Synthetic Brains: Update

Size: px
Start display at page:

Download "Synthetic Brains: Update"

Transcription

1 Synthetic Brains: Update Bryan Adams Computer Science and Artificial Intelligence Laboratory (CSAIL) Massachusetts Institute of Technology Project Review January 04 through April 04 Project Status Current research: May 04 to present Short-term objectives Project Future Long-term objectives Talk Outline June 25, 2004 Toyota-MIT Artificial Brains Project 2 1

2 Project Review: Objective Goal: A biologically-inspired robot controller Create robust behavior on a simple robotic platform Discover underlying principles that can be applied to conventional controllers June 25, 2004 Toyota-MIT Artificial Brains Project 3 Project Review: Approach Engineering + Functional + Elegant + Biology + Robust + Adaptive Brittle Limited Synthetic Brains Complex Inefficient June 25, 2004 Toyota-MIT Artificial Brains Project 4 2

3 Project Review: System From January 04: Synthetic Brains Included three biologically-based innovations 1. Genetic Regulatory Network (GRN) 2. Cellular Development 3. Complex Neural Topology June 25, 2004 Toyota-MIT Artificial Brains Project 5 Project Review: April 04 Results Each individual component performed as expected but brains failed to evolve into functional controllers. Impossible to test three experimental systems simultaneously Too much biology, not enough engineering June 25, 2004 Toyota-MIT Artificial Brains Project 6 3

4 Project Review: Accomplishments Other milestones Arm testing platform Simulation Robot GUIs Visualize protein levels Complex neural topologies Thesis proposal June 25, 2004 Developmental Neural Networks for Robust Robotic Behavior Toyota-MIT Artificial Brains Project 7 Talk Outline Project Review January 04 through April 04 Project Status Current research: May 04 to present Short-term objectives Project Future Long-term objectives June 25, 2004 Toyota-MIT Artificial Brains Project 8 4

5 Engineering Practicality Current Research: Task Space (NEAT) (Goal)? Synthetic Brains Biological Fidelity June 25, 2004 Toyota-MIT Artificial Brains Project 9 Engineering: Standard, three-layer neural net + Backwards connections + Improved evolutionary algorithm (speciation, innovation protection) Current Research: NEAT NEAT: NeuroEvolution of Augmented Topologies Biology Direct genetic encoding Static topology Static weights June 25, 2004 Toyota-MIT Artificial Brains Project 10 5

6 Current Research: NEAT Publications Double inverted pole-balancing task (Stanley & Miikkulainen, 2001) Final solution: 4 input nodes, 1 hidden node, 1 output node, 6 links Transfer from simulation to unstable domain (Gomez & Miikkulainen, 2003) Double pole balancing in simulation, evaluated on mathematical model of an unstable system A roving eye for GO (Stanley & Miikkulainen, GECCO 2004) Able to beat Gnugo on 5x5, less effective on 7x7 Competing simulated robot controllers (Stanley & Miikkulainen, 2004) Two simulated Khepera robots compete for food June 25, 2004 Toyota-MIT Artificial Brains Project 11 Current Research: Implementation NEAT Experiment NEAT implementation Robot arm environment Input from camera Output to arm servos Evolved in simulation Used to control robot June 25, 2004 Toyota-MIT Artificial Brains Project 12 6

7 Current Research: NEAT task Track an object in the visual field 1 4 2DOF (pan, tilt) Simulated CMU cam, pointing forward, on the end of the arm 80x143 resolution 15ºhoriz, 20ºvert 2 3 Evaluation: target starts in center, moves diagonally to one quadrant corner, repeat for each corner June 25, 2004 Toyota-MIT Artificial Brains Project 13 Current Research: Fitness Fitness function: ƒ = α {Φ(x pos ) + Φ(y pos ) } β (x dist ) where (x pos, y pos ) is the target s position in the camera s FOV Good Bad Φ(p) = -abs((p-p max )/p max ) + 1 p max = max camera resolution horiz = 80 vert = Φ(p) p max/2 p max June 25, 2004 Toyota-MIT Artificial Brains Project 14 7

8 Current Research: Results NEAT Experiment Results Max Fitness Generations Run 1 (Seed 1234) Run 2 (Seed 2199) Run 3 (Seed 4498) Run 4 (Seed 10000) June 25, 2004 Toyota-MIT Artificial Brains Project 15 Current Research: Results NEAT Experiment Results Mean Fitness Generations Run 1 (Seed 1234) Run 2 (Seed 2199) Run 3 (Seed 4498) Run 4 (Seed 10000) June 25, 2004 Toyota-MIT Artificial Brains Project 16 8

9 Current Research: Winning Network MyNEAT does not have speciation or innovation protection, so nets are not minimal Does reach maximal fitness (marginally better than hand-designed) June 25, 2004 Toyota-MIT Artificial Brains Project 17 Current Research: On the Robot [robot_tracking.avi] June 25, 2004 Toyota-MIT Artificial Brains Project 18 9

10 Project Review January 04 through April 04 Project Status Current research: May 04 to present Short-term objectives Project Future Long-term objectives Talk Outline June 25, 2004 Toyota-MIT Artificial Brains Project 19 Short-term Objectives: NEAT In order to test each part of the experimental system, integrate it with a known system NEAT (Stanley & Miikkulainen, 2001) June 25, 2004 Toyota-MIT Artificial Brains Project 20 10

11 Short-term Objectives: NEATer NEAT for evolutionary robotics (NEATer) NEAT NEATer with GRN NEATer with development NEATer with cell topology June 25, 2004 Toyota-MIT Artificial Brains Project 21 Short-term Objectives: Why NEATer? Although CE (cellular encoding) demonstrates that it is possible to evolve developmental systems, we chose direct encoding for NEAT because, as Braun and Weisbrod (1993) argue, indirect encoding requires more detailed knowledge of genetic and neural mechanisms. In other words, because indirect encodings do not map directly to their phenotypes, they implicitly restrict the search to the class of topologies to which they can be expanded Stanley & Miikkulainen, June 2001 June 25, 2004 Toyota-MIT Artificial Brains Project 22 11

