Università degli Studi di Napoli Federico II

Size: px
Start display at page:

Download "Università degli Studi di Napoli Federico II"

Transcription

1 Università degli Studi di Napoli Federico II FACOLTÀ DI INGEGNERIA DIPARTIMENTO DI INFORMATICA E SISTEMISTICA TESI DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA PER LA PROGETTAZIONE E LA PRODUZIONE Vision-based Control of an Industrial Robot Arm RELATORE: CHIAR.MO PROF. ING. BRUNO SICILIANO CORRELATORI: CHIAR.MO PROF. ING. OLE RAVN DOTT.SSA HAIYAN WU CANDIDATO: WALTER TIZZANO matr. M ANNO ACCADEMICO

2 Chapter 1 Introduction On either side there stood gold and silver mastiffs which Vulcan, with his consummate skill, had fashioned expressly to keep watch over the palace of king Alcinous; so they were immortal and could never grow old. Homer, Odyssey In this introductory chapter we will first see a brief historical excursus, that gives us the background and the motivation behind the project this report is about; it follows a description of the project itself and an overview of the structure of the report. 1.1 Background Mankind had started being fascinated by robotics 1 thousands of years ago: already in Greek mythology (precisely in Iliad and also in the successively written Odyssey, both attributed to Homer) the god of fire and volcanoes Hephaestus created golden mechanical servants [2] to protect the palace of king Alcinous. Over the following centuries, an impressive number of mechanical devices that could be considered the ancestors of modern robots have been built. Some noteworthy examples of these devices are the digesting duck 2 (figure 1.1(a)) or the tea-serving doll (figure 1.1(b)). In the last decades, technology gave to the human kind the possibility to dramatically improve these devices and science fictional writers were speculating more and more on how complex and futuristic these devices could become in the future, because 1 The term robot derives from the slavic word robota (forced labor), and it became popular after having been coined by the playwright Karel Čapek in his play R.U.R. (acronym for Rossum s Universal Robots), which premiered in 1921 [1]. 2 An automaton created by Jacques de Vaucanson in 1739 consisting in a mechanical duck capable of eating grain and digesting it [3]. 1

3 2 CHAPTER 1. INTRODUCTION (a) The automaton Digesting Duck (b) A mechanical tea-serving doll Figure 1.1: Famous automata some things previously considered myth or fiction had actually already came to pass. On the other hand, modern robots are considerably different from what it was expected by these writers in the past: most robots are used in industries for highly repetitive and burdensome tasks, while anthropomorphic and domestic robots are mostly object of research and not something actually commercially available (there are some remarkable exceptions, like the several hundred thousands vacuum cleaning robots -the most famous being IROBOTS Roomba, figure 1.2- working in this exact moment in residential houses). The success of industrial robots in factories is easy to understand: it is not conceptually hard to design and build a robot much stronger than the human body (in terms of maximum weight liftable, velocity and resistance to fatigue), and in these environments to adapt the surroundings to the robot is usually possible [4]; nevertheless, actions which require a basic degree of flexibility, awareness of the surrounding environment and dexterity (all of these took for granted by humans) are devilishly complex for a robot and this can explain why we do not have yet anthropomorphous robot assistants helping us around. This can be justified considering the remarkable complexity of the human brain and the human senses which grants us the capability to solve problems, think new strategies and adapt to the surroundings in an

4 1.2. RESEARCH PROBLEM DESCRIPTION 3 Figure 1.2: IROBOTS Roomba astonishingly efficient way. To create a robot which is able to be effective in an unknown environment (which cannot be contrived at reasonable costs to fit the robot) and to execute tasks requiring a high dexterity, a big computational power and highly performing sensors are both needed. This two requirements are fulfilled more and more overtime: we can now buy for few cents an amount of computational power that costed several thousands dollars back in the seventies and a similar pattern can be identified in most the components a robot needs to work properly [5]. This evolution in the components is granting us the possibility to make commercially convenient to design and produce on the one hand robots which still work in the industries but are more flexible and less task specific than their ancestors, and on the other hand robots that can safely interact with humans in an unstructured environment. The sense of vision plays an important role in our capability of interacting with our environment and to perform dexterous tasks and the object of this project is to design and build a vision system allowing a robot arm to achieve some results in this area, i.e., bouncing an unconstrained ball. It is worthy to highlight how such a vision system requires a computational power that was not widely available only a couple of decades ago. 1.2 Research problem description The object of this project is to design and build a stereoscopic vision system capable of tracking a fast-moving object and predicting its future positions,

5 4 CHAPTER 1. INTRODUCTION enabling a UR5 UNIVERSAL ROBOTS arm (figure 1.2) to interact with it. A colour-based object detection has been used and the position in 3D coordinates has been estimated with two different strategies, compared in this report: one is a geometrical triangulation, the other one is a neural network trained for this purpose; a curve fitting algorithm predicted the future position of the tracked object and a paddle moved by the robot arm is oriented and positioned according to a strategy meant to stabilize the bouncing. The robot motion has been performed with different strategies, one of them involving the need of the inverse kinematics of the arm, which was calculated using a neural network. 1.3 Structure of the report This report is structured as follows: in Chapter 2 some related work will be summarized; Chapter 3 consists in a brief reference to some noteworthy theory used to carry on the tests and to write the report itself; Chapter 4 describes the equipment used; in Chapter 5 there is a detailed description of the algorithm written to carry out the task (object tracking and prediction, motion of the robot); Chapter 6 provides the reader with information about the procedures used to calibrate the cameras and to train the neural networks used to calculate the inverse kinematics and solve the stereoscopic problem, and presents also a Figure 1.3: UR5 UNIVERSAL ROBOTS Arm

6 1.3. STRUCTURE OF THE REPORT 5 comparison between these strategies; Chapter 7 presents the results obtained and the issues encountered; Chapter 8 summarizes the conclusion we had came to after the work behind this project; some appendices, finally, are included; they consist in additional results and theory that the interested reader can make reference to if he wants more detail. A comprehensive bibliography is included also, for the reader s convenience. A CD is bundled with the present report; its content is described in appendix D.

