 110. [Left] the frame sequence number where the largest glitch is detected, [Right] the amplitude in volts of the corresponding glitch, [Top] blue, [Bottom] red

12 PACS Photometer glitch analysis on the electronics Page 12 Figure 17: Global view of the glitches on OD 120. [Left] the frame sequence number where the largest glitch is detected, [Right] the amplitude in volts of the corresponding glitch, [Top] blue, [Bottom] red Figure 18: Global view of the glitches on OD 124. [Left] the frame sequence number where the largest glitch is detected, [Right] the amplitude in volts of the corresponding glitch, [Top] blue, [Bottom] red

13 PACS Photometer glitch analysis on the electronics Page 13 Figure 19: Global view of the glitches on OD 132. [Left] the frame sequence number where the largest glitch is detected, [Right] the amplitude in volts of the corresponding glitch, [Top] blue, [Bottom] red Figure 20: Global view of the glitches on OD 139. [Left] the frame sequence number where the largest glitch is detected, [Right] the amplitude in volts of the corresponding glitch, [Top] blue, [Bottom] red

14 PACS Photometer glitch analysis on the electronics Page 14 Figure 21: Global view of the glitches on OD 157. [Left] the frame sequence number where the largest glitch is detected, [Right] the amplitude in volts of the corresponding glitch, [Top] blue, [Bottom] red Figure 22: Global view of the glitches on OD 160. [Left] the frame sequence number where the largest glitch is detected, [Right] the amplitude in volts of the corresponding glitch, [Top] blue, [Bottom] red

15 PACS Photometer glitch analysis on the electronics Page 15 In fact a typical signal of one of these pixel looks like in Fig. 23, where the signal level skips suddenly on slightly a lower level from time to time and then skips back to the previous level. If we look at the average value of the number of detected glitches, it is 40 for the blue and 7 for the red. The geometrical retio of detector surface being 4, the glitch detection is higher for the blue than the red. If we subtract all the detection on the 11 th line of the matrix 6, we obtain 29 instead of 40 and the ratio 29/7 is nearly 4. Figure 23: The pixels in the 11th line of the matrix 6 are always detected as glitches. These detection are too systematic to consider them as due to cosmic ray hits. It should be considered as electric noise due to a instable electronics on this address. Now taking into account this false detection, we can remove all the detection on the line 11 of the matrix 6, without introducing too much bias because of the small number of glitches. Figs. 24 show the number of detected glitches corrected by the electric noise. The fluctuation of the glitches in time does not correlate between blue and red detectors. Coming back to the glitch maps, some features are easily noticeable. There are glitches affecting only one pixel There are glitches affecting a set of pixels of the same readout address There are as many positive as negative glitches in both cases Figs. 25 to Figs. 34 show a set of glitches occurred on a same readout address. In the data of OD26, the pixel [28,3] shows an noise similar to that of the line 11 of the matrix 6. The same kind of noise can be also seen on the line 31 of the matrix 1 on OD160.

16 PACS Photometer glitch analysis on the electronics Page 16 Figure 24: Number of detected glitches. [Left] Blue and [Right] Red Ideally the statistics of the glitch rate of those different features are supposed to reflect the geometrical cross section of electric componets. This correspondance should be studied further in detail bis - F. Conclusions The observed glitches on the reference signal VRL consist of two groups. The ones which affect symaltaniously the pixels of one readout address and those which affect only one independent pixel at the same time bis - G. IA scripts used / remarks on PCSS glitchesvrl.py glitchesvrlstat.py

17 PACS Photometer glitch analysis on the electronics Page 17 Figure 25: Glitches of a same readout address on the matrix 1

18 PACS Photometer glitch analysis on the electronics Page 18 Figure 26: Glitches of a same readout address on the matrix 2

19 PACS Photometer glitch analysis on the electronics Page 19 Figure 27: Glitches of a same readout address on the matrix 3 Figure 28: Glitches of a same readout address on the matrix 4

20 PACS Photometer glitch analysis on the electronics Page 20 Figure 29: Glitches of a same readout address on the matrix 5

21 PACS Photometer glitch analysis on the electronics Page 21 Figure 30: Glitches of a same readout address on the matrix 6

22 PACS Photometer glitch analysis on the electronics Page 22 Figure 31: Glitches of a same readout address on the matrix 7

23 PACS Photometer glitch analysis on the electronics Page 23 Figure 32: Glitches of a same readout address on the matrix 8

24 PACS Photometer glitch analysis on the electronics Page 24 Figure 33: Glitches of a same readout address on the red matrix 9

25 PACS Photometer glitch analysis on the electronics Page 25 Figure 34: Glitches of a same readout address on the red matrix 10

PACS. Photometer SPT during Commissioning Phase. Herschel. PACS Commissioning Phase FFT/SPT report Page 1

PACS. Photometer SPT during Commissioning Phase. Herschel. PACS Commissioning Phase FFT/SPT report Page 1 PACS Commissioning Phase FFT/SPT report Page 1 Photometer SPT during Commissioning Phase PACS Commissioning Phase FFT/SPT report Page 2 Req. 11.6.19 Staring Measurement on Calibration Source for Low Frequency

More information

Issues with Photometer Data & How to Resolve them with HIPE Tools

Issues with Photometer Data & How to Resolve them with HIPE Tools Issues with Photometer Data & How to Resolve them with HIPE Tools Kevin Xu NHSC/IPAC on behalf of the SPIRE ICC Known Issues New Flux Calibration in HIPE 11 Cooler Burps Glitches Missed Thermistor Signal

More information

PACS. Optimum detector bias settings for Ge:Ga detectors, Time constant: bias change spectrometer IMT 509

PACS. Optimum detector bias settings for Ge:Ga detectors, Time constant: bias change spectrometer IMT 509 Test Analysis Report FM-ILT/IST Page 1 Optimum detector bias settings for Ge:Ga detectors, Time constant: bias change spectrometer IMT 509 J. Schreiber 1, U. Klaas 1, H. Dannerbauer 1, M. Nielbock 1, J.