12 Short-term Objectives: Why NEATer? NEATer is an attempt to use more detailed knowledge of genetic and neural mechanisms to expand the class of nets and create robust robotic behavior. June 25, 2004 Toyota-MIT Artificial Brains Project 23 Short-term Objectives: Task Space Engineering Practicality (NEAT) (Goal) NEATer Synthetic Brains Biological Fidelity June 25, 2004 Toyota-MIT Artificial Brains Project 24 12

13 Short-term Objectives: Goals NEAT Efficiency Speed Minimal nets NEATer Robustness Complex behavior Scalability June 25, 2004 Toyota-MIT Artificial Brains Project 25 Short-term Objectives: GRN GRN is decoded into a description of a NEAT network Promoters, Enhancers, Suppressors Protein concentrations create network configuration ugaaugcgcguuaagaga promoter val lys Task: Evolve a controller that is robust to bad lighting, disabled motors, etc. June 25, 2004 Toyota-MIT Artificial Brains Project 26 13

14 Short-term Objectives: Development Developmental step allows prefigured network to change Cells communicate with local (chemical) signaling mechanisms Signals can change weights, topology Task: Evolve a developing controller, turn camera upside down, regain behavior without further evolution June 25, 2004 Toyota-MIT Artificial Brains Project 27 Short-term Objectives: Topology Remove three-layer restriction, give cells large grid Any cell can connect to any other cell Locality: cells have a fixed location, set of neighbors Task: Perform more complex behavior, like tracking two (different) targets of different color June 25, 2004 Toyota-MIT Artificial Brains Project 28 14

15 Project Review January 04 through April 04 Project Status Current research: May 04 to present Short-term objectives Project Future Long-term objectives Talk Outline June 25, 2004 Toyota-MIT Artificial Brains Project 29 Long-term Objectives: NEATer Once the three NEATer experiments have been conducted, the final step will be to integrate them into a single system June 25, 2004 Toyota-MIT Artificial Brains Project 30 15

16 Long-term Objectives: Project Overview An outline of the work to be done between now and October 05 I. Academic a. Literature search / reading b. Qualifying examination c. Thesis proposal d. Doctoral dissertation II. Robotic platform a. Design and fabrication b. Robot chassis and motor system c. Sensors and cameras d. Firmware and drivers III. Software a. Artificial brain modules: i. NEATer with GRN ii. NEATer with development iii. NEATer with topology iv. Synthetic Brains (integrated) b. Simulation and evolution: i. Simulated arm and motors ii. Simulated sensors iii. Evolutionary algorithm June 25, 2004 Toyota-MIT Artificial Brains Project 31 16

Evolutions of communication

Evolutions of communication Evolutions of communication Alex Bell, Andrew Pace, and Raul Santos May 12, 2009 Abstract In this paper a experiment is presented in which two simulated robots evolved a form of communication to allow

More information

Developing Frogger Player Intelligence Using NEAT and a Score Driven Fitness Function

Developing Frogger Player Intelligence Using NEAT and a Score Driven Fitness Function Developing Frogger Player Intelligence Using NEAT and a Score Driven Fitness Function Davis Ancona and Jake Weiner Abstract In this report, we examine the plausibility of implementing a NEAT-based solution

More information

Evolved Neurodynamics for Robot Control

Evolved Neurodynamics for Robot Control Evolved Neurodynamics for Robot Control Frank Pasemann, Martin Hülse, Keyan Zahedi Fraunhofer Institute for Autonomous Intelligent Systems (AiS) Schloss Birlinghoven, D-53754 Sankt Augustin, Germany Abstract

More information

Implicit Fitness Functions for Evolving a Drawing Robot

Implicit Fitness Functions for Evolving a Drawing Robot Implicit Fitness Functions for Evolving a Drawing Robot Jon Bird, Phil Husbands, Martin Perris, Bill Bigge and Paul Brown Centre for Computational Neuroscience and Robotics University of Sussex, Brighton,

More information

Retaining Learned Behavior During Real-Time Neuroevolution

Retaining Learned Behavior During Real-Time Neuroevolution Retaining Learned Behavior During Real-Time Neuroevolution Thomas D Silva, Roy Janik, Michael Chrien, Kenneth O. Stanley and Risto Miikkulainen Department of Computer Sciences University of Texas at Austin

More information

Evolving High-Dimensional, Adaptive Camera-Based Speed Sensors

Evolving High-Dimensional, Adaptive Camera-Based Speed Sensors In: M.H. Hamza (ed.), Proceedings of the 21st IASTED Conference on Applied Informatics, pp. 1278-128. Held February, 1-1, 2, Insbruck, Austria Evolving High-Dimensional, Adaptive Camera-Based Speed Sensors

More information

The Behavior Evolving Model and Application of Virtual Robots

The Behavior Evolving Model and Application of Virtual Robots The Behavior Evolving Model and Application of Virtual Robots Suchul Hwang Kyungdal Cho V. Scott Gordon Inha Tech. College Inha Tech College CSUS, Sacramento 253 Yonghyundong Namku 253 Yonghyundong Namku

More information

Evolutionary Computation for Creativity and Intelligence. By Darwin Johnson, Alice Quintanilla, and Isabel Tweraser

Evolutionary Computation for Creativity and Intelligence. By Darwin Johnson, Alice Quintanilla, and Isabel Tweraser Evolutionary Computation for Creativity and Intelligence By Darwin Johnson, Alice Quintanilla, and Isabel Tweraser Introduction to NEAT Stands for NeuroEvolution of Augmenting Topologies (NEAT) Evolves

More information

Neuroevolution. Evolving Neural Networks. Today s Main Topic. Why Neuroevolution?

