Cryogenic Testing of Superconducting Corrector Magnets for the LHC Main Dipole

Size: px
Start display at page:

Download "Cryogenic Testing of Superconducting Corrector Magnets for the LHC Main Dipole"

Transcription

1 Cryogenic Testing of Superconducting Corrector Magnets for the LHC Main Dipole A.M. Puntambekar SC Tech Lab, AAMD Div. Raja Ramanna Centre For Advanced Technology, Indore Workshop on Cryogenic Science & Technology, April 2006 Inter-University Accelerator Centre, New Delhi

2 Introduction Out line Magnet Specification Cryogenic testing Acceptance criteria 4.2 K Test facility Improving productivity Test Results

3 Sextupole Corrector Magnet (MCS) Decapole Corrector Magnet (MCD) Octupole Corrector Insert (MCO)

4 LHC String test assembly Spool correctors inside cold mass MCS and MCDO (Inside) Function To correct the systematic field errors of the LHC Main Dipole They Share the same cryostat as that of Main Dipole Their proper functioning is as important as Main Dipole

5 Sextupole Corrector Magnet (MCS) Qty 1232 nos MCS

6 Decapole Octupole Corrector Magnet (MCDO) Qty 616 Nos MCDO

7 Prototype Development at RRCAT, Indore Tooling Different Critical components Coil winding machine, Manual & Automatic Ultrasonic welding machine Prototype cryogenic test facility

8 Transfer of technology to Indian industry for series production SC Magnet production facility in an Indian industry Clean area 1000 Class Automatic coil winding machine Clean room Class

9 SC Magnet Cross Section Connection support plate mm Shrinking Cylinder Protection Resistor SECTION - AA SC Coil Magnetic shielding Scissor Laminations

10 MCS & MCDO Magnet specifications MCS MCD MCO Unit Nominal field along the X-axis (m) 1970 x 2 T/m x 10 6 x 4 T/m x 3 T/m 3 Overall length with shield mm Nominal operation current A Working temperature K Turns per coil 2 x 13 2 x Peak field T Theoretical quench current at 1.9K / 4.2K 1300 / / /195 (MCD set to I nom ) A Self inductance mh Mass ~5 ~ 4 Kg

11 Superconducting wire specifications Material Nb-Ti in copper matrix Dimension of insulated wire (mm 2) / x 0.38 ±0/-0.01 Insulation PVA Insulation thickness (mm) 0.06 ± ± 0.01 Dimensions bare conductor (mm 2) x 0.32 Filament diameter (µm) 7 φ 10 Twist pitch (mm) 14 ± 2 18 ± 2 Cu/SC ratio ± 0.1 RRR 100 > 70 Critical current {5T, 4.2K} (A) 650, , 110

12 Cryogenic testing at 4.2 K Training Measurement of Contact resistance Leakage current Hot spot temp. estimation Retraining after a thermal cycle to room temperature

13 Cryogenic Test Acceptance criteria Parameter MCS MCD MCO No training quench is allowed at nominal current 550 A 550 A 100 A In max. 5 training quenches magnet must reach ( 10 ) 850 A 800 A 150 A No Re-training quenches are allowed at or below (after a heat cycle to room temperature) 850 A 800 A 150 A Contact resistance ( at I nom ) nω <35 <30 <50 Leakage Current at 4.2 K, 1.5 kv < 3 µ A

14 PREPARATION OF INSERT LOADING INSERT INTO CRYOSTAT EVACUVATION OF LHe VESSEL PURGING OF He GAS TRAINING OF MAGNET LHe TRANSFER AT CONTROLLED /min LN 2 TRANSFER Over night cooling RETRAINING QUENCH FIRST QUENCH >550A FIFTH QUENCH>850A YES MAGNET PASSED QUENCH FIRST QUENCH >850A NO FAILED WARMING OF MAGNET TO RT YES Over night warming CRYOGENIC TRAINING PROCEDURE UNLOAD INSERT FROM CRYOSTAT

15 Prototype 4.2 K test facility of MCS and MCDO magnets at RRCAT Capacity 3 magnet/ 2days

16 4.2 K Cryogenic test station 2 Cryostats, 3 Inserts Testing Capacity > 100 Magnets/month LHe -200 Lit for 12 Magnets

