Research Proposal: Autonomous Mobile Robot Platform for Indoor Applications :xwgn zrvd ziad mipt ineyiil zinepehe`e zciip ziheaex dnxethlt

Size: px
Start display at page:

Download "Research Proposal: Autonomous Mobile Robot Platform for Indoor Applications :xwgn zrvd ziad mipt ineyiil zinepehe`e zciip ziheaex dnxethlt"

Transcription

1 Research Proposal: Autonomous Mobile Robot Platform for Indoor Applications :xwgn zrvd ziad mipt ineyiil zinepehe`e zciip ziheaex dnxethlt Igal Loevsky, advisor: Ilan Shimshoni William Davidson Faculty of Industrial Engineering and Management Technion - Israel Institute of Technology Technion City, Haifa Israel March 27, Introduction The vision of science is making robots a part of our everyday life. Robots can be used in a variety of fields, such as manufacturing, home assistance, transportation and medicine. Such use is problematic today, due to technological constraints and high costs of the existing solutions. Technological constraints are treated by many scientists from around the globe. Examples of such efforts are [3], [1] and [4]. One of the methods to deal with high costs is mass production. Many high technology and sophisticated applications, such as automobiles, personal computers or cellular phones, became available for use of the masses as a result of producing huge amounts of those items. Another aspect of economic success is the ability of one product to perform many different tasks. An example for such product is the personal computer. We believe that a robot that can be versatile, mass produced and technologically advanced, can repeat the success of the personal computer, and usefully integrate in the everyday life of humans and industry. 1

2 2 Basic abilities of Mobile Robot for indoor environment Each task of the robot consists of collecting and processing information, moving, and manipulating objects. [2] implements those except manipulation. Movements should bring the robot to desired locations, while not colliding into obstacles on its way. The state of obstacles or objects for manipulation can change with time, and the robot should react to those changes. Some tasks require detection and interaction with humans. Manipulation requires accurate detection of object and robot manipulator positions. Artificial indoor environment makes motion and detection easier. The robot should initiate some tasks, while the user can initiate others. Therefore, the robot must have the following basic abilities: 1. Detect its location in space 2. Move in an indoor environment, without colliding with obstacles 3. Detect certain kinds of objects 4. Manipulate objects 5. React to dynamic environments 6. Interface to the user 3 Research Objectives Our aim is to implement the abilities mentioned above, using of-the-shelf hardware. We want the implementation be robust enough, so the platform can be suitable for a variety of indoor tasks. We decided to build two use-cases of our platform: 1. Transferring Work In Process (WIP) parts between work stations in the Computer Integrated Manufacturing (CIM) laboratory (Figure 1) 2. Party Robot - robot that interacts with people, serves snacks and dances at a party 4 Hardware In this section I will describe about each of robots hardware components. 1. SICK LMS200 laser scanner: It is a range sensor, that scans the plane in front of the robot, in parallel to the floor. It gives the distance to each obstacle in its range of view. The opening angle of the scanner is LaserNav laser scanner: This sensor is able to detect bearings to special landmarks, called beacons. Those beacons are made from autoreflective material, so they return the laser beam to the scanner, unlike other objects, that scatter the beam. The sensor deciphers the bearings of the landmarks, and sends those to the PC. 2

3 Figure 1: Use Case 1 illustration. 3. MRV4 - Mobile Robot Research Vehicle: High-end, high payload, advanced research robot. Some of its characteristics: velocity upto 24 kmh, payload up to 150 kgm, turn-on-the-spot maneuverability. 4. Pentium 4 Personal Computer. 5. Two Fire-i Cameras. 6. MICROBOT MiniMover 5 arm or self-designed pallets buffer. See pictures of the robot in Figure 2. (a) (b) Figure 2: Pictures of the robot (a) Side view (b) Front view, with choclate snack 5 Implementation of Robot Sub-Systems In this section a short background of the implementation of each of the robot capabilities, mentioned in section 2, will be given. Relations between software modules of the robot and their related hardware are illustrated in Figure 3. 3

4 5.1 Detect its location in space Localization is the detection of robot location and orientation in space. We have chosen to implement the method presented in [5], since it is CPU efficient, potentially reliable and uses the equipment that is available for us. In order to make this algorithm suitable for our needs, we need to overcome several problems related to environmental constraints such as distortion, measurement inaccuracies and partial misdetection due to occlusion. Distortion is caused by mechanical deficiency of the equipment - robot and LaserNav sensor. Measurement inaccuracies are the errors in known locations of the beacons. Misdetection of beacon index may be caused by partial concealment of a bit of the beacon. Such event can cause LaserNav sensor to read an incorrect value of a bit, and it will decode an incorrect beacon index. See illustration of beacon index misdetection example in Figure 3. Figure 3: Beacon index misdetection example. After the improvements, the system will be comprehensively tested. We intend to design a software module that can be used in other systems as well. 5.2 Move in an indoor environment, without colliding with obstacles We use SICK LMS200 laser scanner to detect obstacles. We map the obstacles into a matrix, and use the A* algorithm to generate paths in the c-obstacles space. Another aspect of the work on this subject is the calibration of SICK LMS200 laser with LaserNav laser. 5.3 Detect certain kinds of objects In order to implement our use-cases, the only object we must detect is a human. We intend to use the output of the SICK LMS200 laser scanner, while detecting certain patterns in the scans. From those patterns we will detect the presence of a human in front of the robot, using anthropomorphic features. The detection will be confirmed by checking a corresponding area at images from the cameras on the robot. This method will provide fast and reliable detection. The calibration of SICK LMS200 laser and cameras will be done according to the method presented in [6]. 4