7 Chapter 2 Related work If I have seen further it is by standing on ye shoulders of Giants Isaac Newton In the introductory chapter we have seen, among the other things, the background behind this project, that provides the motivation for it. But before starting a new project, it is also important to explore the related literature, to have an idea of the state of the art in the key parts of the project itself, that might inspire different approaches to the ones that could have been followed without such a research. Since this project is made up by several parts, an exploration of the related work for each part has been performed. In the following sections the results of this study are reported. 2.1 Robot Vision One of the most important senses in a lot of different biological species (especially in the most evolute ones) is the vision and this is true also in many robots, that use it for different reasons; the capability of a robot to cope with an unstructured environment can take significant advantage of a vision system: visual information can be used directly used to perform closed-loop position control of the robot [4] and usually for this purpose multiple cameras are used. A vision system can be defined as a remote sensor gathering information from a portion of the environment in a contactless fashion [6]. The first challenge is to extract meaningful information from the pictures; this process is called image segmentation and it consists in partitioning the image into multiple segments (e.g., isolating objects or boundaries). This can be done in many different ways and a method used in several applications (and in this project, as we will see in 5.1) is colour segmentation [7]. Noise and errors due to several factors (e.g., lens distortion) can lead to unacceptable inaccuracy of position and orientation estimation; when a 7

8 8 CHAPTER 2. RELATED WORK sequence of images is available, the accuracy can be enhanced using the extended Kalman filter. Siciliano et al. [8] proposed an algorithm based on Kalman filter for the position and orientation estimation in real time of moving objects using multiple cameras; one of the drawbacks of this method is the big computational power required, which could be a problem in real time applications but this is hardly an issue with the fast growing capabilities of microprocessors, which are significantly reducing the computational time required to run the algorithm. 2.2 Neural networks used in robotics Neural networks are the artificial counterpart of their remarkable analogous in biology; since animals have noteworthy abilities in a very wide range of different tasks, it has been natural for researchers to try to use these networks in robotics, for several different purposes. Neural networks can be a fundamental part of the vision system of a robot, in many different ways [9]; e.g., in computer stereo-vision, as we will see in 3.2, the knowledge of some parameters relative to the cameras (described in 6.1) is needed to perform the triangulation 1 ; several methods exist to compute these parameters, one of them being the usage of a neural network trained for this goal [10]; Ruichek and Postaire [11] proposed to solve the correspondence problem 2 using a neural network; a neural network can also be used to solve the stereoscopic problem (see Do [12] and Xing et al. [13]), as we will see in 6.2. To drive a robot in joint space, the knowledge of its inverse kinematics is needed and, when the robot is relatively complex (even a robot arm can be, if it has a sufficient number of degrees of freedom), this problem can be difficult, since it involves equations which are strongly non-linear and which often do not have an unique or analytical solution [14]; in this project to solve this problem was also necessary and it was decided to follow an approach similar to the one proposed by Tejomurtula and Kak [15], consisting in training a feedforward neural network for this purpose. Another crucial issue in robotics is the trajectory control, and this problem can become really complex for non-trivial robots, since it involves the knowledge of the inverse-dynamics model of the arm, and control strategies that can be tricky to develop; Miyamoto et al. [16] proposed for this purpose the usage of a feedback neural network, and the result was that, once the network learned how to control some simple and slow movements, it was then able to generalize this knowledge and perform more complex and fast motions. 1 The operation consisting in converting stereo-pair images from the two cameras in 3D world coordinates. 2 This is a problem present in stereoscopic vision, it consists in matching features extracted from two images that are projections of the same entity in the 3D world.

9 2.3. ROBOTS USED FOR DEXTEROUS TASKS Robots used for dexterous tasks The idea of performing dexterous tasks (e.g., play table tennis) with a robot has fascinated researchers all over the world, as a challenge both in machine vision and control fields [17]. These tasks often require a robust and high-speed vision system and fast and precise control of robot arm (e.g., Li proposed a high speed vision system consisting in two cameras working at high frame rate tracking a ball and predicting its future positions[18]; Acosta et al. proposed similar system, a ping-pong robot player, that uses instead a 25 Hz pair of cameras [19]). A typical example of such a dexterous task is the system consisting in a bouncing ball over a vibrating paddle; it is a very simple system with a very complex dynamical behavior and for this reason it has been studied by many authors (e.g., Holmes [20] and Tufillaro et al. [21]). Several approaches have been used over time to bounce an unconstrained ball: e.g., some authors [22] used a memory-based learning approach to juggle with the ball; others [23] used a blind juggler to bounce an unconstrained ball (they could avoid using cameras or other sensors by shaping the paddle conveniently, precisely they tried to minimize the H 2 norm 3 by giving to the vibrating surface a curvature they calculate in their report). A method similar to the one described in the previous lines will be used in this project, but with important differences, biggest of them being the usage of cameras. The same authors created later an improved version of their juggler (figure 2.1), able to juggle the ball back and forth along a horizontal distance of about 1 m and a vertical apex of 1.1 m [25]. 2.4 Summary In this chapter we saw some work related with this project, which inspired the author in exploring new possibilities in the research for the solution of problems encountered over its development. In the next chapter instead, some theoretical basics essential for this project will be pointed out, for a better understanding of what comes afterwards. 3 The standard H 2 norm of a system can be considered as the RMS response of the output signal when the input is a unit variance white noise [24].

10 10 CHAPTER 2. RELATED WORK Figure 2.1: The pendulum juggler [25]

Introduction to Robotics

Introduction to Robotics Marcello Restelli Dipartimento di Elettronica e Informazione Politecnico di Milano email: restelli@elet.polimi.it tel: 02-2399-3470 Introduction to Robotics Robotica for Computer Engineering students A.A.