17 TESTING SETUP He BYPASS LINE FIG-1 GAS BAG RECOVERY COMPRESSOR TO GAS BANK GHe RECOVERY LINE HEADER He TRANSFER LINE (72 SIGNALS) VENT TO ATMOSPHERE(GN ) 2 TMP GHe RECOVERY LINE QUENCH DETECTION SYSTEM HELIUM LEVEL INDICATOR TMP DATA AQUISITION PC FFL He GAS CYL. LHe DEWAR 100 LITRES. 950 POWER SUPPLY 1200A / 3V PENNING GAUGE TEMPERATURE INDICATOR FFL (INSERT HOLDING 6 Sc MAGNETS) PIT 940 Sc MAGNETS PIT CRYOSTAT Ø 350 SCHEMATIC LAYOUT OF CRYOGENIC TEST FACILITY OF Sc CORRECTOR MAGNETS AT 4.2K

18 Fig: 2 Vertical section of cryostat with instrumentatiion and wiring scheme ELECTRICAL WIRING SCHEME FOR TEST CRYOSTAT WITH RELATED INSTRUMENTATION TESTING OF Sc CORRECTOR MAGNET

19 Magnet Insert

20 Improving productivity Reduce helium boil off by minimizing Heat input through different sources 1. Improved sc-switch (by reducing the required power input) 2. Series testing (eliminating more current leads as needed in parallel testing)

21 SC-Switch Conservative Optimsed Magnets on the insert with SC switch for training & CR measurement Heater capacity is reduced from 18w to 5w (72 %). Volume of switch is reduced from 594cc to 75cc(87%). Sc switch inside bore of the magnet there by saving space for magnet positioning.

22 Increasing productivity of Cryogenic testing by series testing 7-current leads For Testing of 6 magnet 3 current leads for Testing of 12 magnets Conduction heat reduced by 57 %

23 Cryogenic test results A Typical quench record

24 HOTSPOT TEMPERATURE ESTIMATION Hot spot temp S Tmax 2 To C( T) dt ρ( T) = + t0 I( t) 2 dt T[k] MIITS [A2s] 0 T 2 T 4 T 6 T 8 T 10 T ka 2 Sec 2T Hot spot temp < 100 K

25 Typical Training & Retraining test result at 4.2 K Current (A) Training Retraining I Nominal P1 P2 P3 P4 P5 P6 Quench No.

26 MCS magnets assembled on 1.8 K test rig for cold tests at CERN

27 Training & Retraining of MCS at 4.2 K & 1.9 K at CERN

28 Contact Resistance Measurement of SC magnet Magnet is put in to persistent mode Current ( hall voltage) decay monitored Thermal budget/magnet < 10 mw At I Nom = 550 A CR < 30 n Ω Per joint < 4 nω

29 Qualification of ultrasonic welding by measurement of Contact resistance at 4.2 K Close loop Ultrasonic welded joint Inducing the current using heater Measuring decay current thru voltage signal of hall probe which is a function of loop resistance

30 Ultrasonic welding machine Very low contact resistance <4 nω per joint TYP

31 Cryogenic testing at 4.2 K 12 Behaviorof MCD in Contact Resistance 10 No of Magnets variation in CR 16 Behavior of MCO in Contact Resistance 14 No of Magnets MCO variation in CR

32 Thanks for your kind attention Successful completion of the supply 1146 MCS & 636 MCDO Contributions from SC Tech lab team magnet division & other divisions of RRCAT 32

Physical Design of Superconducting Magnet for ADS Injection I

Physical Design of Superconducting Magnet for ADS Injection I Submitted to Chinese Physics C' Physical Design of Superconducting Magnet for ADS Injection I PENG Quan-ling( 彭全岭 ), WANG Bing( 王冰 ), CHEN Yuan( 陈沅 ) YANG Xiang-chen( 杨向臣 ) Institute of High Energy Physics,

More information

Magnets Y.C. Saxena Institute for Plasma Research. 1/16/2007 IPR Peer Review Jan

Magnets Y.C. Saxena Institute for Plasma Research. 1/16/2007 IPR Peer Review Jan Magnets Y.C. Saxena Institute for Plasma Research 1/16/2007 IPR Peer Review 15-17 Jan 2007 1 Magnet Development Program driven by Laboratory Scale Experiments ADITYA Tokamak SST-1 Tokamak 1/16/2007 IPR

More information

Residual Resistivity Ratio (RRR) Measurements of LHC Superconducting NbTi Cable Strands