5 Figure 4: Modules of the robot and their related hardware. 5.4 Manipulate objects This will be implemented by installing a manipulator arm on the robot, or by installing a buffer that contains pallets - which will be loaded by fixed robots at the workstations. High accuracy in the measurement of the location of the end effector is required in order to grab objects. The accuracy of the robot localization system might be insufficient. In such case we intend to achieve a better accuracy using the SICK LMS200 laser sensor. The laser will scan a model of a certain form. While the scan will be processed, the points that belong to the form will be separated from the rest of the scan. The pose of the model relative to the robot will be estimated. Since the position and the orientation of the model will be known and fixed, such a measurement will yield the position and the orientation of the robot. In addition, coordination between the robots at work stations and the mobile robot might be required. 5.5 React to dynamic environments High-speed sensors of the robot, and powerful Pentium 4 PC on board, will ensure proper reaction to hard real-time constraints. It is considered to distribute the system to two Pentium 4 computers on board of the robot, if such measure will be required. 5.6 Interface to the user It is possible to connect to the robot through TCP/IP based console application, and transfer commands. The console application provides GUI and real-time monitoring of robot activity. 6 Conclusion In this thesis I plan to implement the system described above and use it for the two applications. Some components of the system have already been implemented but others still have to be developed. Moreover, the main challenge 5

6 is to integrate all the components into a working system and test it. References [1] J. Borenstein and Y. Koren. A mobile platform for nursing robots. IEEE Transactions on Industrial Electronics, pages , [2] R. Galan A. Jimenez D. Rodriguez-Losada, F. Matia. Blacky, an interactive mobile robot at a trade fair. IEEE International Conf. On Robotics and Automation, ICRA 2002, Washington, DC (USA), 11-15, May, [3] B. Salemi, J. Reis, A. Saifhashemi, and F. Nikgohar. Milo: Personal robot platform. International Conference on Intelligent Robots and Systems. August 2005, Edmonton, Canada. [4] B. Traub A. John D. Schraft, R.D. Graf. A mobile robot platform for assistance and entertainment. Industrial Robot Journal, 28:83 94, [5] I. Shimshoni. On mobile robot localization from landmark bearings. IEEE Trans. Robotics and Automation, 18(3): , [6] Q. Zhang and R. Pless. Extrinsic calibration for a camera and laser ranger finder. IEEE/RSJ International Conference on Intellegent Robots and Systems, pages ,

International Journal of Informative & Futuristic Research ISSN (Online):

International Journal of Informative & Futuristic Research ISSN (Online): Reviewed Paper Volume 2 Issue 4 December 2014 International Journal of Informative & Futuristic Research ISSN (Online): 2347-1697 A Survey On Simultaneous Localization And Mapping Paper ID IJIFR/ V2/ E4/

More information

Skyworker: Robotics for Space Assembly, Inspection and Maintenance

Skyworker: Robotics for Space Assembly, Inspection and Maintenance Skyworker: Robotics for Space Assembly, Inspection and Maintenance Sarjoun Skaff, Carnegie Mellon University Peter J. Staritz, Carnegie Mellon University William Whittaker, Carnegie Mellon University Abstract

More information

Distributed Vision System: A Perceptual Information Infrastructure for Robot Navigation

Distributed Vision System: A Perceptual Information Infrastructure for Robot Navigation Distributed Vision System: A Perceptual Information Infrastructure for Robot Navigation Hiroshi Ishiguro Department of Information Science, Kyoto University Sakyo-ku, Kyoto 606-01, Japan E-mail: ishiguro@kuis.kyoto-u.ac.jp

More information

An Autonomous Self- Propelled Robot Designed for Obstacle Avoidance and Fire Fighting

An Autonomous Self- Propelled Robot Designed for Obstacle Avoidance and Fire Fighting An Autonomous Self- Propelled Robot Designed for Obstacle Avoidance and Fire Fighting K. Prathyusha Assistant professor, Department of ECE, NRI Institute of Technology, Agiripalli Mandal, Krishna District,

More information

Wednesday, October 29, :00-04:00pm EB: 3546D. TELEOPERATION OF MOBILE MANIPULATORS By Yunyi Jia Advisor: Prof.

Wednesday, October 29, :00-04:00pm EB: 3546D. TELEOPERATION OF MOBILE MANIPULATORS By Yunyi Jia Advisor: Prof. Wednesday, October 29, 2014 02:00-04:00pm EB: 3546D TELEOPERATION OF MOBILE MANIPULATORS By Yunyi Jia Advisor: Prof. Ning Xi ABSTRACT Mobile manipulators provide larger working spaces and more flexibility

More information

Creating a 3D environment map from 2D camera images in robotics

Creating a 3D environment map from 2D camera images in robotics Creating a 3D environment map from 2D camera images in robotics J.P. Niemantsverdriet jelle@niemantsverdriet.nl 4th June 2003 Timorstraat 6A 9715 LE Groningen student number: 0919462 internal advisor:

More information

The Future of AI A Robotics Perspective

The Future of AI A Robotics Perspective The Future of AI A Robotics Perspective Wolfram Burgard Autonomous Intelligent Systems Department of Computer Science University of Freiburg Germany The Future of AI My Robotics Perspective Wolfram Burgard

More information

Mobile Robots Exploration and Mapping in 2D

Mobile Robots Exploration and Mapping in 2D ASEE 2014 Zone I Conference, April 3-5, 2014, University of Bridgeport, Bridgpeort, CT, USA. Mobile Robots Exploration and Mapping in 2D Sithisone Kalaya Robotics, Intelligent Sensing & Control (RISC)

More information

PROJECTS 2017/18 AUTONOMOUS SYSTEMS. Instituto Superior Técnico. Departamento de Engenharia Electrotécnica e de Computadores September 2017

PROJECTS 2017/18 AUTONOMOUS SYSTEMS. Instituto Superior Técnico. Departamento de Engenharia Electrotécnica e de Computadores September 2017 AUTONOMOUS SYSTEMS PROJECTS 2017/18 Instituto Superior Técnico Departamento de Engenharia Electrotécnica e de Computadores September 2017 LIST OF AVAILABLE ROBOTS AND DEVICES 7 Pioneers 3DX (with Hokuyo