More information

Autonomous Robotics. CS Fall Amarda Shehu. Department of Computer Science George Mason University

Autonomous Robotics. CS Fall Amarda Shehu. Department of Computer Science George Mason University Autonomous Robotics CS 485 - Fall 2016 Amarda Shehu Department of Computer Science George Mason University 1 Outline of Today s Class 2 Robotics over the Years 3 Trends in Robotics Research 4 Course Organization

More information

INTRODUCTION to ROBOTICS

INTRODUCTION to ROBOTICS 1 INTRODUCTION to ROBOTICS Robotics is a relatively young field of modern technology that crosses traditional engineering boundaries. Understanding the complexity of robots and their applications requires

More information

Year 1805 Doll, made by Maillardet, that wrote in either French or English and could draw landscapes

Year 1805 Doll, made by Maillardet, that wrote in either French or English and could draw landscapes Unit 8 : ROBOTICS INTRODUCTION Robots are devices that are programmed to move parts, or to do work with a tool. Robotics is a multidisciplinary engineering field dedicated to the development of autonomous

More information

Funzionalità per la navigazione di robot mobili. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo

Funzionalità per la navigazione di robot mobili. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Funzionalità per la navigazione di robot mobili Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Variability of the Robotic Domain UNIBG - Corso di Robotica - Prof. Brugali Tourist

More information

Chapter 1. Robot and Robotics PP

Chapter 1. Robot and Robotics PP Chapter 1 Robot and Robotics PP. 01-19 Modeling and Stability of Robotic Motions 2 1.1 Introduction A Czech writer, Karel Capek, had first time used word ROBOT in his fictional automata 1921 R.U.R (Rossum

More information

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino What is Robotics? Robotics is the study and design of robots Robots can be used in different contexts and are classified as 1. Industrial robots

More information

Robotics Manipulation and control. University of Strasbourg Telecom Physique Strasbourg, ISAV option Master IRIV, AR track Jacques Gangloff

Robotics Manipulation and control. University of Strasbourg Telecom Physique Strasbourg, ISAV option Master IRIV, AR track Jacques Gangloff Robotics Manipulation and control University of Strasbourg Telecom Physique Strasbourg, ISAV option Master IRIV, AR track Jacques Gangloff Outline of the lecture Introduction : Overview 1. Theoretical

More information

Human Robot Interaction (HRI)

Human Robot Interaction (HRI) Brief Introduction to HRI Batu Akan batu.akan@mdh.se Mälardalen Högskola September 29, 2008 Overview 1 Introduction What are robots What is HRI Application areas of HRI 2 3 Motivations Proposed Solution

More information

Industrial Robotics. Claudio Melchiorri. Dipartimento di Ingegneria dell Energia Elettrica e dell Informazione (DEI) Università di Bologna

Industrial Robotics. Claudio Melchiorri. Dipartimento di Ingegneria dell Energia Elettrica e dell Informazione (DEI) Università di Bologna Industrial Robotics Claudio Melchiorri Dipartimento di Ingegneria dell Energia Elettrica e dell Informazione (DEI) Università di Bologna email: claudio.melchiorri@unibo.it C. Melchiorri (DEI) Industrial

More information

Robotics: Evolution, Technology and Applications

Robotics: Evolution, Technology and Applications Robotics: Evolution, Technology and Applications By: Dr. Hamid D. Taghirad Head of Control Group, and Department of Electrical Engineering K.N. Toosi University of Tech. Department of Electrical Engineering

More information

The control of the ball juggler

The control of the ball juggler 18th Telecommunications forum TELFOR 010 Serbia, Belgrade, November 3-5, 010. The control of the ball juggler S.Triaška, M.Žalman Abstract The ball juggler is a mechanical machinery designed to demonstrate

More information

Perception. Read: AIMA Chapter 24 & Chapter HW#8 due today. Vision

Perception. Read: AIMA Chapter 24 & Chapter HW#8 due today. Vision 11-25-2013 Perception Vision Read: AIMA Chapter 24 & Chapter 25.3 HW#8 due today visual aural haptic & tactile vestibular (balance: equilibrium, acceleration, and orientation wrt gravity) olfactory taste

More information

CS494/594: Software for Intelligent Robotics

CS494/594: Software for Intelligent Robotics CS494/594: Software for Intelligent Robotics Spring 2007 Tuesday/Thursday 11:10 12:25 Instructor: Dr. Lynne E. Parker TA: Rasko Pjesivac Outline Overview syllabus and class policies Introduction to class:

More information

Learning and Using Models of Kicking Motions for Legged Robots

Learning and Using Models of Kicking Motions for Legged Robots Learning and Using Models of Kicking Motions for Legged Robots Sonia Chernova and Manuela Veloso Computer Science Department Carnegie Mellon University Pittsburgh, PA 15213 {soniac, mmv}@cs.cmu.edu Abstract

More information

Learning and Using Models of Kicking Motions for Legged Robots

Learning and Using Models of Kicking Motions for Legged Robots Learning and Using Models of Kicking Motions for Legged Robots Sonia Chernova and Manuela Veloso Computer Science Department Carnegie Mellon University Pittsburgh, PA 15213 {soniac, mmv}@cs.cmu.edu Abstract

More information

ROBOTICS ENG YOUSEF A. SHATNAWI INTRODUCTION

ROBOTICS ENG YOUSEF A. SHATNAWI INTRODUCTION ROBOTICS INTRODUCTION THIS COURSE IS TWO PARTS Mobile Robotics. Locomotion (analogous to manipulation) (Legged and wheeled robots). Navigation and obstacle avoidance algorithms. Robot Vision Sensors and

More information

By Marek Perkowski ECE Seminar, Friday January 26, 2001

By Marek Perkowski ECE Seminar, Friday January 26, 2001 By Marek Perkowski ECE Seminar, Friday January 26, 2001 Why people build Humanoid Robots? Challenge - it is difficult Money - Hollywood, Brooks Fame -?? Everybody? To build future gods - De Garis Forthcoming

More information

Robot Motion Control and Planning

Robot Motion Control and Planning Robot Motion Control and Planning http://www.cs.bilkent.edu.tr/~saranli/courses/cs548 Lecture 1 Introduction and Logistics Uluç Saranlı http://www.cs.bilkent.edu.tr/~saranli CS548 - Robot Motion Control