More information

PACS photometry on extended sources

PACS photometry on extended sources PACS photometry on extended sources Total flux experiments Bruno Altieri on behalf of Marc Sauvage 1. Point-source photometry status 2. Prospect on extended emission photometry from theory 3. Results from

More information

EFFECTS OF IONOSPHERIC SMALL-SCALE STRUCTURES ON GNSS

EFFECTS OF IONOSPHERIC SMALL-SCALE STRUCTURES ON GNSS EFFECTS OF IONOSPHERIC SMALL-SCALE STRUCTURES ON GNSS G. Wautelet, S. Lejeune, R. Warnant Royal Meteorological Institute of Belgium, Avenue Circulaire 3 B-8 Brussels (Belgium) e-mail: gilles.wautelet@oma.be

More information

NHSC/PACS Web Tutorials Running PACS photometer pipelines. PACS 201 (for Hipe 5.0) Level 0 to Level 1 processing: From raw to calibrated data cubes

NHSC/PACS Web Tutorials Running PACS photometer pipelines. PACS 201 (for Hipe 5.0) Level 0 to Level 1 processing: From raw to calibrated data cubes NHSC/PACS Web Tutorials Running PACS photometer pipelines PACS 201 (for Hipe 5.0) Level 0 to Level 1 processing: From raw to calibrated data cubes Prepared by Nicolas Billot and Roberta Paladini August

More information

Temperature Dependent Dark Reference Files: Linear Dark and Amplifier Glow Components

Temperature Dependent Dark Reference Files: Linear Dark and Amplifier Glow Components Instrument Science Report NICMOS 2009-002 Temperature Dependent Dark Reference Files: Linear Dark and Amplifier Glow Components Tomas Dahlen, Elizabeth Barker, Eddie Bergeron, Denise Smith July 01, 2009

More information

WFC3/IR Cycle 19 Bad Pixel Table Update

WFC3/IR Cycle 19 Bad Pixel Table Update Instrument Science Report WFC3 2012-10 WFC3/IR Cycle 19 Bad Pixel Table Update B. Hilbert June 08, 2012 ABSTRACT Using data from Cycles 17, 18, and 19, we have updated the IR channel bad pixel table for

More information

NHSC/PACS Web Tutorials Running PACS photometer pipelines PACS-201

NHSC/PACS Web Tutorials Running PACS photometer pipelines PACS-201 NHSC/PACS Web Tutorials Running PACS photometer pipelines PACS 201 Level 0 to Level 1 processing: From raw to calibrated data cubes Prepared by Nicolas Billot February 2011 - page 1 Introduc=on NHSC PACS

More information

A repository of precision flatfields for high resolution MDI continuum data

A repository of precision flatfields for high resolution MDI continuum data Solar Physics DOI: 10.7/ - - - - A repository of precision flatfields for high resolution MDI continuum data H.E. Potts 1 D.A. Diver 1 c Springer Abstract We describe an archive of high-precision MDI flat

More information

Basic principles of PACS photometer data reduc7on

Basic principles of PACS photometer data reduc7on Basic principles of PACS photometer data reduc7on B. Altieri, HSC/ESAC November 2012 B. Altieri HSC/ESAC November 2012 Slide 1 PACS photometer Two filled bolometer arrays in dual band imaging: 64x32 pixels

More information

Update on SPIRE Photometer Pipeline

Update on SPIRE Photometer Pipeline Update on SPIRE Photometer Pipeline Kevin Xu NHSC/IPAC on behalf of the SPIRE ICC page 1 What s New in HIPE 9.1 Improved map-making, with destriper in standard processing Electrical crosstalk correction

More information

Why Single Dish? Why Single Dish? Darrel Emerson NRAO Tucson

Why Single Dish? Why Single Dish? Darrel Emerson NRAO Tucson Why Single Dish? Darrel Emerson NRAO Tucson Why Single Dish? What's the Alternative? Comparisons between Single-Dish, Phased Array & Interferometers Advantages and Disadvantages of Correlation Interferometer

More information

Interpixel crosstalk in a 3D-integrated active pixel sensor for x-ray detection

Interpixel crosstalk in a 3D-integrated active pixel sensor for x-ray detection Interpixel crosstalk in a 3D-integrated active pixel sensor for x-ray detection The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

How to Setup a Real-time Oscilloscope to Measure Jitter

How to Setup a Real-time Oscilloscope to Measure Jitter TECHNICAL NOTE How to Setup a Real-time Oscilloscope to Measure Jitter by Gary Giust, PhD NOTE-3, Version 1 (February 16, 2016) Table of Contents Table of Contents... 1 Introduction... 2 Step 1 - Initialize

More information

Direct Dark Matter Search with XMASS --- modulation analysis ---

Direct Dark Matter Search with XMASS --- modulation analysis --- Direct Dark Matter Search with XMASS --- modulation analysis --- ICRR, University of Tokyo K. Kobayashi On behalf of the XMASS collaboration September 8 th, 2015 TAUP 2015, Torino, Italy XMASS experiment

More information

Why Single Dish? Darrel Emerson NRAO Tucson. NAIC-NRAO School on Single-Dish Radio Astronomy. Green Bank, August 2003.