More information

An Experimental Comparison of Path Planning Techniques for Teams of Mobile Robots

An Experimental Comparison of Path Planning Techniques for Teams of Mobile Robots An Experimental Comparison of Path Planning Techniques for Teams of Mobile Robots Maren Bennewitz Wolfram Burgard Department of Computer Science, University of Freiburg, 7911 Freiburg, Germany maren,burgard

More information

MULTI-LAYERED HYBRID ARCHITECTURE TO SOLVE COMPLEX TASKS OF AN AUTONOMOUS MOBILE ROBOT

MULTI-LAYERED HYBRID ARCHITECTURE TO SOLVE COMPLEX TASKS OF AN AUTONOMOUS MOBILE ROBOT MULTI-LAYERED HYBRID ARCHITECTURE TO SOLVE COMPLEX TASKS OF AN AUTONOMOUS MOBILE ROBOT F. TIECHE, C. FACCHINETTI and H. HUGLI Institute of Microtechnology, University of Neuchâtel, Rue de Tivoli 28, CH-2003

More information

Visual Servoing. Charlie Kemp. 4632B/8803 Mobile Manipulation Lecture 8

Visual Servoing. Charlie Kemp. 4632B/8803 Mobile Manipulation Lecture 8 Visual Servoing Charlie Kemp 4632B/8803 Mobile Manipulation Lecture 8 From: http://www.hsi.gatech.edu/visitors/maps/ 4 th floor 4100Q M Building 167 First office on HSI side From: http://www.hsi.gatech.edu/visitors/maps/

More information

Information and Program

Information and Program Robotics 1 Information and Program Prof. Alessandro De Luca Robotics 1 1 Robotics 1 2017/18! First semester (12 weeks)! Monday, October 2, 2017 Monday, December 18, 2017! Courses of study (with this course

More information

Nao Devils Dortmund. Team Description for RoboCup Matthias Hofmann, Ingmar Schwarz, and Oliver Urbann

Nao Devils Dortmund. Team Description for RoboCup Matthias Hofmann, Ingmar Schwarz, and Oliver Urbann Nao Devils Dortmund Team Description for RoboCup 2014 Matthias Hofmann, Ingmar Schwarz, and Oliver Urbann Robotics Research Institute Section Information Technology TU Dortmund University 44221 Dortmund,

More information

Proseminar Roboter und Aktivmedien. Outline of today s lecture. Acknowledgments. Educational robots achievements and challenging

Proseminar Roboter und Aktivmedien. Outline of today s lecture. Acknowledgments. Educational robots achievements and challenging Proseminar Roboter und Aktivmedien Educational robots achievements and challenging Lecturer Lecturer Houxiang Houxiang Zhang Zhang TAMS, TAMS, Department Department of of Informatics Informatics University

More information

DESIGN AND DEVELOPMENT OF LIBRARY ASSISTANT ROBOT

DESIGN AND DEVELOPMENT OF LIBRARY ASSISTANT ROBOT DESIGN AND DEVELOPMENT OF LIBRARY ASSISTANT ROBOT Ranjani.R, M.Nandhini, G.Madhumitha Assistant Professor,Department of Mechatronics, SRM University,Kattankulathur,Chennai. ABSTRACT Library robot is an

More information

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute Jane Li Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute State one reason for investigating and building humanoid robot (4 pts) List two

More information

Self-learning Assistive Exoskeleton with Sliding Mode Admittance Control

Self-learning Assistive Exoskeleton with Sliding Mode Admittance Control 213 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) November 3-7, 213. Tokyo, Japan Self-learning Assistive Exoskeleton with Sliding Mode Admittance Control Tzu-Hao Huang, Ching-An

More information

Multisensory Based Manipulation Architecture

Multisensory Based Manipulation Architecture Marine Robot and Dexterous Manipulatin for Enabling Multipurpose Intevention Missions WP7 Multisensory Based Manipulation Architecture GIRONA 2012 Y2 Review Meeting Pedro J Sanz IRS Lab http://www.irs.uji.es/

More information

Motion Control of a Three Active Wheeled Mobile Robot and Collision-Free Human Following Navigation in Outdoor Environment

Motion Control of a Three Active Wheeled Mobile Robot and Collision-Free Human Following Navigation in Outdoor Environment Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,, March 16-18, 2016, Hong Kong Motion Control of a Three Active Wheeled Mobile Robot and Collision-Free

More information

Chapter 2 Mechatronics Disrupted

Chapter 2 Mechatronics Disrupted Chapter 2 Mechatronics Disrupted Maarten Steinbuch 2.1 How It Started The field of mechatronics started in the 1970s when mechanical systems needed more accurate controlled motions. This forced both industry

More information

Range Sensing strategies

Range Sensing strategies Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart and Nourbakhsh 4.1.6 Range Sensors (time of flight) (1) Large range distance measurement -> called

More information

Progress Report. Mohammadtaghi G. Poshtmashhadi. Supervisor: Professor António M. Pascoal

Progress Report. Mohammadtaghi G. Poshtmashhadi. Supervisor: Professor António M. Pascoal Progress Report Mohammadtaghi G. Poshtmashhadi Supervisor: Professor António M. Pascoal OceaNet meeting presentation April 2017 2 Work program Main Research Topic Autonomous Marine Vehicle Control and

More information

Limits of a Distributed Intelligent Networked Device in the Intelligence Space. 1 Brief History of the Intelligent Space

Limits of a Distributed Intelligent Networked Device in the Intelligence Space. 1 Brief History of the Intelligent Space Limits of a Distributed Intelligent Networked Device in the Intelligence Space Gyula Max, Peter Szemes Budapest University of Technology and Economics, H-1521, Budapest, Po. Box. 91. HUNGARY, Tel: +36

More information

Artificial Beacons with RGB-D Environment Mapping for Indoor Mobile Robot Localization