Neuroevolution. Evolving Neural Networks. Today s Main Topic. Why Neuroevolution? Today s Main Topic Neuroevolution CSCE Neuroevolution slides are from Risto Miikkulainen s tutorial at the GECCO conference, with slight editing. Neuroevolution: Evolve artificial neural networks to control

More information

Neuro-Evolution Through Augmenting Topologies Applied To Evolving Neural Networks To Play Othello

Neuro-Evolution Through Augmenting Topologies Applied To Evolving Neural Networks To Play Othello Neuro-Evolution Through Augmenting Topologies Applied To Evolving Neural Networks To Play Othello Timothy Andersen, Kenneth O. Stanley, and Risto Miikkulainen Department of Computer Sciences University

More information

HyperNEAT-GGP: A HyperNEAT-based Atari General Game Player. Matthew Hausknecht, Piyush Khandelwal, Risto Miikkulainen, Peter Stone

HyperNEAT-GGP: A HyperNEAT-based Atari General Game Player. Matthew Hausknecht, Piyush Khandelwal, Risto Miikkulainen, Peter Stone -GGP: A -based Atari General Game Player Matthew Hausknecht, Piyush Khandelwal, Risto Miikkulainen, Peter Stone Motivation Create a General Video Game Playing agent which learns from visual representations

More information

Reactive Planning with Evolutionary Computation

Reactive Planning with Evolutionary Computation Reactive Planning with Evolutionary Computation Chaiwat Jassadapakorn and Prabhas Chongstitvatana Intelligent System Laboratory, Department of Computer Engineering Chulalongkorn University, Bangkok 10330,

More information

Efficient Evaluation Functions for Multi-Rover Systems

Efficient Evaluation Functions for Multi-Rover Systems Efficient Evaluation Functions for Multi-Rover Systems Adrian Agogino 1 and Kagan Tumer 2 1 University of California Santa Cruz, NASA Ames Research Center, Mailstop 269-3, Moffett Field CA 94035, USA,

More information

Online Interactive Neuro-evolution

Online Interactive Neuro-evolution Appears in Neural Processing Letters, 1999. Online Interactive Neuro-evolution Adrian Agogino (agogino@ece.utexas.edu) Kenneth Stanley (kstanley@cs.utexas.edu) Risto Miikkulainen (risto@cs.utexas.edu)

More information

Neural Network Principles By Robert L. Harvey

Neural Network Principles By Robert L. Harvey Neural Network Principles By Robert L. Harvey 0130633305 - Neural Network Principles by Harvey, - Neural Network Principles by Robert L. Harvey and a great selection of similar Used, New and Collectible

More information

! The architecture of the robot control system! Also maybe some aspects of its body/motors/sensors

! The architecture of the robot control system! Also maybe some aspects of its body/motors/sensors Towards the more concrete end of the Alife spectrum is robotics. Alife -- because it is the attempt to synthesise -- at some level -- 'lifelike behaviour. AI is often associated with a particular style

More information

Evolutionary robotics Jørgen Nordmoen

Evolutionary robotics Jørgen Nordmoen INF3480 Evolutionary robotics Jørgen Nordmoen Slides: Kyrre Glette Today: Evolutionary robotics Why evolutionary robotics Basics of evolutionary optimization INF3490 will discuss algorithms in detail Illustrating

More information

Swarm Intelligence W7: Application of Machine- Learning Techniques to Automatic Control Design and Optimization

Swarm Intelligence W7: Application of Machine- Learning Techniques to Automatic Control Design and Optimization Swarm Intelligence W7: Application of Machine- Learning Techniques to Automatic Control Design and Optimization Learning to avoid obstacles Outline Problem encoding using GA and ANN Floreano and Mondada

More information

The Dominance Tournament Method of Monitoring Progress in Coevolution

The Dominance Tournament Method of Monitoring Progress in Coevolution To appear in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2002) Workshop Program. San Francisco, CA: Morgan Kaufmann The Dominance Tournament Method of Monitoring Progress

More information

SWARM INTELLIGENCE. Mario Pavone Department of Mathematics & Computer Science University of Catania

SWARM INTELLIGENCE. Mario Pavone Department of Mathematics & Computer Science University of Catania Worker Ant #1: I'm lost! Where's the line? What do I do? Worker Ant #2: Help! Worker Ant #3: We'll be stuck here forever! Mr. Soil: Do not panic, do not panic. We are trained professionals. Now, stay calm.

More information

Neuro-Fuzzy and Soft Computing: Fuzzy Sets. Chapter 1 of Neuro-Fuzzy and Soft Computing by Jang, Sun and Mizutani

Neuro-Fuzzy and Soft Computing: Fuzzy Sets. Chapter 1 of Neuro-Fuzzy and Soft Computing by Jang, Sun and Mizutani Chapter 1 of Neuro-Fuzzy and Soft Computing by Jang, Sun and Mizutani Outline Introduction Soft Computing (SC) vs. Conventional Artificial Intelligence (AI) Neuro-Fuzzy (NF) and SC Characteristics 2 Introduction

More information

Reinforcement Learning in Games Autonomous Learning Systems Seminar

Reinforcement Learning in Games Autonomous Learning Systems Seminar Reinforcement Learning in Games Autonomous Learning Systems Seminar Matthias Zöllner Intelligent Autonomous Systems TU-Darmstadt zoellner@rbg.informatik.tu-darmstadt.de Betreuer: Gerhard Neumann Abstract

More information

Evolving a Real-World Vehicle Warning System

Evolving a Real-World Vehicle Warning System Evolving a Real-World Vehicle Warning System Nate Kohl Department of Computer Sciences University of Texas at Austin 1 University Station, C0500 Austin, TX 78712-0233 nate@cs.utexas.edu Kenneth Stanley

More information

GPU Computing for Cognitive Robotics

GPU Computing for Cognitive Robotics GPU Computing for Cognitive Robotics Martin Peniak, Davide Marocco, Angelo Cangelosi GPU Technology Conference, San Jose, California, 25 March, 2014 Acknowledgements This study was financed by: EU Integrating

More information

CS 229 Final Project: Using Reinforcement Learning to Play Othello

CS 229 Final Project: Using Reinforcement Learning to Play Othello CS 229 Final Project: Using Reinforcement Learning to Play Othello Kevin Fry Frank Zheng Xianming Li ID: kfry ID: fzheng ID: xmli 16 December 2016 Abstract We built an AI that learned to play Othello.