Why Single Dish? Darrel Emerson NRAO Tucson. NAIC-NRAO School on Single-Dish Radio Astronomy. Green Bank, August 2003. Why Single Dish? Darrel Emerson NRAO Tucson NAIC-NRAO School on Single-Dish Radio Astronomy. Green Bank, August 2003. Why Single Dish? What's the Alternative? Comparisons between Single-Dish, Phased Array

More information

Target Echo Information Extraction

Target Echo Information Extraction Lecture 13 Target Echo Information Extraction 1 The relationships developed earlier between SNR, P d and P fa apply to a single pulse only. As a search radar scans past a target, it will remain in the

More information

Image Extraction using Image Mining Technique

Image Extraction using Image Mining Technique IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719 Vol. 3, Issue 9 (September. 2013), V2 PP 36-42 Image Extraction using Image Mining Technique Prof. Samir Kumar Bandyopadhyay,

More information

Digital Image Processing. Digital Image Fundamentals II 12 th June, 2017

Digital Image Processing. Digital Image Fundamentals II 12 th June, 2017 Digital Image Processing Digital Image Fundamentals II 12 th June, 2017 Image Enhancement Image Enhancement Types of Image Enhancement Operations Neighborhood Operations on Images Spatial Filtering Filtering

More information

Some plots from March 2007 tests related to bolometer PSF

Some plots from March 2007 tests related to bolometer PSF Some plots from March 2007 tests related to bolometer PSF D.Lutz May 3, 2007 1 Introduction Document number PICC-ME-TN-020 This is a collection of sparsely commented plots from a quick analysis of some

More information

Testo SuperResolution the patent-pending technology for high-resolution thermal images

Testo SuperResolution the patent-pending technology for high-resolution thermal images Professional article background article Testo SuperResolution the patent-pending technology for high-resolution thermal images Abstract In many industrial or trade applications, it is necessary to reliably

More information

Impulse noise features for automatic selection of noise cleaning filter

Impulse noise features for automatic selection of noise cleaning filter Impulse noise features for automatic selection of noise cleaning filter Odej Kao Department of Computer Science Technical University of Clausthal Julius-Albert-Strasse 37 Clausthal-Zellerfeld, Germany

More information

CCD reductions techniques

CCD reductions techniques CCD reductions techniques Origin of noise Noise: whatever phenomena that increase the uncertainty or error of a signal Origin of noises: 1. Poisson fluctuation in counting photons (shot noise) 2. Pixel-pixel

More information

PQ Data Applications in Con Edison

PQ Data Applications in Con Edison PQ Data Applications in Con Edison John Foglio July 29th, 2014 Power Quality Monitoring System 69 PQ monitors currently installed in our secondary networks 2 Power Quality Monitoring System 135 PQ monitors

More information

WFC3 TV3 Testing: IR Channel Nonlinearity Correction

WFC3 TV3 Testing: IR Channel Nonlinearity Correction Instrument Science Report WFC3 2008-39 WFC3 TV3 Testing: IR Channel Nonlinearity Correction B. Hilbert 2 June 2009 ABSTRACT Using data taken during WFC3's Thermal Vacuum 3 (TV3) testing campaign, we have

More information

Physics Experiment N -17. Lifetime of Cosmic Ray Muons with On-Line Data Acquisition on a Computer

Physics Experiment N -17. Lifetime of Cosmic Ray Muons with On-Line Data Acquisition on a Computer Introduction Physics 410-510 Experiment N -17 Lifetime of Cosmic Ray Muons with On-Line Data Acquisition on a Computer The experiment is designed to teach the techniques of particle detection using scintillation

More information

Why Single Dish? Darrel Emerson NRAO Tucson. NAIC-NRAO School on Single-Dish Radio Astronomy. Green Bank, August 2003.

Why Single Dish? Darrel Emerson NRAO Tucson. NAIC-NRAO School on Single-Dish Radio Astronomy. Green Bank, August 2003. Why Single Dish? Darrel Emerson NRAO Tucson NAIC-NRAO School on Single-Dish Radio Astronomy. Green Bank, August 2003. Why Single Dish? What's the Alternative? Comparisons between Single-Dish, Phased Array

More information

NON UNIFORM BACKGROUND REMOVAL FOR PARTICLE ANALYSIS BASED ON MORPHOLOGICAL STRUCTURING ELEMENT:

NON UNIFORM BACKGROUND REMOVAL FOR PARTICLE ANALYSIS BASED ON MORPHOLOGICAL STRUCTURING ELEMENT: IJCE January-June 2012, Volume 4, Number 1 pp. 59 67 NON UNIFORM BACKGROUND REMOVAL FOR PARTICLE ANALYSIS BASED ON MORPHOLOGICAL STRUCTURING ELEMENT: A COMPARATIVE STUDY Prabhdeep Singh1 & A. K. Garg2

More information

restoration-interpolation from the Thematic Mapper (size of the original

restoration-interpolation from the Thematic Mapper (size of the original METHOD FOR COMBINED IMAGE INTERPOLATION-RESTORATION THROUGH A FIR FILTER DESIGN TECHNIQUE FONSECA, Lei 1 a M. G. - Researcher MASCARENHAS, Nelson D. A. - Researcher Instituto de Pesquisas Espaciais - INPE/MCT

More information

Pulse Shape Analysis for a New Pixel Readout Chip

Pulse Shape Analysis for a New Pixel Readout Chip Abstract Pulse Shape Analysis for a New Pixel Readout Chip James Kingston University of California, Berkeley Supervisors: Daniel Pitzl and Paul Schuetze September 7, 2017 1 Table of Contents 1 Introduction...