Artificial Beacons with RGB-D Environment Mapping for Indoor Mobile Robot Localization Sensors and Materials, Vol. 28, No. 6 (2016) 695 705 MYU Tokyo 695 S & M 1227 Artificial Beacons with RGB-D Environment Mapping for Indoor Mobile Robot Localization Chun-Chi Lai and Kuo-Lan Su * Department

More information

More Info at Open Access Database by S. Dutta and T. Schmidt

More Info at Open Access Database  by S. Dutta and T. Schmidt More Info at Open Access Database www.ndt.net/?id=17657 New concept for higher Robot position accuracy during thermography measurement to be implemented with the existing prototype automated thermography

More information

Summary of robot visual servo system

Summary of robot visual servo system Abstract Summary of robot visual servo system Xu Liu, Lingwen Tang School of Mechanical engineering, Southwest Petroleum University, Chengdu 610000, China In this paper, the survey of robot visual servoing

More information

A Reactive Collision Avoidance Approach for Mobile Robot in Dynamic Environments

A Reactive Collision Avoidance Approach for Mobile Robot in Dynamic Environments A Reactive Collision Avoidance Approach for Mobile Robot in Dynamic Environments Tang S. H. and C. K. Ang Universiti Putra Malaysia (UPM), Malaysia Email: saihong@eng.upm.edu.my, ack_kit@hotmail.com D.

More information

Cost Oriented Humanoid Robots

Cost Oriented Humanoid Robots Cost Oriented Humanoid Robots P. Kopacek Vienna University of Technology, Intelligent Handling and Robotics- IHRT, Favoritenstrasse 9/E325A6; A-1040 Wien kopacek@ihrt.tuwien.ac.at Abstract. Currently there

More information

Service Robots in an Intelligent House

Service Robots in an Intelligent House Service Robots in an Intelligent House Jesus Savage Bio-Robotics Laboratory biorobotics.fi-p.unam.mx School of Engineering Autonomous National University of Mexico UNAM 2017 OUTLINE Introduction A System

More information

YUMI IWASHITA

YUMI IWASHITA YUMI IWASHITA yumi@ieee.org http://robotics.ait.kyushu-u.ac.jp/~yumi/index-e.html RESEARCH INTERESTS Computer vision for robotics applications, such as motion capture system using multiple cameras and

More information

Incorporating a Software System for Robotics Control and Coordination in Mechatronics Curriculum and Research

Incorporating a Software System for Robotics Control and Coordination in Mechatronics Curriculum and Research Paper ID #15300 Incorporating a Software System for Robotics Control and Coordination in Mechatronics Curriculum and Research Dr. Maged Mikhail, Purdue University - Calumet Dr. Maged B. Mikhail, Assistant

More information

Baset Adult-Size 2016 Team Description Paper

Baset Adult-Size 2016 Team Description Paper Baset Adult-Size 2016 Team Description Paper Mojtaba Hosseini, Vahid Mohammadi, Farhad Jafari 2, Dr. Esfandiar Bamdad 1 1 Humanoid Robotic Laboratory, Robotic Center, Baset Pazhuh Tehran company. No383,

More information

AGENT PLATFORM FOR ROBOT CONTROL IN REAL-TIME DYNAMIC ENVIRONMENTS. Nuno Sousa Eugénio Oliveira

AGENT PLATFORM FOR ROBOT CONTROL IN REAL-TIME DYNAMIC ENVIRONMENTS. Nuno Sousa Eugénio Oliveira AGENT PLATFORM FOR ROBOT CONTROL IN REAL-TIME DYNAMIC ENVIRONMENTS Nuno Sousa Eugénio Oliveira Faculdade de Egenharia da Universidade do Porto, Portugal Abstract: This paper describes a platform that enables

More information

1 Abstract and Motivation

1 Abstract and Motivation 1 Abstract and Motivation Robust robotic perception, manipulation, and interaction in domestic scenarios continues to present a hard problem: domestic environments tend to be unstructured, are constantly

More information

Revised and extended. Accompanies this course pages heavier Perception treated more thoroughly. 1 - Introduction

Revised and extended. Accompanies this course pages heavier Perception treated more thoroughly. 1 - Introduction Topics to be Covered Coordinate frames and representations. Use of homogeneous transformations in robotics. Specification of position and orientation Manipulator forward and inverse kinematics Mobile Robots:

More information

A User Friendly Software Framework for Mobile Robot Control

A User Friendly Software Framework for Mobile Robot Control A User Friendly Software Framework for Mobile Robot Control Jesse Riddle, Ryan Hughes, Nathaniel Biefeld, and Suranga Hettiarachchi Computer Science Department, Indiana University Southeast New Albany,

More information

Key-Words: - Fuzzy Behaviour Controls, Multiple Target Tracking, Obstacle Avoidance, Ultrasonic Range Finders

Key-Words: - Fuzzy Behaviour Controls, Multiple Target Tracking, Obstacle Avoidance, Ultrasonic Range Finders Fuzzy Behaviour Based Navigation of a Mobile Robot for Tracking Multiple Targets in an Unstructured Environment NASIR RAHMAN, ALI RAZA JAFRI, M. USMAN KEERIO School of Mechatronics Engineering Beijing

More information

PHYSICAL ROBOTS PROGRAMMING BY IMITATION USING VIRTUAL ROBOT PROTOTYPES

PHYSICAL ROBOTS PROGRAMMING BY IMITATION USING VIRTUAL ROBOT PROTOTYPES Bulletin of the Transilvania University of Braşov Series I: Engineering Sciences Vol. 6 (55) No. 2-2013 PHYSICAL ROBOTS PROGRAMMING BY IMITATION USING VIRTUAL ROBOT PROTOTYPES A. FRATU 1 M. FRATU 2 Abstract:

More information

ReVRSR: Remote Virtual Reality for Service Robots

ReVRSR: Remote Virtual Reality for Service Robots ReVRSR: Remote Virtual Reality for Service Robots Amel Hassan, Ahmed Ehab Gado, Faizan Muhammad March 17, 2018 Abstract This project aims to bring a service robot s perspective to a human user. We believe

More information

Correcting Odometry Errors for Mobile Robots Using Image Processing

Correcting Odometry Errors for Mobile Robots Using Image Processing Correcting Odometry Errors for Mobile Robots Using Image Processing Adrian Korodi, Toma L. Dragomir Abstract - The mobile robots that are moving in partially known environments have a low availability,

More information

EXPLORING THE PERFORMANCE OF THE IROBOT CREATE FOR OBJECT RELOCATION IN OUTER SPACE

EXPLORING THE PERFORMANCE OF THE IROBOT CREATE FOR OBJECT RELOCATION IN OUTER SPACE EXPLORING THE PERFORMANCE OF THE IROBOT CREATE FOR OBJECT RELOCATION IN OUTER SPACE Mr. Hasani Burns Advisor: Dr. Chutima Boonthum-Denecke Hampton University Abstract This research explores the performance

More information

Overview of Challenges in the Development of Autonomous Mobile Robots. August 23, 2011

Overview of Challenges in the Development of Autonomous Mobile Robots. August 23, 2011 Overview of Challenges in the Development of Autonomous Mobile Robots August 23, 2011 What is in a Robot? Sensors Effectors and actuators (i.e., mechanical) Used for locomotion and manipulation Controllers

More information

Robot Navigation System with RFID and Ultrasonic Sensors A.Seshanka Venkatesh 1, K.Vamsi Krishna 2, N.K.R.Swamy 3, P.Simhachalam 4

Robot Navigation System with RFID and Ultrasonic Sensors A.Seshanka Venkatesh 1, K.Vamsi Krishna 2, N.K.R.Swamy 3, P.Simhachalam 4 Robot Navigation System with RFID and Ultrasonic Sensors A.Seshanka Venkatesh 1, K.Vamsi Krishna 2, N.K.R.Swamy 3, P.Simhachalam 4 B.Tech., Student, Dept. Of EEE, Pragati Engineering College,Surampalem,

More information

CS494/594: Software for Intelligent Robotics

CS494/594: Software for Intelligent Robotics CS494/594: Software for Intelligent Robotics Spring 2007 Tuesday/Thursday 11:10 12:25 Instructor: Dr. Lynne E. Parker TA: Rasko Pjesivac Outline Overview syllabus and class policies Introduction to class:

More information

Mobile Robots (Wheeled) (Take class notes)

Mobile Robots (Wheeled) (Take class notes) Mobile Robots (Wheeled) (Take class notes) Wheeled mobile robots Wheeled mobile platform controlled by a computer is called mobile robot in a broader sense Wheeled robots have a large scope of types and

More information

Simulation of a mobile robot navigation system

Simulation of a mobile robot navigation system Edith Cowan University Research Online ECU Publications 2011 2011 Simulation of a mobile robot navigation system Ahmed Khusheef Edith Cowan University Ganesh Kothapalli Edith Cowan University Majid Tolouei

More information

Implementation of a Self-Driven Robot for Remote Surveillance

Implementation of a Self-Driven Robot for Remote Surveillance International Journal of Research Studies in Science, Engineering and Technology Volume 2, Issue 11, November 2015, PP 35-39 ISSN 2349-4751 (Print) & ISSN 2349-476X (Online) Implementation of a Self-Driven

More information

CURRICULUM VITAE. Evan Drumwright EDUCATION PROFESSIONAL PUBLICATIONS

CURRICULUM VITAE. Evan Drumwright EDUCATION PROFESSIONAL PUBLICATIONS CURRICULUM VITAE Evan Drumwright 209 Dunn Hall The University of Memphis Memphis, TN 38152 Phone: 901-678-3142 edrmwrgh@memphis.edu http://cs.memphis.edu/ edrmwrgh EDUCATION Ph.D., Computer Science, May

More information

CS295-1 Final Project : AIBO

CS295-1 Final Project : AIBO CS295-1 Final Project : AIBO Mert Akdere, Ethan F. Leland December 20, 2005 Abstract This document is the final report for our CS295-1 Sensor Data Management Course Final Project: Project AIBO. The main

More information

DISTRIBUTED MULTI-ROBOT ASSEMBLY/PACKAGING ALGORITHMS

DISTRIBUTED MULTI-ROBOT ASSEMBLY/PACKAGING ALGORITHMS Intelligent Automation and Soft Computing, Vol. 10, No. 4, pp. 349-358, 2004 Copyright 2004, TSI Press Printed in the USA. All rights reserved DISTRIBUTED MULTI-ROBOT ASSEMBLY/PACKAGING ALGORITHMS Y. EDAN,

More information

Autonomous Systems at Gelsenkirchen

Autonomous Systems at Gelsenkirchen Autonomous Systems at Gelsenkirchen Hartmut Surmann Applied University of Gelsenkirchen, Neidenburgerstr. 43 D-45877 Gelsenkirchen, Germany. hartmut.surmann@fh-gelsenkirchen.de Abstract. This paper describes

More information

In-Process Sensing of Laser Powder Bed Fusion Additive Manufacturing

In-Process Sensing of Laser Powder Bed Fusion Additive Manufacturing In-Process Sensing of Laser Powder Bed Fusion Additive Manufacturing S. M. Kelly, P.C. Boulware, L. Cronley, G. Firestone, M. Jamshidinia, J. Marchal, T. Stempky, and C. Reichert Presenter: Yu-Ping Yang

More information

Autonomous Task Execution of a Humanoid Robot using a Cognitive Model

Autonomous Task Execution of a Humanoid Robot using a Cognitive Model Autonomous Task Execution of a Humanoid Robot using a Cognitive Model KangGeon Kim, Ji-Yong Lee, Dongkyu Choi, Jung-Min Park and Bum-Jae You Abstract These days, there are many studies on cognitive architectures,