More information

Evolving robots to play dodgeball

Evolving robots to play dodgeball Evolving robots to play dodgeball Uriel Mandujano and Daniel Redelmeier Abstract In nearly all videogames, creating smart and complex artificial agents helps ensure an enjoyable and challenging player

More information

SMARTER NEAT NETS. A Thesis. presented to. the Faculty of California Polytechnic State University. San Luis Obispo. In Partial Fulfillment

SMARTER NEAT NETS. A Thesis. presented to. the Faculty of California Polytechnic State University. San Luis Obispo. In Partial Fulfillment SMARTER NEAT NETS A Thesis presented to the Faculty of California Polytechnic State University San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Master of Science in Computer Science

More information

Behaviour Patterns Evolution on Individual and Group Level. Stanislav Slušný, Roman Neruda, Petra Vidnerová. CIMMACS 07, December 14, Tenerife

Behaviour Patterns Evolution on Individual and Group Level. Stanislav Slušný, Roman Neruda, Petra Vidnerová. CIMMACS 07, December 14, Tenerife Behaviour Patterns Evolution on Individual and Group Level Stanislav Slušný, Roman Neruda, Petra Vidnerová Department of Theoretical Computer Science Institute of Computer Science Academy of Science of

More information

RISTO MIIKKULAINEN, SENTIENT (HTTP://VENTUREBEAT.COM/AUTHOR/RISTO-MIIKKULAINEN- SATIENT/) APRIL 3, :23 PM

RISTO MIIKKULAINEN, SENTIENT (HTTP://VENTUREBEAT.COM/AUTHOR/RISTO-MIIKKULAINEN- SATIENT/) APRIL 3, :23 PM 1,2 Guest Machines are becoming more creative than humans RISTO MIIKKULAINEN, SENTIENT (HTTP://VENTUREBEAT.COM/AUTHOR/RISTO-MIIKKULAINEN- SATIENT/) APRIL 3, 2016 12:23 PM TAGS: ARTIFICIAL INTELLIGENCE

More information

Evolving CAM-Brain to control a mobile robot

Evolving CAM-Brain to control a mobile robot Applied Mathematics and Computation 111 (2000) 147±162 www.elsevier.nl/locate/amc Evolving CAM-Brain to control a mobile robot Sung-Bae Cho *, Geum-Beom Song Department of Computer Science, Yonsei University,

More information

Curiosity as a Survival Technique

Curiosity as a Survival Technique Curiosity as a Survival Technique Amber Viescas Department of Computer Science Swarthmore College Swarthmore, PA 19081 aviesca1@cs.swarthmore.edu Anne-Marie Frassica Department of Computer Science Swarthmore

More information

Dipartimento di Elettronica Informazione e Bioingegneria Robotics

Dipartimento di Elettronica Informazione e Bioingegneria Robotics Dipartimento di Elettronica Informazione e Bioingegneria Robotics Behavioral robotics @ 2014 Behaviorism behave is what organisms do Behaviorism is built on this assumption, and its goal is to promote

More information

In cooperative robotics, the group of robots have the same goals, and thus it is

In cooperative robotics, the group of robots have the same goals, and thus it is Brian Bairstow 16.412 Problem Set #1 Part A: Cooperative Robotics In cooperative robotics, the group of robots have the same goals, and thus it is most efficient if they work together to achieve those

More information

LEARNABLE BUDDY: LEARNABLE SUPPORTIVE AI IN COMMERCIAL MMORPG

LEARNABLE BUDDY: LEARNABLE SUPPORTIVE AI IN COMMERCIAL MMORPG LEARNABLE BUDDY: LEARNABLE SUPPORTIVE AI IN COMMERCIAL MMORPG Theppatorn Rhujittawiwat and Vishnu Kotrajaras Department of Computer Engineering Chulalongkorn University, Bangkok, Thailand E-mail: g49trh@cp.eng.chula.ac.th,

More information

Biologically Inspired Embodied Evolution of Survival

Biologically Inspired Embodied Evolution of Survival Biologically Inspired Embodied Evolution of Survival Stefan Elfwing 1,2 Eiji Uchibe 2 Kenji Doya 2 Henrik I. Christensen 1 1 Centre for Autonomous Systems, Numerical Analysis and Computer Science, Royal

More information

Award Ellbogen Next Generation Program Sept Grant awarded to the Laramie Robotics Club, obtained as Treasurer,

Award Ellbogen Next Generation Program Sept Grant awarded to the Laramie Robotics Club, obtained as Treasurer, Name Joost Huizinga Address 3918 Fulton Street Apartment 1 San Francisco, California, 94118 Phone +1 (307) 460 1368 E-mail joost.hui@gmail.com Date of Birth 03-08-1986 Education Program Ph. D. Computer

More information

Service Robots in an Intelligent House

Service Robots in an Intelligent House Service Robots in an Intelligent House Jesus Savage Bio-Robotics Laboratory biorobotics.fi-p.unam.mx School of Engineering Autonomous National University of Mexico UNAM 2017 OUTLINE Introduction A System

More information

Subsumption Architecture in Swarm Robotics. Cuong Nguyen Viet 16/11/2015

Subsumption Architecture in Swarm Robotics. Cuong Nguyen Viet 16/11/2015 Subsumption Architecture in Swarm Robotics Cuong Nguyen Viet 16/11/2015 1 Table of content Motivation Subsumption Architecture Background Architecture decomposition Implementation Swarm robotics Swarm