Residual Resistivity Ratio (RRR) Measurements of LHC Superconducting NbTi Cable Strands EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics Large Hadron Collider Project LHC Project Report 896 Residual Resistivity Ratio (RRR) Measurements of LHC Superconducting

More information

4. Superconducting sector magnets for the SRC 4.1 Introduction

4. Superconducting sector magnets for the SRC 4.1 Introduction 4. Superconducting sector magnets for the SRC 4.1 Introduction The key components for the realization for the SRC are: the superconducting sector magnet and the superconducting bending magnet (SBM) for

More information

A new hybrid protection system for high-field superconducting magnets

A new hybrid protection system for high-field superconducting magnets A new hybrid protection system for high-field superconducting magnets Abstract E Ravaioli 1,2, V I Datskov 1, G Kirby 1, H H J ten Kate 1,2, and A P Verweij 1 1 CERN, Geneva, Switzerland 2 University of

More information

The Results of the KSTAR Superconducting Coil Test

The Results of the KSTAR Superconducting Coil Test K orea S uperconducting T okamak A dvanced R esearch The Results of the KSTAR Superconducting Coil Test Nov. 5 2004 Presented by Yeong-KooK Oh Y. K. Oh, Y. Chu, S. Lee, S. J. Lee, S. Baek, J. S. Kim, K.

More information

TECHNICAL SPECIFICATIONS. FOR AN MRBR 7.0 TESLA / 160mm ACTIVELY SHIELDED ROOM TEMPERATURE BORE MAGNET SYSTEM

TECHNICAL SPECIFICATIONS. FOR AN MRBR 7.0 TESLA / 160mm ACTIVELY SHIELDED ROOM TEMPERATURE BORE MAGNET SYSTEM TECHNICAL SPECIFICATIONS FOR AN MRBR 7.0 TESLA / 160mm ACTIVELY SHIELDED ROOM TEMPERATURE BORE MAGNET SYSTEM Prepared by:- Magnex Scientific Limited The Magnet Technology Centre 6 Mead Road Oxford Industrial

More information

TESLA Quad Package With BPM

TESLA Quad Package With BPM TESLA Quad Package With BPM H. Brueck, DESY Zeuthen, January 22, 2004 Technology Working Group 1 Topics The TESLA Quadrupole Package Status of Components Magnet Feedthroughs HTc Leads BPM Test in ACC6

More information

SPECIFICATIONS FOR AN MRBR 7.0 TESLA / 210MM ACTIVELY SHIELDED MAGNET SYSTEM

SPECIFICATIONS FOR AN MRBR 7.0 TESLA / 210MM ACTIVELY SHIELDED MAGNET SYSTEM SPECIFICATIONS FOR AN MRBR 7.0 TESLA / 210MM ACTIVELY SHIELDED MAGNET SYSTEM Prepared by:- Magnex Scientific Limited The Magnet Technology Centre 6 Mead Road Oxford Industrial Park Yarnton, Oxford OX5

More information

SPECIFICATION FOR A 7.0 TESLA/400MM ROOM TEMPERATURE BORE MAGNET SYSTEM

SPECIFICATION FOR A 7.0 TESLA/400MM ROOM TEMPERATURE BORE MAGNET SYSTEM SPECIFICATION FOR A 7.0 TESLA/400MM ROOM TEMPERATURE BORE MAGNET SYSTEM Prepared by:- Magnex Scientific Limited The Magnet Technology Centre 6 Mead Road Oxford Industrial Park Yarnton, Oxford OX5 1QU,

More information

THE CRYOGENIC SYSTEM OF TESLA

THE CRYOGENIC SYSTEM OF TESLA THE CRYOGENIC SYSTEM OF TESLA S. Wolff, DESY, Notkestr. 85, 22607 Hamburg, Germany for the TESLA collaboration Abstract TESLA, a 33 km long 500 GeV centre-of-mass energy superconducting linear collider

More information

2008 JINST 3 S Magnets. Chapter Overview. 3.2 Superconducting cable

2008 JINST 3 S Magnets. Chapter Overview. 3.2 Superconducting cable Chapter 3 Magnets 3.1 Overview The Large Hadron Collider relies on superconducting magnets that are at the edge of present technology. Other large superconducting accelerators (Tevatron-FNAL, HERA-DESY