More information

Multi-robot Formation Control Based on Leader-follower Method

Multi-robot Formation Control Based on Leader-follower Method Journal of Computers Vol. 29 No. 2, 2018, pp. 233-240 doi:10.3966/199115992018042902022 Multi-robot Formation Control Based on Leader-follower Method Xibao Wu 1*, Wenbai Chen 1, Fangfang Ji 1, Jixing Ye

More information

Reactive Planning with Evolutionary Computation

Reactive Planning with Evolutionary Computation Reactive Planning with Evolutionary Computation Chaiwat Jassadapakorn and Prabhas Chongstitvatana Intelligent System Laboratory, Department of Computer Engineering Chulalongkorn University, Bangkok 10330,

More information

Design and Control of the BUAA Four-Fingered Hand

Design and Control of the BUAA Four-Fingered Hand Proceedings of the 2001 IEEE International Conference on Robotics & Automation Seoul, Korea May 21-26, 2001 Design and Control of the BUAA Four-Fingered Hand Y. Zhang, Z. Han, H. Zhang, X. Shang, T. Wang,

More information

MURDOCH RESEARCH REPOSITORY

MURDOCH RESEARCH REPOSITORY MURDOCH RESEARCH REPOSITORY http://dx.doi.org/10.1109/imtc.1994.352072 Fung, C.C., Eren, H. and Nakazato, Y. (1994) Position sensing of mobile robots for team operations. In: Proceedings of the 1994 IEEE

More information

SENLUTION Miniature Angular & Heading Reference System The World s Smallest Mini-AHRS

SENLUTION Miniature Angular & Heading Reference System The World s Smallest Mini-AHRS SENLUTION Miniature Angular & Heading Reference System The World s Smallest Mini-AHRS MotionCore, the smallest size AHRS in the world, is an ultra-small form factor, highly accurate inertia system based

More information

Autonomous Localization

Autonomous Localization Autonomous Localization Jennifer Zheng, Maya Kothare-Arora I. Abstract This paper presents an autonomous localization service for the Building-Wide Intelligence segbots at the University of Texas at Austin.

More information

LASER ASSISTED COMBINED TELEOPERATION AND AUTONOMOUS CONTROL

LASER ASSISTED COMBINED TELEOPERATION AND AUTONOMOUS CONTROL ANS EPRRSD - 13 th Robotics & remote Systems for Hazardous Environments 11 th Emergency Preparedness & Response Knoxville, TN, August 7-10, 2011, on CD-ROM, American Nuclear Society, LaGrange Park, IL

More information

Key-Words: - Neural Networks, Cerebellum, Cerebellar Model Articulation Controller (CMAC), Auto-pilot

Key-Words: - Neural Networks, Cerebellum, Cerebellar Model Articulation Controller (CMAC), Auto-pilot erebellum Based ar Auto-Pilot System B. HSIEH,.QUEK and A.WAHAB Intelligent Systems Laboratory, School of omputer Engineering Nanyang Technological University, Blk N4 #2A-32 Nanyang Avenue, Singapore 639798

More information

Path Following and Obstacle Avoidance Fuzzy Controller for Mobile Indoor Robots

Path Following and Obstacle Avoidance Fuzzy Controller for Mobile Indoor Robots Path Following and Obstacle Avoidance Fuzzy Controller for Mobile Indoor Robots Mousa AL-Akhras, Maha Saadeh, Emad AL Mashakbeh Computer Information Systems Department King Abdullah II School for Information

More information

Path Planning in Dynamic Environments Using Time Warps. S. Farzan and G. N. DeSouza

Path Planning in Dynamic Environments Using Time Warps. S. Farzan and G. N. DeSouza Path Planning in Dynamic Environments Using Time Warps S. Farzan and G. N. DeSouza Outline Introduction Harmonic Potential Fields Rubber Band Model Time Warps Kalman Filtering Experimental Results 2 Introduction

More information

Development of a Novel Zero-Turn-Radius Autonomous Vehicle

Development of a Novel Zero-Turn-Radius Autonomous Vehicle Development of a Novel Zero-Turn-Radius Autonomous Vehicle by Charles Dean Haynie Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the

More information

MATLAB is a high-level programming language, extensively

MATLAB is a high-level programming language, extensively 1 KUKA Sunrise Toolbox: Interfacing Collaborative Robots with MATLAB Mohammad Safeea and Pedro Neto Abstract Collaborative robots are increasingly present in our lives. The KUKA LBR iiwa equipped with

More information

Moving Obstacle Avoidance for Mobile Robot Moving on Designated Path

Moving Obstacle Avoidance for Mobile Robot Moving on Designated Path Moving Obstacle Avoidance for Mobile Robot Moving on Designated Path Taichi Yamada 1, Yeow Li Sa 1 and Akihisa Ohya 1 1 Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1,

More information

How To Create The Right Collaborative System For Your Application. Corey Ryan Manager - Medical Robotics KUKA Robotics Corporation

How To Create The Right Collaborative System For Your Application. Corey Ryan Manager - Medical Robotics KUKA Robotics Corporation How To Create The Right Collaborative System For Your Application Corey Ryan Manager - Medical Robotics KUKA Robotics Corporation C Definitions Cobot: for this presentation a robot specifically designed

More information

On-demand printable robots

On-demand printable robots On-demand printable robots Ankur Mehta Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology 3 Computational problem? 4 Physical problem? There s a robot for that.