More information

Approaches to Dynamic Team Sizes

Approaches to Dynamic Team Sizes Approaches to Dynamic Team Sizes G. S. Nitschke Department of Computer Science University of Cape Town Cape Town, South Africa Email: gnitschke@cs.uct.ac.za S. M. Tolkamp Department of Computer Science

More information

How the Body Shapes the Way We Think

How the Body Shapes the Way We Think How the Body Shapes the Way We Think A New View of Intelligence Rolf Pfeifer and Josh Bongard with a contribution by Simon Grand Foreword by Rodney Brooks Illustrations by Shun Iwasawa A Bradford Book

More information

MINE 432 Industrial Automation and Robotics

MINE 432 Industrial Automation and Robotics MINE 432 Industrial Automation and Robotics Part 3, Lecture 5 Overview of Artificial Neural Networks A. Farzanegan (Visiting Associate Professor) Fall 2014 Norman B. Keevil Institute of Mining Engineering

More information

Multi-Robot Coordination. Chapter 11

Multi-Robot Coordination. Chapter 11 Multi-Robot Coordination Chapter 11 Objectives To understand some of the problems being studied with multiple robots To understand the challenges involved with coordinating robots To investigate a simple

More information

Embodiment from Engineer s Point of View

Embodiment from Engineer s Point of View New Trends in CS Embodiment from Engineer s Point of View Andrej Lúčny Department of Applied Informatics FMFI UK Bratislava lucny@fmph.uniba.sk www.microstep-mis.com/~andy 1 Cognitivism Cognitivism is

More information

10/4/10. An overview using Alan Turing s Forgotten Ideas in Computer Science as well as sources listed on last slide.

10/4/10. An overview using Alan Turing s Forgotten Ideas in Computer Science as well as sources listed on last slide. Well known for the machine, test and thesis that bear his name, the British genius also anticipated neural- network computers and hyper- computation. An overview using Alan Turing s Forgotten Ideas in

More information

UNIVERSIDAD CARLOS III DE MADRID ESCUELA POLITÉCNICA SUPERIOR

UNIVERSIDAD CARLOS III DE MADRID ESCUELA POLITÉCNICA SUPERIOR UNIVERSIDAD CARLOS III DE MADRID ESCUELA POLITÉCNICA SUPERIOR TRABAJO DE FIN DE GRADO GRADO EN INGENIERÍA DE SISTEMAS DE COMUNICACIONES CONTROL CENTRALIZADO DE FLOTAS DE ROBOTS CENTRALIZED CONTROL FOR

More information

Distributed Robotics From Science to Systems

Distributed Robotics From Science to Systems Distributed Robotics From Science to Systems Nikolaus Correll Distributed Robotics Laboratory, CSAIL, MIT August 8, 2008 Distributed Robotic Systems DRS 1 sensor 1 actuator... 1 device Applications Giant,

More information

THE EFFECT OF CHANGE IN EVOLUTION PARAMETERS ON EVOLUTIONARY ROBOTS

THE EFFECT OF CHANGE IN EVOLUTION PARAMETERS ON EVOLUTIONARY ROBOTS THE EFFECT OF CHANGE IN EVOLUTION PARAMETERS ON EVOLUTIONARY ROBOTS Shanker G R Prabhu*, Richard Seals^ University of Greenwich Dept. of Engineering Science Chatham, Kent, UK, ME4 4TB. +44 (0) 1634 88

More information

Advanced Robotics and Intelligent Control Avancerad robotik och intelligenta styrsystem

Advanced Robotics and Intelligent Control Avancerad robotik och intelligenta styrsystem Advanced Robotics and Intelligent Control Avancerad robotik och intelligenta styrsystem ELAD16 Associate Professor (Docent) KARLSTAD UNIVERSITY Faculty of Technology and Science Department of Physics and

More information

Visual Interpretation of Hand Gestures as a Practical Interface Modality

Visual Interpretation of Hand Gestures as a Practical Interface Modality Visual Interpretation of Hand Gestures as a Practical Interface Modality Frederik C. M. Kjeldsen Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate

More information

CYCLIC GENETIC ALGORITHMS FOR EVOLVING MULTI-LOOP CONTROL PROGRAMS

CYCLIC GENETIC ALGORITHMS FOR EVOLVING MULTI-LOOP CONTROL PROGRAMS CYCLIC GENETIC ALGORITHMS FOR EVOLVING MULTI-LOOP CONTROL PROGRAMS GARY B. PARKER, CONNECTICUT COLLEGE, USA, parker@conncoll.edu IVO I. PARASHKEVOV, CONNECTICUT COLLEGE, USA, iipar@conncoll.edu H. JOSEPH

More information

Spatial Computing, Synthetic Biology, and Emerging IP Challenges. Jacob Beal November, 2010

Spatial Computing, Synthetic Biology, and Emerging IP Challenges. Jacob Beal November, 2010 Spatial Computing, Synthetic Biology, and Emerging IP Challenges Jacob Beal November, 2010 Spatial Computers Robot Swarms Reconfigurable Computing Biological Computing Cells during Morphogenesis Sensor

More information

Evolution of Sensor Suites for Complex Environments

Evolution of Sensor Suites for Complex Environments Evolution of Sensor Suites for Complex Environments Annie S. Wu, Ayse S. Yilmaz, and John C. Sciortino, Jr. Abstract We present a genetic algorithm (GA) based decision tool for the design and configuration

More information

A Divide-and-Conquer Approach to Evolvable Hardware

A Divide-and-Conquer Approach to Evolvable Hardware A Divide-and-Conquer Approach to Evolvable Hardware Jim Torresen Department of Informatics, University of Oslo, PO Box 1080 Blindern N-0316 Oslo, Norway E-mail: jimtoer@idi.ntnu.no Abstract. Evolvable