More information

SPECIFICATIONS FOR A 4.7 TESLA/310MM BORE ACTIVELY SHIELDED MAGNET SYSTEM

SPECIFICATIONS FOR A 4.7 TESLA/310MM BORE ACTIVELY SHIELDED MAGNET SYSTEM SPECIFICATIONS FOR A 4.7 TESLA/310MM BORE ACTIVELY SHIELDED MAGNET SYSTEM Prepared by:- Magnex Scientific Limited The Magnet Technology Centre 6 Mead Road Oxford Industrial Park Yarnton, Oxford OX5 1QU,

More information

PRELIMINARY SPECIFICATIONS MRBR 7.0 TESLA / 210MM ACTIVELY SHIELDED CRYO-COOLED MAGNET SYSTEM

PRELIMINARY SPECIFICATIONS MRBR 7.0 TESLA / 210MM ACTIVELY SHIELDED CRYO-COOLED MAGNET SYSTEM PRELIMINARY SPECIFICATIONS MRBR 7.0 TESLA / 210MM ACTIVELY SHIELDED CRYO-COOLED MAGNET SYSTEM Prepared by:- Magnex Scientific Limited The Magnet Technology Centre 6 Mead Road Oxford Industrial Park Yarnton,

More information

Figure 1. TAMU1 dipole cross-section. Figure 2. Completed TAMU1 dipole and group that built it.

Figure 1. TAMU1 dipole cross-section. Figure 2. Completed TAMU1 dipole and group that built it. Testing of TAMU1 Dipole Team that built it: C. Battle, R. Blackburn, N. Diaczenko, T. Elliott, R. Gaedke, W. Henchel, E. Hill, M. Johnson, H. Kautzky, J. McIntyre, P. McIntyre, A. Sattarov Team that tested

More information

Cryogenics for Large Accelerators

Cryogenics for Large Accelerators Cryogenics for Large Accelerators Dr. Sergiy Putselyk Deutsches Elektronen-Synchrotron (DESY) MKS Division Notkestrasse 85 22607 Hamburg (Germany) Phone: +49 40 89983492 Fax: +49 40 89982858 E-Mail: Sergiy.Putselyk@desy.de

More information

Brett Parker, representing the

Brett Parker, representing the Compact Superconducting Magnet Solution for the 20 mr Crossing Angle Final Focus Brett Parker, representing the Brookhaven Superconducting Magnet Division Message: Progress continues on the compact superconducting

More information

ASG presentation and activities. Roberto Penco (consultant to ASG)

ASG presentation and activities. Roberto Penco (consultant to ASG) ASG presentation and activities Roberto Penco (consultant to ASG) CASTEL GROUP SIMA engineering + TECTUBI PARAMED X The near past: ACTIVITY SITE LHC Dipoles (30+386) Internal area (14000 m 2 ) LHC Corrector

More information

DEVELOPMENT OF A BETA 0.12, 88 MHZ, QUARTER WAVE RESONATOR AND ITS CRYOMODULE FOR THE SPIRAL2 PROJECT

DEVELOPMENT OF A BETA 0.12, 88 MHZ, QUARTER WAVE RESONATOR AND ITS CRYOMODULE FOR THE SPIRAL2 PROJECT DEVELOPMENT OF A BETA 0.12, 88 MHZ, QUARTER WAVE RESONATOR AND ITS CRYOMODULE FOR THE SPIRAL2 PROJECT G. Olry, J-L. Biarrotte, S. Blivet, S. Bousson, C. Commeaux, C. Joly, T. Junquera, J. Lesrel, E. Roy,

More information

LHC ARC DIPOLE STATUS REPORT

LHC ARC DIPOLE STATUS REPORT LHC ARC DIPOLE STATUS REPORT C.Wyss, CERN, Geneva, Switzerland # Abstract The LHC, a 7 Tev proton collider presently under construction at CERN, requires 1232 superconducting (SC) dipole magnets, featuring

More information

CHAPTER 7 MAIN MAGNETS IN THE ARCS

CHAPTER 7 MAIN MAGNETS IN THE ARCS CHAPTER 7 MAIN MAGNETS IN THE ARCS 7.1 OVERVIEW 7.1.1 Superconducting Technology for Accelerator Magnets The Large Hadron Collider relies heavily on superconducting magnets which are at the edge of the

More information

Superconducting Magnets Quench Propagation and Protection

Superconducting Magnets Quench Propagation and Protection 1 Superconducting Magnets Quench Propagation and Protection Herman ten Kate CERN Accelerator School on Superconductivity for Accelerators, Erice 2013 2 1 Quench Protection, what for? Superconducting coil