More information

Planning in autonomous mobile robotics

Planning in autonomous mobile robotics Sistemi Intelligenti Corso di Laurea in Informatica, A.A. 2017-2018 Università degli Studi di Milano Planning in autonomous mobile robotics Nicola Basilico Dipartimento di Informatica Via Comelico 39/41-20135

More information

ROBOT VISION. Dr.M.Madhavi, MED, MVSREC

ROBOT VISION. Dr.M.Madhavi, MED, MVSREC ROBOT VISION Dr.M.Madhavi, MED, MVSREC Robotic vision may be defined as the process of acquiring and extracting information from images of 3-D world. Robotic vision is primarily targeted at manipulation

More information

Sample Pages. Classroom Activities for the Busy Teacher: NXT. 2 nd Edition. Classroom Activities for the Busy Teacher: NXT -

Sample Pages. Classroom Activities for the Busy Teacher: NXT. 2 nd Edition. Classroom Activities for the Busy Teacher: NXT - Classroom Activities for the Busy Teacher: NXT 2 nd Edition Table of Contents Chapter 1: Introduction... 1 Chapter 2: What is a robot?... 5 Chapter 3: Flowcharting... 11 Chapter 4: DomaBot Basics... 15

More information

Lecture Notes in Control and Information Sciences 233. Editor: M. Thoma

Lecture Notes in Control and Information Sciences 233. Editor: M. Thoma Lecture Notes in Control and Information Sciences 233 Editor: M. Thoma Pasquale Chiacchio and Stefano Chiaverini (Eds) Complex Robotic Systems ~ Springer Series Advisory Board A. Bensoussan M.J. Grimble

More information

Revised and extended. Accompanies this course pages heavier Perception treated more thoroughly. 1 - Introduction

Revised and extended. Accompanies this course pages heavier Perception treated more thoroughly. 1 - Introduction Topics to be Covered Coordinate frames and representations. Use of homogeneous transformations in robotics. Specification of position and orientation Manipulator forward and inverse kinematics Mobile Robots:

More information

Technologists and economists both think about the future sometimes, but they each have blind spots.

Technologists and economists both think about the future sometimes, but they each have blind spots. The Economics of Brain Simulations By Robin Hanson, April 20, 2006. Introduction Technologists and economists both think about the future sometimes, but they each have blind spots. Technologists think

More information

ME7752: Mechanics and Control of Robots Lecture 1

ME7752: Mechanics and Control of Robots Lecture 1 ME7752: Mechanics and Control of Robots Lecture 1 Instructor: Manoj Srinivasan Office: E340 Scott Laboratory Email: srinivasan.88@osu.edu ( PDF posted. In the PDF, if there are no links to videos, do a

More information

Dr. Ashish Dutta. Professor, Dept. of Mechanical Engineering Indian Institute of Technology Kanpur, INDIA

Dr. Ashish Dutta. Professor, Dept. of Mechanical Engineering Indian Institute of Technology Kanpur, INDIA Introduction: History of Robotics - past, present and future Dr. Ashish Dutta Professor, Dept. of Mechanical Engineering Indian Institute of Technology Kanpur, INDIA Origin of Automation: replacing human

More information

CORC Exploring Robotics. Unit A: Introduction To Robotics

CORC Exploring Robotics. Unit A: Introduction To Robotics CORC 3303 Exploring Robotics Unit A: Introduction To Robotics What is a robot? The robot word is attributed to Czech playwright Karel Capek. He first coined the term in his 1921 play Rossum's Universal

More information

CS148 - Building Intelligent Robots Lecture 2: Robotics Introduction and Philosophy. Instructor: Chad Jenkins (cjenkins)

CS148 - Building Intelligent Robots Lecture 2: Robotics Introduction and Philosophy. Instructor: Chad Jenkins (cjenkins) Lecture 2 Robot Philosophy Slide 1 CS148 - Building Intelligent Robots Lecture 2: Robotics Introduction and Philosophy Instructor: Chad Jenkins (cjenkins) Lecture 2 Robot Philosophy Slide 2 What is robotics?

More information

CS325 Artificial Intelligence Robotics I Autonomous Robots (Ch. 25)

CS325 Artificial Intelligence Robotics I Autonomous Robots (Ch. 25) CS325 Artificial Intelligence Robotics I Autonomous Robots (Ch. 25) Dr. Cengiz Günay, Emory Univ. Günay Robotics I Autonomous Robots (Ch. 25) Spring 2013 1 / 15 Robots As Killers? The word robot coined

More information

Cognitive Robotics 2017/2018

Cognitive Robotics 2017/2018 Cognitive Robotics 2017/2018 Course Introduction Matteo Matteucci matteo.matteucci@polimi.it Artificial Intelligence and Robotics Lab - Politecnico di Milano About me and my lectures Lectures given by

More information

Lets Learn of Robot Technology

Lets Learn of Robot Technology Lets Learn of Robot Technology Dr. M.S. Ajmal Deen Ali, M.E., Ph.D (IITM) Ajlon Technologies (www.ajlontech.com) Partner to : AlfaTKG Japan, IISc Bangalore & IITM The Origins of Robots 1738 Jacques de

More information

Vishnu Nath. Usage of computer vision and humanoid robotics to create autonomous robots. (Ximea Currera RL04C Camera Kit)

Vishnu Nath. Usage of computer vision and humanoid robotics to create autonomous robots. (Ximea Currera RL04C Camera Kit) Vishnu Nath Usage of computer vision and humanoid robotics to create autonomous robots (Ximea Currera RL04C Camera Kit) Acknowledgements Firstly, I would like to thank Ivan Klimkovic of Ximea Corporation,

More information

Robotics Prof. Dilip Kumar Pratihar Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Robotics Prof. Dilip Kumar Pratihar Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Robotics Prof. Dilip Kumar Pratihar Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 01 Introduction to Robot and Robotics Let us start with the course on Robotics.