More information

National Aeronautics and Space Administration

National Aeronautics and Space Administration National Aeronautics and Space Administration 2013 Spinoff (spin ôf ) -noun. 1. A commercialized product incorporating NASA technology or expertise that benefits the public. These include products or processes

More information

* Intelli Robotic Wheel Chair for Specialty Operations & Physically Challenged

* Intelli Robotic Wheel Chair for Specialty Operations & Physically Challenged ADVANCED ROBOTICS SOLUTIONS * Intelli Mobile Robot for Multi Specialty Operations * Advanced Robotic Pick and Place Arm and Hand System * Automatic Color Sensing Robot using PC * AI Based Image Capturing

More information

Path Planning and Obstacle Avoidance for Boe Bot Mobile Robot

Path Planning and Obstacle Avoidance for Boe Bot Mobile Robot Path Planning and Obstacle Avoidance for Boe Bot Mobile Robot Mohamed Ghorbel 1, Lobna Amouri 1, Christian Akortia Hie 1 Institute of Electronics and Communication of Sfax (ISECS) ATMS-ENIS,University

More information

Rapid Development System for Humanoid Vision-based Behaviors with Real-Virtual Common Interface

Rapid Development System for Humanoid Vision-based Behaviors with Real-Virtual Common Interface Rapid Development System for Humanoid Vision-based Behaviors with Real-Virtual Common Interface Kei Okada 1, Yasuyuki Kino 1, Fumio Kanehiro 2, Yasuo Kuniyoshi 1, Masayuki Inaba 1, Hirochika Inoue 1 1

More information

Introduction to Mobile Robotics Welcome

Introduction to Mobile Robotics Welcome Introduction to Mobile Robotics Welcome Wolfram Burgard, Michael Ruhnke, Bastian Steder 1 Today This course Robotics in the past and today 2 Organization Wed 14:00 16:00 Fr 14:00 15:00 lectures, discussions

More information

Design of an office guide robot for social interaction studies

Design of an office guide robot for social interaction studies Design of an office guide robot for social interaction studies Elena Pacchierotti, Henrik I. Christensen & Patric Jensfelt Centre for Autonomous Systems Royal Institute of Technology, Stockholm, Sweden

More information

Low Cost Obstacle Avoidance Robot with Logic Gates and Gate Delay Calculations

Low Cost Obstacle Avoidance Robot with Logic Gates and Gate Delay Calculations Automation, Control and Intelligent Systems 018; 6(1): 1-7 http://wwwsciencepublishinggroupcom/j/acis doi: 1011648/jacis018060111 ISSN: 38-5583 (Print); ISSN: 38-5591 (Online) Low Cost Obstacle Avoidance

More information

Artificial Intelligence and Robotics Getting More Human

Artificial Intelligence and Robotics Getting More Human Weekly Barometer 25 janvier 2012 Artificial Intelligence and Robotics Getting More Human July 2017 ATONRÂ PARTNERS SA 12, Rue Pierre Fatio 1204 GENEVA SWITZERLAND - Tel: + 41 22 310 15 01 http://www.atonra.ch

More information

SIMULTANEOUS OBSTACLE DETECTION FOR MOBILE ROBOTS AND ITS LOCALIZATION FOR AUTOMATIC BATTERY RECHARGING

SIMULTANEOUS OBSTACLE DETECTION FOR MOBILE ROBOTS AND ITS LOCALIZATION FOR AUTOMATIC BATTERY RECHARGING SIMULTANEOUS OBSTACLE DETECTION FOR MOBILE ROBOTS AND ITS LOCALIZATION FOR AUTOMATIC BATTERY RECHARGING *Sang-Il Gho*, Jong-Suk Choi*, *Ji-Yoon Yoo**, Mun-Sang Kim* *Department of Electrical Engineering

More information

Electrical and Automation Engineering, Fall 2018 Spring 2019, modules and courses inside modules.

Electrical and Automation Engineering, Fall 2018 Spring 2019, modules and courses inside modules. Electrical and Automation Engineering, Fall 2018 Spring 2019, modules and courses inside modules. Period 1: 27.8.2018 26.10.2018 MODULE INTRODUCTION TO AUTOMATION ENGINEERING This module introduces the

More information

Controlling Robot through SMS with Acknowledging facility

Controlling Robot through SMS with Acknowledging facility IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 3 Ver. III (May Jun. 2014), PP 65-69 Controlling Robot through SMS with Acknowledging

More information

A Probabilistic Method for Planning Collision-free Trajectories of Multiple Mobile Robots

A Probabilistic Method for Planning Collision-free Trajectories of Multiple Mobile Robots A Probabilistic Method for Planning Collision-free Trajectories of Multiple Mobile Robots Maren Bennewitz Wolfram Burgard Department of Computer Science, University of Freiburg, 7911 Freiburg, Germany

More information

Autonomous Positioning of Mobile Robot Based on RFID Information Fusion Algorithm

Autonomous Positioning of Mobile Robot Based on RFID Information Fusion Algorithm Autonomous Positioning of Mobile Robot Based on RFID Information Fusion Algorithm Hua Peng ChongQing College of Electronic Engineering ChongQing College, China Abstract To improve the mobile performance

More information

APAS assistant. Product scope

APAS assistant. Product scope APAS assistant Product scope APAS assistant Table of contents Non-contact human-robot collaboration for the Smart Factory Robots have improved the working world in the past years in many ways. Above and

More information

Toward an Augmented Reality System for Violin Learning Support

Toward an Augmented Reality System for Violin Learning Support Toward an Augmented Reality System for Violin Learning Support Hiroyuki Shiino, François de Sorbier, and Hideo Saito Graduate School of Science and Technology, Keio University, Yokohama, Japan {shiino,fdesorbi,saito}@hvrl.ics.keio.ac.jp

More information

NCCT IEEE PROJECTS ADVANCED ROBOTICS SOLUTIONS. Latest Projects, in various Domains. Promise for the Best Projects

NCCT IEEE PROJECTS ADVANCED ROBOTICS SOLUTIONS. Latest Projects, in various Domains. Promise for the Best Projects NCCT Promise for the Best Projects IEEE PROJECTS in various Domains Latest Projects, 2009-2010 ADVANCED ROBOTICS SOLUTIONS EMBEDDED SYSTEM PROJECTS Microcontrollers VLSI DSP Matlab Robotics ADVANCED ROBOTICS

More information

Humanoid robot. Honda's ASIMO, an example of a humanoid robot

Humanoid robot. Honda's ASIMO, an example of a humanoid robot Humanoid robot Honda's ASIMO, an example of a humanoid robot A humanoid robot is a robot with its overall appearance based on that of the human body, allowing interaction with made-for-human tools or environments.