More information

A Combined Multi-Temporal InSAR Method: Incorporating Persistent Scatterer and Small Baseline Approaches. Andy Hooper University of Iceland

A Combined Multi-Temporal InSAR Method: Incorporating Persistent Scatterer and Small Baseline Approaches. Andy Hooper University of Iceland A Combined Multi-Temporal InSAR Method: Incorporating Persistent Scatterer and Small Baseline Approaches Andy Hooper University of Iceland Time Multi-Temporal InSAR Same area imaged each time Multi-Temporal

More information

Comparison Between Scrambled and X-Y Crosswire Readout Techniques

Comparison Between Scrambled and X-Y Crosswire Readout Techniques Comparison Between Scrambled and X-Y Crosswire When reading out a large number of detector elements, such as a multipixel SPM array, it is often desirable to use some form of multiplexing in order to reduce

More information

Processing ACA Monitor Window Data

Processing ACA Monitor Window Data Processing ACA Monitor Window Data CIAO 3.4 Science Threads Processing ACA Monitor Window Data 1 Table of Contents Processing ACA Monitor Window Data CIAO 3.4 Background Information Get Started Obtaining

More information

Image Processing (EA C443)

Image Processing (EA C443) Image Processing (EA C443) OBJECTIVES: To study components of the Image (Digital Image) To Know how the image quality can be improved How efficiently the image data can be stored and transmitted How the

More information

Processing data collected with Pilatus/Eiger detectors. James Parkhurst IUCR Computing School, Bangalore, August 2017

Processing data collected with Pilatus/Eiger detectors. James Parkhurst IUCR Computing School, Bangalore, August 2017 Processing data collected with Pilatus/Eiger detectors James Parkhurst IUCR Computing School, Bangalore, August 2017 Introduction Overview of Pilatus/Eiger detectors Overview of the DIALS integration program

More information

1. (a) Explain the process of Image acquisition. (b) Discuss different elements used in digital image processing system. [8+8]

1. (a) Explain the process of Image acquisition. (b) Discuss different elements used in digital image processing system. [8+8] Code No: R05410408 Set No. 1 1. (a) Explain the process of Image acquisition. (b) Discuss different elements used in digital image processing system. [8+8] 2. (a) Find Fourier transform 2 -D sinusoidal

More information

I have mostly minor issues, but one is major and will require additional analyses:

I have mostly minor issues, but one is major and will require additional analyses: Response to referee 1: (referee s comments are in blue; the replies are in black) The authors are grateful to the referee for careful reading of the paper and valuable suggestions and comments. Below we

More information

Background Pixel Classification for Motion Detection in Video Image Sequences

Background Pixel Classification for Motion Detection in Video Image Sequences Background Pixel Classification for Motion Detection in Video Image Sequences P. Gil-Jiménez, S. Maldonado-Bascón, R. Gil-Pita, and H. Gómez-Moreno Dpto. de Teoría de la señal y Comunicaciones. Universidad

More information

Jitter Analysis Techniques Using an Agilent Infiniium Oscilloscope

Jitter Analysis Techniques Using an Agilent Infiniium Oscilloscope Jitter Analysis Techniques Using an Agilent Infiniium Oscilloscope Product Note Table of Contents Introduction........................ 1 Jitter Fundamentals................. 1 Jitter Measurement Techniques......

More information

WFC3 SMOV Program 11433: IR Internal Flat Field Observations

WFC3 SMOV Program 11433: IR Internal Flat Field Observations Instrument Science Report WFC3 2009-42 WFC3 SMOV Program 11433: IR Internal Flat Field Observations B. Hilbert 27 October 2009 ABSTRACT We have analyzed the internal flat field behavior of the WFC3/IR

More information

Geometric Quality Assessment of CBERS-2. Julio d Alge Ricardo Cartaxo Guaraci Erthal

Geometric Quality Assessment of CBERS-2. Julio d Alge Ricardo Cartaxo Guaraci Erthal Geometric Quality Assessment of CBERS-2 Julio d Alge Ricardo Cartaxo Guaraci Erthal Contents Monitoring CBERS-2 scene centers Satellite orbit control Band-to-band registration accuracy Detection and control

More information

A 2 to 4 GHz Instantaneous Frequency Measurement System Using Multiple Band-Pass Filters

A 2 to 4 GHz Instantaneous Frequency Measurement System Using Multiple Band-Pass Filters Progress In Electromagnetics Research M, Vol. 62, 189 198, 2017 A 2 to 4 GHz Instantaneous Frequency Measurement System Using Multiple Band-Pass Filters Hossam Badran * andmohammaddeeb Abstract In this

More information

Final Long-Term Duty Cycle Report Primary Frequency Response (PFR) Duty Cycle Battery Pack: EnerDel, Channel 4 and Battery Module: A123 #5, Channel 1

Final Long-Term Duty Cycle Report Primary Frequency Response (PFR) Duty Cycle Battery Pack: EnerDel, Channel 4 and Battery Module: A123 #5, Channel 1 Final Long-Term Duty Cycle Report Primary Frequency Response (PFR) Duty Cycle Battery Pack: EnerDel, Channel 4 and Battery Module: A123 #5, Channel 1 July 2015 PREPARED FOR National Renewable Energy Laboratory