More information

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 23 The Phase Locked Loop (Contd.) We will now continue our discussion

More information

Glossary of terms. Short explanation

Glossary of terms. Short explanation Glossary Concept Module. Video Short explanation Abstraction 2.4 Capturing the essence of the behavior of interest (getting a model or representation) Action in the control Derivative 4.2 The control signal

More information

Using Simulation to Design Control Strategies for Robotic No-Scar Surgery

Using Simulation to Design Control Strategies for Robotic No-Scar Surgery Using Simulation to Design Control Strategies for Robotic No-Scar Surgery Antonio DE DONNO 1, Florent NAGEOTTE, Philippe ZANNE, Laurent GOFFIN and Michel de MATHELIN LSIIT, University of Strasbourg/CNRS,

More information

Autonomous and Mobile Robotics Prof. Giuseppe Oriolo. Introduction: Applications, Problems, Architectures

Autonomous and Mobile Robotics Prof. Giuseppe Oriolo. Introduction: Applications, Problems, Architectures Autonomous and Mobile Robotics Prof. Giuseppe Oriolo Introduction: Applications, Problems, Architectures organization class schedule 2017/2018: 7 Mar - 1 June 2018, Wed 8:00-12:00, Fri 8:00-10:00, B2 6

More information

Advanced Robotics Introduction

Advanced Robotics Introduction Advanced Robotics Introduction Institute for Software Technology 1 Motivation Agenda Some Definitions and Thought about Autonomous Robots History Challenges Application Examples 2 http://youtu.be/rvnvnhim9kg

More information

Image Analysis of Granular Mixtures: Using Neural Networks Aided by Heuristics

Image Analysis of Granular Mixtures: Using Neural Networks Aided by Heuristics Image Analysis of Granular Mixtures: Using Neural Networks Aided by Heuristics Justin Eldridge The Ohio State University In order to gain a deeper understanding of how individual grain configurations affect

More information

MarineBlue: A Low-Cost Chess Robot

MarineBlue: A Low-Cost Chess Robot MarineBlue: A Low-Cost Chess Robot David URTING and Yolande BERBERS {David.Urting, Yolande.Berbers}@cs.kuleuven.ac.be KULeuven, Department of Computer Science Celestijnenlaan 200A, B-3001 LEUVEN Belgium

More information

3D Interaction using Hand Motion Tracking. Srinath Sridhar Antti Oulasvirta

3D Interaction using Hand Motion Tracking. Srinath Sridhar Antti Oulasvirta 3D Interaction using Hand Motion Tracking Srinath Sridhar Antti Oulasvirta EIT ICT Labs Smart Spaces Summer School 05-June-2013 Speaker Srinath Sridhar PhD Student Supervised by Prof. Dr. Christian Theobalt

More information

JEPPIAAR ENGINEERING COLLEGE

JEPPIAAR ENGINEERING COLLEGE JEPPIAAR ENGINEERING COLLEGE Jeppiaar Nagar, Rajiv Gandhi Salai 600 119 DEPARTMENT OFMECHANICAL ENGINEERING QUESTION BANK VII SEMESTER ME6010 ROBOTICS Regulation 013 JEPPIAAR ENGINEERING COLLEGE Jeppiaar

More information

Non-fiction: Almost Human

Non-fiction: Almost Human Non-fiction: Almost Human Almost Human? Robots become more and more like people. At Aizo Chuo Hospital in Japan, employees greet newcomers, guide patients to and from the surgery area, and print out maps

More information

Dynamics and simulation analysis of table tennis robot based on independent joint control

Dynamics and simulation analysis of table tennis robot based on independent joint control Acta Technica 62 No. 1B/2017, 35 44 c 2017 Institute of Thermomechanics CAS, v.v.i. Dynamics and simulation analysis of table tennis robot based on independent joint control Yang Yu 1 Abstract. The purpose

More information

Humanoid robot. Honda's ASIMO, an example of a humanoid robot

Humanoid robot. Honda's ASIMO, an example of a humanoid robot Humanoid robot Honda's ASIMO, an example of a humanoid robot A humanoid robot is a robot with its overall appearance based on that of the human body, allowing interaction with made-for-human tools or environments.

More information

COMPUTATIONAL ERGONOMICS A POSSIBLE EXTENSION OF COMPUTATIONAL NEUROSCIENCE? DEFINITIONS, POTENTIAL BENEFITS, AND A CASE STUDY ON CYBERSICKNESS

COMPUTATIONAL ERGONOMICS A POSSIBLE EXTENSION OF COMPUTATIONAL NEUROSCIENCE? DEFINITIONS, POTENTIAL BENEFITS, AND A CASE STUDY ON CYBERSICKNESS COMPUTATIONAL ERGONOMICS A POSSIBLE EXTENSION OF COMPUTATIONAL NEUROSCIENCE? DEFINITIONS, POTENTIAL BENEFITS, AND A CASE STUDY ON CYBERSICKNESS Richard H.Y. So* and Felix W.K. Lor Computational Ergonomics

More information

KMUTT Kickers: Team Description Paper

KMUTT Kickers: Team Description Paper KMUTT Kickers: Team Description Paper Thavida Maneewarn, Xye, Korawit Kawinkhrue, Amnart Butsongka, Nattapong Kaewlek King Mongkut s University of Technology Thonburi, Institute of Field Robotics (FIBO)

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction It is appropriate to begin the textbook on robotics with the definition of the industrial robot manipulator as given by the ISO 8373 standard. An industrial robot manipulator is

More information

Neuroprosthetics *= Hecke. CNS-Seminar 2004 Opener p.1

Neuroprosthetics *= Hecke. CNS-Seminar 2004 Opener p.1 Neuroprosthetics *= *. Hecke MPI für Dingsbums Göttingen CNS-Seminar 2004 Opener p.1 Overview 1. Introduction CNS-Seminar 2004 Opener p.2 Overview 1. Introduction 2. Existing Neuroprosthetics CNS-Seminar