More information

Using Dynamic Capability Evaluation to Organize a Team of Cooperative, Autonomous Robots

Using Dynamic Capability Evaluation to Organize a Team of Cooperative, Autonomous Robots Using Dynamic Capability Evaluation to Organize a Team of Cooperative, Autonomous Robots Eric Matson Scott DeLoach Multi-agent and Cooperative Robotics Laboratory Department of Computing and Information

More information

OPTIV CLASSIC 321 GL TECHNICAL DATA

OPTIV CLASSIC 321 GL TECHNICAL DATA OPTIV CLASSIC 321 GL TECHNICAL DATA TECHNICAL DATA Product description The Optiv Classic 321 GL offers an innovative design for non-contact measurement. The benchtop video-based measuring machine is equipped

More information

INTRODUCTION. Advanced robotic techniques for steel bridge maintenance, Manamperi et al 1

INTRODUCTION. Advanced robotic techniques for steel bridge maintenance, Manamperi et al 1 Advanced Robotic Technologies for Steel Bridge Maintenance P.B.Manamperi, P.A.Brooks, The Roads and Traffic Authority, New South Wales, Australia, {palitha_manamperi, philip_brooks}@rta.nsw.gov.au D.K.Liu,

More information

Team Description 2006 for Team RO-PE A

Team Description 2006 for Team RO-PE A Team Description 2006 for Team RO-PE A Chew Chee-Meng, Samuel Mui, Lim Tongli, Ma Chongyou, and Estella Ngan National University of Singapore, 119260 Singapore {mpeccm, g0500307, u0204894, u0406389, u0406316}@nus.edu.sg

More information

Physics-Based Manipulation in Human Environments

Physics-Based Manipulation in Human Environments Vol. 31 No. 4, pp.353 357, 2013 353 Physics-Based Manipulation in Human Environments Mehmet R. Dogar Siddhartha S. Srinivasa The Robotics Institute, School of Computer Science, Carnegie Mellon University

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction It is appropriate to begin the textbook on robotics with the definition of the industrial robot manipulator as given by the ISO 8373 standard. An industrial robot manipulator is

More information

High Speed vslam Using System-on-Chip Based Vision. Jörgen Lidholm Mälardalen University Västerås, Sweden

High Speed vslam Using System-on-Chip Based Vision. Jörgen Lidholm Mälardalen University Västerås, Sweden High Speed vslam Using System-on-Chip Based Vision Jörgen Lidholm Mälardalen University Västerås, Sweden jorgen.lidholm@mdh.se February 28, 2007 1 The ChipVision Project Within the ChipVision project we

More information

Available online at ScienceDirect. Procedia Computer Science 76 (2015 )

Available online at   ScienceDirect. Procedia Computer Science 76 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 76 (2015 ) 474 479 2015 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS 2015) Sensor Based Mobile

More information

Shoichi MAEYAMA Akihisa OHYA and Shin'ichi YUTA. University of Tsukuba. Tsukuba, Ibaraki, 305 JAPAN

Shoichi MAEYAMA Akihisa OHYA and Shin'ichi YUTA. University of Tsukuba. Tsukuba, Ibaraki, 305 JAPAN Long distance outdoor navigation of an autonomous mobile robot by playback of Perceived Route Map Shoichi MAEYAMA Akihisa OHYA and Shin'ichi YUTA Intelligent Robot Laboratory Institute of Information Science

More information

Space Research expeditions and open space work. Education & Research Teaching and laboratory facilities. Medical Assistance for people

Space Research expeditions and open space work. Education & Research Teaching and laboratory facilities. Medical Assistance for people Space Research expeditions and open space work Education & Research Teaching and laboratory facilities. Medical Assistance for people Safety Life saving activity, guarding Military Use to execute missions

More information

CAPACITIES FOR TECHNOLOGY TRANSFER

CAPACITIES FOR TECHNOLOGY TRANSFER CAPACITIES FOR TECHNOLOGY TRANSFER The Institut de Robòtica i Informàtica Industrial (IRI) is a Joint University Research Institute of the Spanish Council for Scientific Research (CSIC) and the Technical

More information

Chapter 1. Robot and Robotics PP

Chapter 1. Robot and Robotics PP Chapter 1 Robot and Robotics PP. 01-19 Modeling and Stability of Robotic Motions 2 1.1 Introduction A Czech writer, Karel Capek, had first time used word ROBOT in his fictional automata 1921 R.U.R (Rossum

More information

Robotics Laboratory. Report Nao. 7 th of July Authors: Arnaud van Pottelsberghe Brieuc della Faille Laurent Parez Pierre-Yves Morelle

Robotics Laboratory. Report Nao. 7 th of July Authors: Arnaud van Pottelsberghe Brieuc della Faille Laurent Parez Pierre-Yves Morelle Robotics Laboratory Report Nao 7 th of July 2014 Authors: Arnaud van Pottelsberghe Brieuc della Faille Laurent Parez Pierre-Yves Morelle Professor: Prof. Dr. Jens Lüssem Faculty: Informatics and Electrotechnics

More information

Prediction of Human s Movement for Collision Avoidance of Mobile Robot

Prediction of Human s Movement for Collision Avoidance of Mobile Robot Prediction of Human s Movement for Collision Avoidance of Mobile Robot Shunsuke Hamasaki, Yusuke Tamura, Atsushi Yamashita and Hajime Asama Abstract In order to operate mobile robot that can coexist with

More information