More information

Ultrasonic Time-of-Flight Shift Measurements in Carbon Composite Laminates Containing Matrix Microcracks

Ultrasonic Time-of-Flight Shift Measurements in Carbon Composite Laminates Containing Matrix Microcracks Ultrasonic Time-of-Flight Shift Measurements in Carbon Composite Laminates Containing Matrix Microcracks Ajith Subramanian a, Vinay Dayal b, and Daniel J. Barnard a a CNDE, Iowa State University, Ames,

More information

Astronomy 341 Fall 2012 Observational Astronomy Haverford College. CCD Terminology

Astronomy 341 Fall 2012 Observational Astronomy Haverford College. CCD Terminology CCD Terminology Read noise An unavoidable pixel-to-pixel fluctuation in the number of electrons per pixel that occurs during chip readout. Typical values for read noise are ~ 10 or fewer electrons per

More information

Lightning observations from space: Time and space characteristics of optical events. Ullrich Finke, FH Hannover 5 th December, 2007

Lightning observations from space: Time and space characteristics of optical events. Ullrich Finke, FH Hannover 5 th December, 2007 Lightning observations from space: Time and space characteristics of optical events Ullrich Finke, FH Hannover 5 th December, 2007 Contents 1. Lightning Imaging Mission 2. Optical characteristics 3. GEO-Orbit

More information

SPIRE Broad-Band Photometry Extraction

SPIRE Broad-Band Photometry Extraction SPIRE Broad-Band Photometry Extraction Bernhard Schulz (NHSC/IPAC) on behalf of the SPIRE ICC, the HSC and the NHSC Contents Point Source Photometry Choices Extended gain correction factors Zero-point

More information

What an Observational Astronomer needs to know!

What an Observational Astronomer needs to know! What an Observational Astronomer needs to know! IRAF:Photometry D. Hatzidimitriou Masters course on Methods of Observations and Analysis in Astronomy Basic concepts Counts how are they related to the actual

More information

What is image enhancement? Point operation

What is image enhancement? Point operation IMAGE ENHANCEMENT 1 What is image enhancement? Image enhancement techniques Point operation 2 What is Image Enhancement? Image enhancement is to process an image so that the result is more suitable than

More information

A k-mean characteristic function to improve STA/LTA detection

A k-mean characteristic function to improve STA/LTA detection A k-mean characteristic function to improve STA/LTA detection Jubran Akram*,1, Daniel Peter 1, and David Eaton 2 1 King Abdullah University of Science and Technology (KAUST), Saudi Arabia 2 University

More information

M67 Cluster Photometry

M67 Cluster Photometry Lab 3 part I M67 Cluster Photometry Observational Astronomy ASTR 310 Fall 2009 1 Introduction You should keep in mind that there are two separate aspects to this project as far as an astronomer is concerned.

More information

CoE4TN4 Image Processing. Chapter 3: Intensity Transformation and Spatial Filtering

CoE4TN4 Image Processing. Chapter 3: Intensity Transformation and Spatial Filtering CoE4TN4 Image Processing Chapter 3: Intensity Transformation and Spatial Filtering Image Enhancement Enhancement techniques: to process an image so that the result is more suitable than the original image

More information

Padova and Asiago Observatories

Padova and Asiago Observatories ISSN 1594-1906 Padova and Asiago Observatories The Echelle E2V CCD47-10 CCD H. Navasardyan, M. D'Alessandro, E. Giro, Technical Report n. 22 September 2004 Document available at: http://www.pd.astro.it/

More information

On-Orbit Radiometric Performance of the Landsat 8 Thermal Infrared Sensor. External Editors: James C. Storey, Ron Morfitt and Prasad S.

On-Orbit Radiometric Performance of the Landsat 8 Thermal Infrared Sensor. External Editors: James C. Storey, Ron Morfitt and Prasad S. Remote Sens. 2014, 6, 11753-11769; doi:10.3390/rs61211753 OPEN ACCESS remote sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article On-Orbit Radiometric Performance of the Landsat 8 Thermal

More information

SIMULATIONS OF ADAPTIVE ALGORITHMS FOR SPATIAL BEAMFORMING

SIMULATIONS OF ADAPTIVE ALGORITHMS FOR SPATIAL BEAMFORMING SIMULATIONS OF ADAPTIVE ALGORITHMS FOR SPATIAL BEAMFORMING Ms Juslin F Department of Electronics and Communication, VVIET, Mysuru, India. ABSTRACT The main aim of this paper is to simulate different types

More information

Recursive Sequences. EQ: How do I write a sequence to relate each term to the previous one?