More information

SPQR RoboCup 2016 Standard Platform League Qualification Report

SPQR RoboCup 2016 Standard Platform League Qualification Report SPQR RoboCup 2016 Standard Platform League Qualification Report V. Suriani, F. Riccio, L. Iocchi, D. Nardi Dipartimento di Ingegneria Informatica, Automatica e Gestionale Antonio Ruberti Sapienza Università

More information

Available theses in industrial robotics (October 2016) Prof. Paolo Rocco Prof. Andrea Maria Zanchettin

Available theses in industrial robotics (October 2016) Prof. Paolo Rocco Prof. Andrea Maria Zanchettin Available theses in industrial robotics (October 2016) Prof. Paolo Rocco Prof. Andrea Maria Zanchettin Politecnico di Milano - Dipartimento di Elettronica, Informazione e Bioingegneria Industrial robotics

More information

History and Philosophy of Robotics

History and Philosophy of Robotics Foundations of Robotics Rod Grupen Department of Computer Science University of Massachusetts Amherst History and Philosophy of Robotics 2 The Iliad (850 BC) a great epic describing the Trojan war, a world

More information

Close-Range Photogrammetry for Accident Reconstruction Measurements

Close-Range Photogrammetry for Accident Reconstruction Measurements Close-Range Photogrammetry for Accident Reconstruction Measurements iwitness TM Close-Range Photogrammetry Software www.iwitnessphoto.com Lee DeChant Principal DeChant Consulting Services DCS Inc Bellevue,

More information

Servo Tuning. Dr. Rohan Munasinghe Department. of Electronic and Telecommunication Engineering University of Moratuwa. Thanks to Dr.

Servo Tuning. Dr. Rohan Munasinghe Department. of Electronic and Telecommunication Engineering University of Moratuwa. Thanks to Dr. Servo Tuning Dr. Rohan Munasinghe Department. of Electronic and Telecommunication Engineering University of Moratuwa Thanks to Dr. Jacob Tal Overview Closed Loop Motion Control System Brain Brain Muscle

More information

BBC Learning English 6 Minute English Robots 15 th December 2011

BBC Learning English 6 Minute English Robots 15 th December 2011 BBC Learning English 6 Minute English Robots 15 th December 2011 NB: This is not a word for word transcript Hello, and welcome to 6 Minute English from BBC Learning English and with me in the studio is

More information

Introduction to Robotics

Introduction to Robotics Introduction to Robotics Jee-Hwan Ryu School of Mechanical Engineering Korea University of Technology and Education What is Robot? Robots in our Imagination What is Robot Like in Our Real Life? Origin

More information

Birth of An Intelligent Humanoid Robot in Singapore

Birth of An Intelligent Humanoid Robot in Singapore Birth of An Intelligent Humanoid Robot in Singapore Ming Xie Nanyang Technological University Singapore 639798 Email: mmxie@ntu.edu.sg Abstract. Since 1996, we have embarked into the journey of developing

More information

ROBOTICS. Museum Classroom Programs. Pre- and Postvisit Activities. Grades 4 8. courtesy NASA/ JPL LL-050

ROBOTICS. Museum Classroom Programs. Pre- and Postvisit Activities. Grades 4 8. courtesy NASA/ JPL LL-050 ROBOTICS Museum Classroom Programs Pre- and Postvisit Activities LL-050 INFORMATION & ACTIVITIES: Robotics We re Glad You re Coming! Thank you for selecting this Museum Classroom Programs class at the

More information

E Technology: A. Innovations Activity: Introduction to Robotics

E Technology: A. Innovations Activity: Introduction to Robotics Science as Inquiry: As a result of their activities in grades 5 8, all students should develop Understanding about scientific inquiry. Abilities necessary to do scientific inquiry: identify questions,

More information

Advanced Robotics Introduction

Advanced Robotics Introduction Advanced Robotics Introduction Institute for Software Technology 1 Agenda Motivation Some Definitions and Thought about Autonomous Robots History Challenges Application Examples 2 Bridge the Gap Mobile

More information

Optic Flow Based Skill Learning for A Humanoid to Trap, Approach to, and Pass a Ball

Optic Flow Based Skill Learning for A Humanoid to Trap, Approach to, and Pass a Ball Optic Flow Based Skill Learning for A Humanoid to Trap, Approach to, and Pass a Ball Masaki Ogino 1, Masaaki Kikuchi 1, Jun ichiro Ooga 1, Masahiro Aono 1 and Minoru Asada 1,2 1 Dept. of Adaptive Machine

More information

8.2 IMAGE PROCESSING VERSUS IMAGE ANALYSIS Image processing: The collection of routines and

8.2 IMAGE PROCESSING VERSUS IMAGE ANALYSIS Image processing: The collection of routines and 8.1 INTRODUCTION In this chapter, we will study and discuss some fundamental techniques for image processing and image analysis, with a few examples of routines developed for certain purposes. 8.2 IMAGE

More information

Range Sensing strategies

Range Sensing strategies Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart and Nourbakhsh 4.1.6 Range Sensors (time of flight) (1) Large range distance measurement -> called

More information

What We Talk About When We Talk About AI

What We Talk About When We Talk About AI MAGAZINE What We Talk About When We Talk About AI ARTIFICIAL INTELLIGENCE TECHNOLOGY 30 OCT 2015 W e have all seen the films, read the comics or been awed by the prophetic books, and from them we think

More information

INTELLIGENT ROBOTICS VS. ROBOTIC INTELLIGENCE

INTELLIGENT ROBOTICS VS. ROBOTIC INTELLIGENCE INTELLIGENT ROBOTICS VS. ROBOTIC INTELLIGENCE What is a Robot? The term Robot first appeared in the play R.U.R. (Rossums Universal-Robots) by Karel Čapek (1920) Karel Čapek (Jan 9,1890 Dec. 25, 1938) It

More information

Conventional geophone topologies and their intrinsic physical limitations, determined