More information

IMPROVING TOWER DEFENSE GAME AI (DIFFERENTIAL EVOLUTION VS EVOLUTIONARY PROGRAMMING) CHEAH KEEI YUAN

IMPROVING TOWER DEFENSE GAME AI (DIFFERENTIAL EVOLUTION VS EVOLUTIONARY PROGRAMMING) CHEAH KEEI YUAN IMPROVING TOWER DEFENSE GAME AI (DIFFERENTIAL EVOLUTION VS EVOLUTIONARY PROGRAMMING) CHEAH KEEI YUAN FACULTY OF COMPUTING AND INFORMATICS UNIVERSITY MALAYSIA SABAH 2014 ABSTRACT The use of Artificial Intelligence

More information

arxiv: v1 [cs.ne] 3 May 2018

arxiv: v1 [cs.ne] 3 May 2018 VINE: An Open Source Interactive Data Visualization Tool for Neuroevolution Uber AI Labs San Francisco, CA 94103 {ruiwang,jeffclune,kstanley}@uber.com arxiv:1805.01141v1 [cs.ne] 3 May 2018 ABSTRACT Recent

More information

Behavior Emergence in Autonomous Robot Control by Means of Feedforward and Recurrent Neural Networks

Behavior Emergence in Autonomous Robot Control by Means of Feedforward and Recurrent Neural Networks Behavior Emergence in Autonomous Robot Control by Means of Feedforward and Recurrent Neural Networks Stanislav Slušný, Petra Vidnerová, Roman Neruda Abstract We study the emergence of intelligent behavior

More information

Available online at ScienceDirect. Procedia Computer Science 24 (2013 )

Available online at   ScienceDirect. Procedia Computer Science 24 (2013 ) Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 24 (2013 ) 158 166 17th Asia Pacific Symposium on Intelligent and Evolutionary Systems, IES2013 The Automated Fault-Recovery

More information

Understanding Coevolution

Understanding Coevolution Understanding Coevolution Theory and Analysis of Coevolutionary Algorithms R. Paul Wiegand Kenneth A. De Jong paul@tesseract.org kdejong@.gmu.edu ECLab Department of Computer Science George Mason University

More information

RoboCup. Presented by Shane Murphy April 24, 2003

RoboCup. Presented by Shane Murphy April 24, 2003 RoboCup Presented by Shane Murphy April 24, 2003 RoboCup: : Today and Tomorrow What we have learned Authors Minoru Asada (Osaka University, Japan), Hiroaki Kitano (Sony CS Labs, Japan), Itsuki Noda (Electrotechnical(

More information

Learning Behaviors for Environment Modeling by Genetic Algorithm

Learning Behaviors for Environment Modeling by Genetic Algorithm Learning Behaviors for Environment Modeling by Genetic Algorithm Seiji Yamada Department of Computational Intelligence and Systems Science Interdisciplinary Graduate School of Science and Engineering Tokyo

More information

Chapter 1: Introduction to Neuro-Fuzzy (NF) and Soft Computing (SC)

Chapter 1: Introduction to Neuro-Fuzzy (NF) and Soft Computing (SC) Chapter 1: Introduction to Neuro-Fuzzy (NF) and Soft Computing (SC) Introduction (1.1) SC Constituants and Conventional Artificial Intelligence (AI) (1.2) NF and SC Characteristics (1.3) Jyh-Shing Roger

More information

Co-evolution for Communication: An EHW Approach

Co-evolution for Communication: An EHW Approach Journal of Universal Computer Science, vol. 13, no. 9 (2007), 1300-1308 submitted: 12/6/06, accepted: 24/10/06, appeared: 28/9/07 J.UCS Co-evolution for Communication: An EHW Approach Yasser Baleghi Damavandi,

More information

Electronic Design of a Semi-Automated Micromanipulator Cell Injection System

Electronic Design of a Semi-Automated Micromanipulator Cell Injection System Electronic Design of a Semi-Automated Micromanipulator Cell Injection System Asad Hameed 1, Nabeel Kamal 1, Saad Qaiser 1, Osman Hasan 1, Nasir Jalal 2 1 National University of Sciences and Technology

More information

Encouraging Creative Thinking in Robots Improves Their Ability to Solve Challenging Problems

Encouraging Creative Thinking in Robots Improves Their Ability to Solve Challenging Problems Encouraging Creative Thinking in Robots Improves Their Ability to Solve Challenging Problems Jingyu Li Evolving AI Lab Computer Science Dept. University of Wyoming Laramie High School jingyuli@mit.edu

More information

In vivo, in silico, in machina: ants and robots balance memory and communication to collectively exploit information

In vivo, in silico, in machina: ants and robots balance memory and communication to collectively exploit information In vivo, in silico, in machina: ants and robots balance memory and communication to collectively exploit information Melanie E. Moses, Kenneth Letendre, Joshua P. Hecker, Tatiana P. Flanagan Department

More information

RoboPatriots: George Mason University 2009 RoboCup Team

RoboPatriots: George Mason University 2009 RoboCup Team RoboPatriots: George Mason University 2009 RoboCup Team Keith Sullivan, Christopher Vo, Brian Hrolenok, and Sean Luke Department of Computer Science, George Mason University 4400 University Drive MSN 4A5,

More information

Wireless Robust Robots for Application in Hostile Agricultural. environment.