Recursive Sequences. EQ: How do I write a sequence to relate each term to the previous one? Recursive Sequences EQ: How do I write a sequence to relate each term to the previous one? Dec 14 8:20 AM Arithmetic Sequence - A sequence created by adding and subtracting by the same number known as

More information

Interpixel Capacitance in the IR Channel: Measurements Made On Orbit

Interpixel Capacitance in the IR Channel: Measurements Made On Orbit Interpixel Capacitance in the IR Channel: Measurements Made On Orbit B. Hilbert and P. McCullough April 21, 2011 ABSTRACT Using high signal-to-noise pixels in dark current observations, the magnitude of

More information

National Radio Channels. PPM measurement October 2017

National Radio Channels. PPM measurement October 2017 National Radio Channels PPM measurement October 17 Background This overview describes the development of radio broadcasting at national levels with updated figures from October 17. The Norwegian Media

More information

X-RAY COMPUTED TOMOGRAPHY

X-RAY COMPUTED TOMOGRAPHY X-RAY COMPUTED TOMOGRAPHY Bc. Jan Kratochvíla Czech Technical University in Prague Faculty of Nuclear Sciences and Physical Engineering Abstract Computed tomography is a powerful tool for imaging the inner

More information

Timing accuracy of the GEO 600 data acquisition system

Timing accuracy of the GEO 600 data acquisition system INSTITUTE OF PHYSICS PUBLISHING Class. Quantum Grav. 1 (4) S493 S5 CLASSICAL AND QUANTUM GRAVITY PII: S64-9381(4)6861-X Timing accuracy of the GEO 6 data acquisition system KKötter 1, M Hewitson and H

More information

Clock Measurements Using the BI220 Time Interval Analyzer/Counter and Stable32

Clock Measurements Using the BI220 Time Interval Analyzer/Counter and Stable32 Clock Measurements Using the BI220 Time Interval Analyzer/Counter and Stable32 W.J. Riley Hamilton Technical Services Beaufort SC 29907 USA Introduction This paper describes methods for making clock frequency

More information

Total Absorption Dual Readout Calorimetry R&D

Total Absorption Dual Readout Calorimetry R&D Available online at www.sciencedirect.com Physics Procedia 37 (2012 ) 309 316 TIPP 2011 - Technology and Instrumentation for Particle Physics 2011 Total Absorption Dual Readout Calorimetry R&D B. Bilki

More information

Lecture 5. Telescopes (part II) and Detectors

Lecture 5. Telescopes (part II) and Detectors Lecture 5 Telescopes (part II) and Detectors Please take a moment to remember the crew of STS-107, the space shuttle Columbia, as well as their families. Crew of the Space Shuttle Columbia Lost February

More information

Spatially Adaptive Algorithm for Impulse Noise Removal from Color Images

Spatially Adaptive Algorithm for Impulse Noise Removal from Color Images Spatially Adaptive Algorithm for Impulse oise Removal from Color Images Vitaly Kober, ihail ozerov, Josué Álvarez-Borrego Department of Computer Sciences, Division of Applied Physics CICESE, Ensenada,

More information

Analysis of the electrical disturbances in CERN power distribution network with pattern mining methods

Analysis of the electrical disturbances in CERN power distribution network with pattern mining methods OLEKSII ABRAMENKO, CERN SUMMER STUDENT REPORT 2017 1 Analysis of the electrical disturbances in CERN power distribution network with pattern mining methods Oleksii Abramenko, Aalto University, Department

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Part 2: Image Enhancement Digital Image Processing Course Introduction in the Spatial Domain Lecture AASS Learning Systems Lab, Teknik Room T26 achim.lilienthal@tech.oru.se Course

More information

White-light interferometry, Hilbert transform, and noise

White-light interferometry, Hilbert transform, and noise White-light interferometry, Hilbert transform, and noise Pavel Pavlíček *a, Václav Michálek a a Institute of Physics of Academy of Science of the Czech Republic, Joint Laboratory of Optics, 17. listopadu

More information

New Metrics Developed for a Complex Cepstrum Depth Program

New Metrics Developed for a Complex Cepstrum Depth Program T3.5-05 Robert C. Kemerait Ileana M. Tibuleac Jose F. Pascual-Amadeo Michael Thursby Chandan Saikia Nuclear Treaty Monitoring, Geophysics Division New Metrics Developed for a Complex Cepstrum Depth Program

More information

Scintillators as an external trigger for cathode strip chambers

Scintillators as an external trigger for cathode strip chambers Scintillators as an external trigger for cathode strip chambers J. A. Muñoz Department of Physics, Princeton University, Princeton, NJ 08544 An external trigger was set up to test cathode strip chambers

More information

BACCARAT: A LONGITUDINAL MICRO-STUDY

BACCARAT: A LONGITUDINAL MICRO-STUDY BACCARAT: A LONGITUDINAL MICRO-STUDY FIELD RESULTS FROM ONE ATLANTIC CITY CASINO, JANUARY 2004 TO JUNE 2010 CENTER FOR GAMING RESEARCH, JULY 2010 Baccarat is the most important game in the world s biggest

More information

J. E. Brau, N. B. Sinev, D. M. Strom University of Oregon, Eugene. C. Baltay, H. Neal, D. Rabinowitz Yale University, New Haven

J. E. Brau, N. B. Sinev, D. M. Strom University of Oregon, Eugene. C. Baltay, H. Neal, D. Rabinowitz Yale University, New Haven Chronopixe status J. E. Brau, N. B. Sinev, D. M. Strom University of Oregon, Eugene C. Baltay, H. Neal, D. Rabinowitz Yale University, New Haven EE work is contracted to Sarnoff Corporation 1 Outline of

More information

WFC3 TV2 Testing: UVIS Shutter Stability and Accuracy

WFC3 TV2 Testing: UVIS Shutter Stability and Accuracy Instrument Science Report WFC3 2007-17 WFC3 TV2 Testing: UVIS Shutter Stability and Accuracy B. Hilbert 15 August 2007 ABSTRACT Images taken during WFC3's Thermal Vacuum 2 (TV2) testing have been used

More information

Low noise readout techniques for Charge Coupled Devices (CCD) Gustavo Cancelo, Juan Estrada, Guillermo Fernandez Moroni, Ken Treptow, Ted Zmuda