Conventional geophone topologies and their intrinsic physical limitations, determined Magnetic innovation in velocity sensing Low -frequency with passive Conventional geophone topologies and their intrinsic physical limitations, determined by the mechanical construction, limit their velocity

More information

CCD Automatic Gain Algorithm Design of Noncontact Measurement System Based on High-speed Circuit Breaker

CCD Automatic Gain Algorithm Design of Noncontact Measurement System Based on High-speed Circuit Breaker 2016 3 rd International Conference on Engineering Technology and Application (ICETA 2016) ISBN: 978-1-60595-383-0 CCD Automatic Gain Algorithm Design of Noncontact Measurement System Based on High-speed

More information

Available theses (October 2011) MERLIN Group

Available theses (October 2011) MERLIN Group Available theses (October 2011) MERLIN Group Politecnico di Milano - Dipartimento di Elettronica e Informazione MERLIN Group 2 Luca Bascetta bascetta@elet.polimi.it Gianni Ferretti ferretti@elet.polimi.it

More information

CONTROL IMPROVEMENT OF UNDER-DAMPED SYSTEMS AND STRUCTURES BY INPUT SHAPING

CONTROL IMPROVEMENT OF UNDER-DAMPED SYSTEMS AND STRUCTURES BY INPUT SHAPING CONTROL IMPROVEMENT OF UNDER-DAMPED SYSTEMS AND STRUCTURES BY INPUT SHAPING Igor Arolovich a, Grigory Agranovich b Ariel University of Samaria a igor.arolovich@outlook.com, b agr@ariel.ac.il Abstract -

More information

An Efficient Color Image Segmentation using Edge Detection and Thresholding Methods

An Efficient Color Image Segmentation using Edge Detection and Thresholding Methods 19 An Efficient Color Image Segmentation using Edge Detection and Thresholding Methods T.Arunachalam* Post Graduate Student, P.G. Dept. of Computer Science, Govt Arts College, Melur - 625 106 Email-Arunac682@gmail.com

More information

Digital Photogrammetry. Presented by: Dr. Hamid Ebadi

Digital Photogrammetry. Presented by: Dr. Hamid Ebadi Digital Photogrammetry Presented by: Dr. Hamid Ebadi Background First Generation Analog Photogrammetry Analytical Photogrammetry Digital Photogrammetry Photogrammetric Generations 2000 digital photogrammetry

More information

Summary of robot visual servo system

Summary of robot visual servo system Abstract Summary of robot visual servo system Xu Liu, Lingwen Tang School of Mechanical engineering, Southwest Petroleum University, Chengdu 610000, China In this paper, the survey of robot visual servoing

More information

A SURVEY ON GESTURE RECOGNITION TECHNOLOGY

A SURVEY ON GESTURE RECOGNITION TECHNOLOGY A SURVEY ON GESTURE RECOGNITION TECHNOLOGY Deeba Kazim 1, Mohd Faisal 2 1 MCA Student, Integral University, Lucknow (India) 2 Assistant Professor, Integral University, Lucknow (india) ABSTRACT Gesture

More information

Introduction to Robotics

Introduction to Robotics Introduction to Robotics Analysis, systems, Applications Saeed B. Niku Chapter 1 Fundamentals 1. Introduction Fig. 1.1 (a) A Kuhnezug truck-mounted crane Reprinted with permission from Kuhnezug Fordertechnik

More information

Structure and Synthesis of Robot Motion

Structure and Synthesis of Robot Motion Structure and Synthesis of Robot Motion Motion Synthesis in Groups and Formations I Subramanian Ramamoorthy School of Informatics 5 March 2012 Consider Motion Problems with Many Agents How should we model

More information

Automatic Control Motion control Advanced control techniques

Automatic Control Motion control Advanced control techniques Automatic Control Motion control Advanced control techniques (luca.bascetta@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Motivations (I) 2 Besides the classical

More information

Lecture 23: Robotics. Instructor: Joelle Pineau Class web page: What is a robot?

Lecture 23: Robotics. Instructor: Joelle Pineau Class web page:   What is a robot? COMP 102: Computers and Computing Lecture 23: Robotics Instructor: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp102 What is a robot? The word robot is popularized by the Czech playwright

More information

4/1/2011. Ken Goldberg UC Berkeley. Robot

4/1/2011. Ken Goldberg UC Berkeley. Robot The World of Robots history Ken Goldberg UC Berkeley 2 history Robot Karel Capek, R.U.R. (1923) 3 1 Two Classes of Robots Industrial robot : Reprogrammable, multi-function manipulator with 3 or more axes.

More information

An Introduction to Robotics. Elliot Ratchik, MS Former Senior Scientist, Hoffman LaRoche And Mannkind Corp.

An Introduction to Robotics. Elliot Ratchik, MS Former Senior Scientist, Hoffman LaRoche And Mannkind Corp. An Introduction to Robotics Elliot Ratchik, MS Former Senior Scientist, Hoffman LaRoche And Mannkind Corp. What is a Robot What can it do History Key Components Applications Future Outline What is a Robot?

More information

Research Seminar. Stefano CARRINO fr.ch

Research Seminar. Stefano CARRINO  fr.ch Research Seminar Stefano CARRINO stefano.carrino@hefr.ch http://aramis.project.eia- fr.ch 26.03.2010 - based interaction Characterization Recognition Typical approach Design challenges, advantages, drawbacks

More information

Bio-inspired for Detection of Moving Objects Using Three Sensors

Bio-inspired for Detection of Moving Objects Using Three Sensors International Journal of Electronics and Electrical Engineering Vol. 5, No. 3, June 2017 Bio-inspired for Detection of Moving Objects Using Three Sensors Mario Alfredo Ibarra Carrillo Dept. Telecommunications,

More information

Advanced Textbooks in Control and Signal Processing

Advanced Textbooks in Control and Signal Processing Advanced Textbooks in Control and Signal Processing Series Editors Professor Michael J. Grimble, Professor of Industrial Systems and Director Professor Michael A. Johnson, Professor Emeritus of Control