Wireless Robust Robots for Application in Hostile Agricultural. environment. Wireless Robust Robots for Application in Hostile Agricultural Environment A.R. Hirakawa, A.M. Saraiva, C.E. Cugnasca Agricultural Automation Laboratory, Computer Engineering Department Polytechnic School,

More information

Artificial Intelligence: An overview

Artificial Intelligence: An overview Artificial Intelligence: An overview Thomas Trappenberg January 4, 2009 Based on the slides provided by Russell and Norvig, Chapter 1 & 2 What is AI? Systems that think like humans Systems that act like

More information

ZZZ (Advisor: Dr. A.A. Rodriguez, Electrical Engineering)

ZZZ (Advisor: Dr. A.A. Rodriguez, Electrical Engineering) Using a Fleet of Low-Cost Ground Robotic Vehicles to Play Complex Games: Development of an Artificial Intelligence (AI) Vehicle Fleet Coordination Engine GOALS. The proposed research shall focus on developing

More information

Body articulation Obstacle sensor00

Body articulation Obstacle sensor00 Leonardo and Discipulus Simplex: An Autonomous, Evolvable Six-Legged Walking Robot Gilles Ritter, Jean-Michel Puiatti, and Eduardo Sanchez Logic Systems Laboratory, Swiss Federal Institute of Technology,

More information

Adaptive Humanoid Robot Arm Motion Generation by Evolved Neural Controllers

Adaptive Humanoid Robot Arm Motion Generation by Evolved Neural Controllers Proceedings of the 3 rd International Conference on Mechanical Engineering and Mechatronics Prague, Czech Republic, August 14-15, 2014 Paper No. 170 Adaptive Humanoid Robot Arm Motion Generation by Evolved

More information

Evolutionary Robotics

Evolutionary Robotics Evolutionary Robotics The Use of Artificial Evolution in Robotics A tutorial presented at Ro-Man 2007 Mattias Wahde Technical Report TR-BBR-2007-001 Department of Applied Mechanics Chalmers University

More information

THE WORLD video game market in 2002 was valued

THE WORLD video game market in 2002 was valued IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 6, DECEMBER 2005 653 Real-Time Neuroevolution in the NERO Video Game Kenneth O. Stanley, Bobby D. Bryant, Student Member, IEEE, and Risto Miikkulainen

More information

MA/CS 109 Computer Science Lectures. Wayne Snyder Computer Science Department Boston University

MA/CS 109 Computer Science Lectures. Wayne Snyder Computer Science Department Boston University MA/CS 109 Lectures Wayne Snyder Department Boston University Today Artiificial Intelligence: Pro and Con Friday 12/9 AI Pro and Con continued The future of AI Artificial Intelligence Artificial Intelligence

More information

Curriculum Vitae. Department of Computer and Information Sciences The Norwegian University of Science and Technology (NTNU) 7034 Trondheim Norway

Curriculum Vitae. Department of Computer and Information Sciences The Norwegian University of Science and Technology (NTNU) 7034 Trondheim Norway Curriculum Vitae General Information Name: Keith Linn Downing Birthdate: July 1, 1961 Nationality: United States Citizen Occupation: Professor of Computer Science Address: Phone: +47 73 59 02 71 Email:

More information

Hierarchical Controller for Robotic Soccer

Hierarchical Controller for Robotic Soccer Hierarchical Controller for Robotic Soccer Byron Knoll Cognitive Systems 402 April 13, 2008 ABSTRACT RoboCup is an initiative aimed at advancing Artificial Intelligence (AI) and robotics research. This

More information

Evolutionary Electronics

Evolutionary Electronics Evolutionary Electronics 1 Introduction Evolutionary Electronics (EE) is defined as the application of evolutionary techniques to the design (synthesis) of electronic circuits Evolutionary algorithm (schematic)

More information

Coevolution of Heterogeneous Multi-Robot Teams

Coevolution of Heterogeneous Multi-Robot Teams Coevolution of Heterogeneous Multi-Robot Teams Matt Knudson Oregon State University Corvallis, OR, 97331 knudsonm@engr.orst.edu Kagan Tumer Oregon State University Corvallis, OR, 97331 kagan.tumer@oregonstate.edu

More information

On-demand printable robots

On-demand printable robots On-demand printable robots Ankur Mehta Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology 3 Computational problem? 4 Physical problem? There s a robot for that.

More information

Impact of Neuron Models and Network Structure on Evolving Modular Robot Neural Network Controllers

Impact of Neuron Models and Network Structure on Evolving Modular Robot Neural Network Controllers Impact of Neuron Models and Network Structure on Evolving Modular Robot Neural Network Controllers ABSTRACT Leo Cazenille TAO/LRI Univ. Paris-Sud, CNRS, INRIA F-91405 Orsay, France leo.cazenille@lri.fr

More information

ARTIFICIAL INTELLIGENCE IN POWER SYSTEMS

ARTIFICIAL INTELLIGENCE IN POWER SYSTEMS ARTIFICIAL INTELLIGENCE IN POWER SYSTEMS Prof.Somashekara Reddy 1, Kusuma S 2 1 Department of MCA, NHCE Bangalore, India 2 Kusuma S, Department of MCA, NHCE Bangalore, India Abstract: Artificial Intelligence

More information

Nature Inspired Systems

Nature Inspired Systems Nature Inspired Systems Mark Shackleton Intelligent Systems Lab BTexact, Adastral Park, UK 12th April 2002 mark.shackleton@bt.com Overview of this presentation BTexact Intelligent Systems Lab Nature Inspired

More information

Efficient Learning in Cellular Simultaneous Recurrent Neural Networks - The Case of Maze Navigation Problem

Efficient Learning in Cellular Simultaneous Recurrent Neural Networks - The Case of Maze Navigation Problem Efficient Learning in Cellular Simultaneous Recurrent Neural Networks - The Case of Maze Navigation Problem Roman Ilin Department of Mathematical Sciences The University of Memphis Memphis, TN 38117 E-mail:

More information

Evolutionary Neural Network for Othello Game

Evolutionary Neural Network for Othello Game Available online at www.sciencedirect.com Procedia - Social and Behavioral Sciences 57 ( 2012 ) 419 425 International Conference on Asia Pacific Business Innovation and Technology Management Evolutionary

More information

UT^2: Human-like Behavior via Neuroevolution of Combat Behavior and Replay of Human Traces