Low noise readout techniques for Charge Coupled Devices (CCD) Gustavo Cancelo, Juan Estrada, Guillermo Fernandez Moroni, Ken Treptow, Ted Zmuda Low noise readout techniques for Charge Coupled Devices (CCD) Gustavo Cancelo, Juan Estrada, Guillermo Fernandez Moroni, Ken Treptow, Ted Zmuda Charge Coupled Devices (CCD) Potential well Characteristics:

More information

NHSC/PACS Web Tutorials Running the PACS Spectrometer pipeline for CHOP/NOD Mode. PACS-301 Level 0 to 1 processing

NHSC/PACS Web Tutorials Running the PACS Spectrometer pipeline for CHOP/NOD Mode. PACS-301 Level 0 to 1 processing NHSC/PACS s Running the PACS Spectrometer pipeline for CHOP/NOD Mode page 1 PACS-301 Level 0 to 1 processing Prepared by Dario Fadda September 2012 Introduction This tutorial will guide you through the

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 22.

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 22. FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 22 Optical Receivers Fiber Optics, Prof. R.K. Shevgaonkar, Dept. of Electrical Engineering,

More information

Experiment 5.A. Basic Wireless Control. ECEN 2270 Electronics Design Laboratory 1

Experiment 5.A. Basic Wireless Control. ECEN 2270 Electronics Design Laboratory 1 .A Basic Wireless Control ECEN 2270 Electronics Design Laboratory 1 Procedures 5.A.0 5.A.1 5.A.2 5.A.3 5.A.4 5.A.5 5.A.6 Turn in your pre lab before doing anything else. Receiver design band pass filter

More information

STREAK DETECTION ALGORITHM FOR SPACE DEBRIS DETECTION ON OPTICAL IMAGES

STREAK DETECTION ALGORITHM FOR SPACE DEBRIS DETECTION ON OPTICAL IMAGES STREAK DETECTION ALGORITHM FOR SPACE DEBRIS DETECTION ON OPTICAL IMAGES Alessandro Vananti, Klaus Schild, Thomas Schildknecht Astronomical Institute, University of Bern, Sidlerstrasse 5, CH-3012 Bern,

More information

Multiple Frequency Eddy Current Technique

Multiple Frequency Eddy Current Technique Multiple Frequency Eddy Current Technique Signal Amplitude Signal Amplitude Multiple Frequency Eddy Current Technique Multiple Frequency Eddy Current technique is one of the non destruction inspection

More information

AUTOMATED INSPECTION SYSTEM OF ELECTRIC MOTOR STATOR AND ROTOR SHEETS

AUTOMATED INSPECTION SYSTEM OF ELECTRIC MOTOR STATOR AND ROTOR SHEETS 9th International DAAAM Baltic Conference "INDUSTRIAL ENGINEERING" 24-26 April 2014, Tallinn, Estonia AUTOMATED INSPECTION SYSTEM OF ELECTRIC MOTOR STATOR AND ROTOR SHEETS Roosileht, I.; Lentsius, M.;

More information

THE OFFICINE GALILEO DIGITAL SUN SENSOR

THE OFFICINE GALILEO DIGITAL SUN SENSOR THE OFFICINE GALILEO DIGITAL SUN SENSOR Franco BOLDRINI, Elisabetta MONNINI Officine Galileo B.U. Spazio- Firenze Plant - An Alenia Difesa/Finmeccanica S.p.A. Company Via A. Einstein 35, 50013 Campi Bisenzio

More information

A JOINT MODULATION IDENTIFICATION AND FREQUENCY OFFSET CORRECTION ALGORITHM FOR QAM SYSTEMS

A JOINT MODULATION IDENTIFICATION AND FREQUENCY OFFSET CORRECTION ALGORITHM FOR QAM SYSTEMS A JOINT MODULATION IDENTIFICATION AND FREQUENCY OFFSET CORRECTION ALGORITHM FOR QAM SYSTEMS Evren Terzi, Hasan B. Celebi, and Huseyin Arslan Department of Electrical Engineering, University of South Florida

More information

Improving the Detection of Near Earth Objects for Ground Based Telescopes

Improving the Detection of Near Earth Objects for Ground Based Telescopes Improving the Detection of Near Earth Objects for Ground Based Telescopes Anthony O'Dell Captain, United States Air Force Air Force Research Laboratories ABSTRACT Congress has mandated the detection of

More information

Spectral Analysis of the LUND/DMI Earthshine Telescope and Filters

Spectral Analysis of the LUND/DMI Earthshine Telescope and Filters Spectral Analysis of the LUND/DMI Earthshine Telescope and Filters 12 August 2011-08-12 Ahmad Darudi & Rodrigo Badínez A1 1. Spectral Analysis of the telescope and Filters This section reports the characterization

More information

Use of the Shutter Blade Side A for UVIS Short Exposures

Use of the Shutter Blade Side A for UVIS Short Exposures Instrument Science Report WFC3 2014-009 Use of the Shutter Blade Side A for UVIS Short Exposures Kailash Sahu, Sylvia Baggett, J. MacKenty May 07, 2014 ABSTRACT WFC3 UVIS uses a shutter blade with two

More information

A Modular Readout System For A Small Liquid Argon TPC Carl Bromberg, Dan Edmunds Michigan State University

A Modular Readout System For A Small Liquid Argon TPC Carl Bromberg, Dan Edmunds Michigan State University A Modular Readout System For A Small Liquid Argon TPC Carl Bromberg, Dan Edmunds Michigan State University Abstract A dual-fet preamplifier and a multi-channel waveform digitizer form the basis of a modular

More information

Testing the Electronics for the MicroBooNE Light Collection System

Testing the Electronics for the MicroBooNE Light Collection System Testing the Electronics for the MicroBooNE Light Collection System Kathleen V. Tatem Nevis Labs, Columbia University & Fermi National Accelerator Laboratory August 3, 2012 Abstract This paper discusses

More information

Soft X-ray sensitivity of a photon-counting hybrid pixel detector with a Silicon sensor matrix.