More information

A software video stabilization system for automotive oriented applications

A software video stabilization system for automotive oriented applications A software video stabilization system for automotive oriented applications A. Broggi, P. Grisleri Dipartimento di Ingegneria dellinformazione Universita degli studi di Parma 43100 Parma, Italy Email: {broggi,

More information

Video Games and Interfaces: Past, Present and Future Class #2: Intro to Video Game User Interfaces

Video Games and Interfaces: Past, Present and Future Class #2: Intro to Video Game User Interfaces Video Games and Interfaces: Past, Present and Future Class #2: Intro to Video Game User Interfaces Content based on Dr.LaViola s class: 3D User Interfaces for Games and VR What is a User Interface? Where

More information

Future Intelligent Machines

Future Intelligent Machines Future Intelligent Machines TKK GIM research institute Content of the talk Introductory remarks Intelligent machines Subsystems technology and modularity Robots and biology Robots in homes Introductory

More information

What we are expecting from this presentation:

What we are expecting from this presentation: What we are expecting from this presentation: A We want to inform you on the most important highlights from this topic D We exhort you to share with us a constructive feedback for further improvements

More information

COGNITIVE MODEL OF MOBILE ROBOT WORKSPACE

COGNITIVE MODEL OF MOBILE ROBOT WORKSPACE COGNITIVE MODEL OF MOBILE ROBOT WORKSPACE Prof.dr.sc. Mladen Crneković, University of Zagreb, FSB, I. Lučića 5, 10000 Zagreb Prof.dr.sc. Davor Zorc, University of Zagreb, FSB, I. Lučića 5, 10000 Zagreb

More information

Cognitive Robotics 2016/2017

Cognitive Robotics 2016/2017 Cognitive Robotics 2016/2017 Course Introduction Matteo Matteucci matteo.matteucci@polimi.it Artificial Intelligence and Robotics Lab - Politecnico di Milano About me and my lectures Lectures given by

More information

PID CONTROL FOR TWO-WHEELED INVERTED PENDULUM (WIP) SYSTEM

PID CONTROL FOR TWO-WHEELED INVERTED PENDULUM (WIP) SYSTEM PID CONTROL FOR TWO-WHEELED INVERTED PENDULUM (WIP) SYSTEM Bogdan Grămescu, Constantin Niţu, Nguyen Su Phuong Phuc, Claudia Irina Borzea University POLITEHNICA of Bucharest 313, Splaiul Independentei,

More information

Robotics Introduction Matteo Matteucci

Robotics Introduction Matteo Matteucci Robotics Introduction About me and my lectures 2 Lectures given by Matteo Matteucci +39 02 2399 3470 matteo.matteucci@polimi.it http://www.deib.polimi.it/ Research Topics Robotics and Autonomous Systems

More information

Displacement Measurement of Burr Arch-Truss Under Dynamic Loading Based on Image Processing Technology

Displacement Measurement of Burr Arch-Truss Under Dynamic Loading Based on Image Processing Technology 6 th International Conference on Advances in Experimental Structural Engineering 11 th International Workshop on Advanced Smart Materials and Smart Structures Technology August 1-2, 2015, University of

More information

CS295-1 Final Project : AIBO

CS295-1 Final Project : AIBO CS295-1 Final Project : AIBO Mert Akdere, Ethan F. Leland December 20, 2005 Abstract This document is the final report for our CS295-1 Sensor Data Management Course Final Project: Project AIBO. The main

More information

Available theses in robotics (March 2018) Prof. Paolo Rocco Prof. Andrea Maria Zanchettin

Available theses in robotics (March 2018) Prof. Paolo Rocco Prof. Andrea Maria Zanchettin Available theses in robotics (March 2018) Prof. Paolo Rocco Prof. Andrea Maria Zanchettin Ergonomic positioning of bulky objects Thesis 1 Robot acts as a 3rd hand for workpiece positioning: Muscular fatigue

More information

TJHSST Senior Research Project Evolving Motor Techniques for Artificial Life

TJHSST Senior Research Project Evolving Motor Techniques for Artificial Life TJHSST Senior Research Project Evolving Motor Techniques for Artificial Life 2007-2008 Kelley Hecker November 2, 2007 Abstract This project simulates evolving virtual creatures in a 3D environment, based

More information

Computer Science. Using neural networks and genetic algorithms in a Pac-man game

Computer Science. Using neural networks and genetic algorithms in a Pac-man game Computer Science Using neural networks and genetic algorithms in a Pac-man game Jaroslav Klíma Candidate D 0771 008 Gymnázium Jura Hronca 2003 Word count: 3959 Jaroslav Klíma D 0771 008 Page 1 Abstract:

More information

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino What is Robotics? Robotics studies robots For history and definitions see the 2013 slides http://www.ladispe.polito.it/corsi/meccatronica/01peeqw/2014-15/slides/robotics_2013_01_a_brief_history.pdf

More information

Detection and Tracking of the Vanishing Point on a Horizon for Automotive Applications

Detection and Tracking of the Vanishing Point on a Horizon for Automotive Applications Detection and Tracking of the Vanishing Point on a Horizon for Automotive Applications Young-Woo Seo and Ragunathan (Raj) Rajkumar GM-CMU Autonomous Driving Collaborative Research Lab Carnegie Mellon University

More information

Experimental investigation of crack in aluminum cantilever beam using vibration monitoring technique

Experimental investigation of crack in aluminum cantilever beam using vibration monitoring technique International Journal of Computational Engineering Research Vol, 04 Issue, 4 Experimental investigation of crack in aluminum cantilever beam using vibration monitoring technique 1, Akhilesh Kumar, & 2,

More information

Key Vocabulary: Wave Interference Standing Wave Node Antinode Harmonic Destructive Interference Constructive Interference

Key Vocabulary: Wave Interference Standing Wave Node Antinode Harmonic Destructive Interference Constructive Interference Key Vocabulary: Wave Interference Standing Wave Node Antinode Harmonic Destructive Interference Constructive Interference 1. Work with two partners. Two will operate the Slinky and one will record the

More information