UT^2: Human-like Behavior via Neuroevolution of Combat Behavior and Replay of Human Traces UT^2: Human-like Behavior via Neuroevolution of Combat Behavior and Replay of Human Traces Jacob Schrum, Igor Karpov, and Risto Miikkulainen {schrum2,ikarpov,risto}@cs.utexas.edu Our Approach: UT^2 Evolve

More information

Cooperative Behavior Acquisition in A Multiple Mobile Robot Environment by Co-evolution

Cooperative Behavior Acquisition in A Multiple Mobile Robot Environment by Co-evolution Cooperative Behavior Acquisition in A Multiple Mobile Robot Environment by Co-evolution Eiji Uchibe, Masateru Nakamura, Minoru Asada Dept. of Adaptive Machine Systems, Graduate School of Eng., Osaka University,

More information

Neuro-evolution in Zero-Sum Perfect Information Games on the Android OS

Neuro-evolution in Zero-Sum Perfect Information Games on the Android OS DOI: 10.2478/v10324-012-0013-4 Analele Universităţii de Vest, Timişoara Seria Matematică Informatică L, 2, (2012), 27 43 Neuro-evolution in Zero-Sum Perfect Information Games on the Android OS Gabriel

More information

Welcome to EGN-1935: Electrical & Computer Engineering (Ad)Ventures

Welcome to EGN-1935: Electrical & Computer Engineering (Ad)Ventures : ECE (Ad)Ventures Welcome to -: Electrical & Computer Engineering (Ad)Ventures This is the first Educational Technology Class in UF s ECE Department We are Dr. Schwartz and Dr. Arroyo. University of Florida,

More information

Robot Olympics: Programming Robots to Perform Tasks in the Real World

Robot Olympics: Programming Robots to Perform Tasks in the Real World Robot Olympics: Programming Robots to Perform Tasks in the Real World Coranne Lipford Faculty of Computer Science Dalhousie University, Canada lipford@cs.dal.ca Raymond Walsh Faculty of Computer Science

More information

Copyright by Aravind Gowrisankar 2008

Copyright by Aravind Gowrisankar 2008 Copyright by Aravind Gowrisankar 2008 EVOLVING CONTROLLERS FOR SIMULATED CAR RACING USING NEUROEVOLUTION by Aravind Gowrisankar, B.E. THESIS Presented to the Faculty of the Graduate School of The University

More information

A Numerical Approach to Understanding Oscillator Neural Networks

A Numerical Approach to Understanding Oscillator Neural Networks A Numerical Approach to Understanding Oscillator Neural Networks Natalie Klein Mentored by Jon Wilkins Networks of coupled oscillators are a form of dynamical network originally inspired by various biological

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Lecture 01 - Introduction Edirlei Soares de Lima What is Artificial Intelligence? Artificial intelligence is about making computers able to perform the

More information

Constructing Complex NPC Behavior via Multi-Objective Neuroevolution

Constructing Complex NPC Behavior via Multi-Objective Neuroevolution Proceedings of the Fourth Artificial Intelligence and Interactive Digital Entertainment Conference Constructing Complex NPC Behavior via Multi-Objective Neuroevolution Jacob Schrum and Risto Miikkulainen

More information

The Khepera Robot and the krobot Class: A Platform for Introducing Robotics in the Undergraduate Curriculum i

The Khepera Robot and the krobot Class: A Platform for Introducing Robotics in the Undergraduate Curriculum i The Khepera Robot and the krobot Class: A Platform for Introducing Robotics in the Undergraduate Curriculum i Robert M. Harlan David B. Levine Shelley McClarigan Computer Science Department St. Bonaventure

More information

Representation Learning for Mobile Robots in Dynamic Environments

Representation Learning for Mobile Robots in Dynamic Environments Representation Learning for Mobile Robots in Dynamic Environments Olivia Michael Supervised by A/Prof. Oliver Obst Western Sydney University Vacation Research Scholarships are funded jointly by the Department

More information

Behaviour-Based Control. IAR Lecture 5 Barbara Webb

Behaviour-Based Control. IAR Lecture 5 Barbara Webb Behaviour-Based Control IAR Lecture 5 Barbara Webb Traditional sense-plan-act approach suggests a vertical (serial) task decomposition Sensors Actuators perception modelling planning task execution motor

More information

Analysing and Exploiting Transitivity to Coevolve Neural Network Backgammon Players

Analysing and Exploiting Transitivity to Coevolve Neural Network Backgammon Players Analysing and Exploiting Transitivity to Coevolve Neural Network Backgammon Players Mete Çakman Dissertation for Master of Science in Artificial Intelligence and Gaming Universiteit van Amsterdam August

More information

Sebastian Risi. Joel Lehman. David B. D Ambrosio Kenneth O. Stanley ABSTRACT

Sebastian Risi. Joel Lehman. David B. D Ambrosio Kenneth O. Stanley ABSTRACT Automatically Categorizing Procedurally Generated Content for Collecting Games In: Proceedings of the Workshop on Procedural Content Generation in Games (PCG) at the 9th International Conference on the

More information

Learning and Using Models of Kicking Motions for Legged Robots

Learning and Using Models of Kicking Motions for Legged Robots Learning and Using Models of Kicking Motions for Legged Robots Sonia Chernova and Manuela Veloso Computer Science Department Carnegie Mellon University Pittsburgh, PA 15213 {soniac, mmv}@cs.cmu.edu Abstract

More information

PICK AND PLACE HUMANOID ROBOT USING RASPBERRY PI AND ARDUINO FOR INDUSTRIAL APPLICATIONS

PICK AND PLACE HUMANOID ROBOT USING RASPBERRY PI AND ARDUINO FOR INDUSTRIAL APPLICATIONS PICK AND PLACE HUMANOID ROBOT USING RASPBERRY PI AND ARDUINO FOR INDUSTRIAL APPLICATIONS Bernard Franklin 1, Sachin.P 2, Jagadish.S 3, Shaista Noor 4, Rajashekhar C. Biradar 5 1,2,3,4,5 School of Electronics

More information