Soft X-ray sensitivity of a photon-counting hybrid pixel detector with a Silicon sensor matrix. Soft X-ray sensitivity of a photon-counting hybrid pixel detector with a Silicon sensor matrix. A. Fornaini 1, D. Calvet 1,2, J.L. Visschers 1 1 National Institute for Nuclear Physics and High-Energy Physics

More information

Classification-based Hybrid Filters for Image Processing

Classification-based Hybrid Filters for Image Processing Classification-based Hybrid Filters for Image Processing H. Hu a and G. de Haan a,b a Eindhoven University of Technology, Den Dolech 2, 5600 MB Eindhoven, the Netherlands b Philips Research Laboratories

More information

The Use of Non-Local Means to Reduce Image Noise

The Use of Non-Local Means to Reduce Image Noise The Use of Non-Local Means to Reduce Image Noise By Chimba Chundu, Danny Bin, and Jackelyn Ferman ABSTRACT Digital images, such as those produced from digital cameras, suffer from random noise that is

More information

Design of Practical Color Filter Array Interpolation Algorithms for Cameras, Part 2

Design of Practical Color Filter Array Interpolation Algorithms for Cameras, Part 2 Design of Practical Color Filter Array Interpolation Algorithms for Cameras, Part 2 James E. Adams, Jr. Eastman Kodak Company jeadams @ kodak. com Abstract Single-chip digital cameras use a color filter

More information

Chapter 2 Channel Equalization

Chapter 2 Channel Equalization Chapter 2 Channel Equalization 2.1 Introduction In wireless communication systems signal experiences distortion due to fading [17]. As signal propagates, it follows multiple paths between transmitter and

More information

GENERALIZATION: RANK ORDER FILTERS

GENERALIZATION: RANK ORDER FILTERS GENERALIZATION: RANK ORDER FILTERS Definition For simplicity and implementation efficiency, we consider only brick (rectangular: wf x hf) filters. A brick rank order filter evaluates, for every pixel in

More information

X-ray Spectroscopy Laboratory Suresh Sivanandam Dunlap Institute for Astronomy & Astrophysics, University of Toronto

X-ray Spectroscopy Laboratory Suresh Sivanandam Dunlap Institute for Astronomy & Astrophysics, University of Toronto X-ray Spectroscopy Laboratory Suresh Sivanandam, 1 Introduction & Objectives At X-ray, ultraviolet, optical and infrared wavelengths most astronomical instruments employ the photoelectric effect to convert

More information

saac ewton roup ed maging etector

saac ewton roup ed maging etector Summary of Detector Stage 2 Testing TC 2 saac ewton roup ed maging etector Summary of Detector Stage 2 Testing - Second Cool Down (13 th November - 25 th November 1999.) Peter Moore 14 h January 2000.

More information

Guitar Music Transcription from Silent Video. Temporal Segmentation - Implementation Details

Guitar Music Transcription from Silent Video. Temporal Segmentation - Implementation Details Supplementary Material Guitar Music Transcription from Silent Video Shir Goldstein, Yael Moses For completeness, we present detailed results and analysis of tests presented in the paper, as well as implementation

More information

Autocorrelator Sampler Level Setting and Transfer Function. Sampler voltage transfer functions

Autocorrelator Sampler Level Setting and Transfer Function. Sampler voltage transfer functions National Radio Astronomy Observatory Green Bank, West Virginia ELECTRONICS DIVISION INTERNAL REPORT NO. 311 Autocorrelator Sampler Level Setting and Transfer Function J. R. Fisher April 12, 22 Introduction

More information

ARRAY CONTROLLER REQUIREMENTS

ARRAY CONTROLLER REQUIREMENTS ARRAY CONTROLLER REQUIREMENTS TABLE OF CONTENTS 1 INTRODUCTION...3 1.1 QUANTUM EFFICIENCY (QE)...3 1.2 READ NOISE...3 1.3 DARK CURRENT...3 1.4 BIAS STABILITY...3 1.5 RESIDUAL IMAGE AND PERSISTENCE...4

More information

FLAT FIELD DETERMINATIONS USING AN ISOLATED POINT SOURCE

FLAT FIELD DETERMINATIONS USING AN ISOLATED POINT SOURCE Instrument Science Report ACS 2015-07 FLAT FIELD DETERMINATIONS USING AN ISOLATED POINT SOURCE R. C. Bohlin and Norman Grogin 2015 August ABSTRACT The traditional method of measuring ACS flat fields (FF)

More information

Updates on the neutral atmosphere inversion algorithms at CDAAC

Updates on the neutral atmosphere inversion algorithms at CDAAC Updates on the neutral atmosphere inversion algorithms at CDAAC S. Sokolovskiy, Z. Zeng, W. Schreiner, D. Hunt, J. Lin, Y.-H. Kuo 8th FORMOSAT-3/COSMIC Data Users' Workshop Boulder, CO, September 30 -

More information