More information

APAC 2007, Raja Ramanna Centre for Advanced Technology(RRCAT), Indore, India LHC STATUS. Lyndon Evans, CERN, Geneva, Switzerland

APAC 2007, Raja Ramanna Centre for Advanced Technology(RRCAT), Indore, India LHC STATUS. Lyndon Evans, CERN, Geneva, Switzerland LHC STATUS Lyndon Evans, CERN, Geneva, Switzerland Abstract The installation of the Large Hadron Collider at CERN is now approaching completion. Almost 1100 of the 1232 main bending magnets are installed

More information

HIGH MAGNETIC FIELD SUPERCONDUCTING MAGNETS FABRICATED IN BUDKER INP FOR SR GENERATION

HIGH MAGNETIC FIELD SUPERCONDUCTING MAGNETS FABRICATED IN BUDKER INP FOR SR GENERATION HIGH MAGNETIC FIELD SUPERCONDUCTING MAGNETS FABRICATED IN BUDKER INP FOR SR GENERATION K.V. Zolotarev *, A.M. Batrakov, S.V. Khruschev, G.N. Kulipanov, V.H. Lev, N.A. Mezentsev, E.G. Miginsky, V.A. Shkaruba,

More information

Series manufacture of the LHC main. dipole magnets. Notes about the CERN. approach to industrial. production. C.Wyss & L.

Series manufacture of the LHC main. dipole magnets. Notes about the CERN. approach to industrial. production. C.Wyss & L. Series manufacture of the LHC main dipole magnets Notes about the CERN approach to industrial production C.Wyss & L.Rossi / CERN SCRF05-12 July 2005 L.Rossi & C.Wyss - CERN 1 1232 +16 units, 8.3 T nominal

More information

Impulse testing of coils and magnets: present experience and future plans

Impulse testing of coils and magnets: present experience and future plans Impulse testing of coils and magnets: present experience and future plans M. Marchevsky, E. Ravaioli, LBNL G. Ambrosio, FNAL M. Marchevsky 1 Impulse testing for LARP magnets Impulse testing is a key electrical

More information

CONSTRUCTION AND TESTING OF ARC DIPOLES AND QUADRUPOLES FOR THE RELATIVISTIC HEAVY ION COLLIDER (RHIC) AT BNL *

CONSTRUCTION AND TESTING OF ARC DIPOLES AND QUADRUPOLES FOR THE RELATIVISTIC HEAVY ION COLLIDER (RHIC) AT BNL * 996 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution

More information

ILC Accelerator Related R&D in India

ILC Accelerator Related R&D in India ILC Accelerator Related R&D in India S C Joshi, V C Sahni Raja Ramanna Centre for Advanced Technology, Indore, INDIA IHEP, Beijing, China, November 5, 2007 Greetings to all the participants of CCAST ILC

More information

AC loss in the superconducting cables of the CERN Fast Cycled Magnet Prototype

AC loss in the superconducting cables of the CERN Fast Cycled Magnet Prototype Available online at www.sciencedirect.com Physics Procedia 36 (2012 ) 1087 1092 Superconductivity Centennial Conference AC loss in the superconducting cables of the CERN Fast Cycled Magnet Prototype F.

More information

High Voltage Instrumentation Cables for the ITER Superconducting Magnet Systems

High Voltage Instrumentation Cables for the ITER Superconducting Magnet Systems High Voltage Instrumentation Cables for the ITER Superconducting Magnet Systems Summary for Call for Nominations 1. Background and scope ITER will be the world's largest experimental facility to demonstrate

More information

... (1) A battery of emf ε and negligible internal resistance is connected in series to two resistors. The current in the circuit is I.

... (1) A battery of emf ε and negligible internal resistance is connected in series to two resistors. The current in the circuit is I. 1. This question is about electric circuits. (a) Define (i) electromotive force (emf ) of a battery. (ii) electrical resistance of a conductor. (b) A battery of emf ε and negligible internal resistance

More information

High current and high power superconducting rectifiers

High current and high power superconducting rectifiers Results on three experimental superconducting rectifiers are reported. Two of them are ka low frequency flux pumps, one thermally and magnetically switched. The third is a low,current high-frequency magnetically

More information

1. A battery of internal resistance 2 Ω is connected to an external resistance of 10 Ω. The current is 0.5 A. D. 24.

1. A battery of internal resistance 2 Ω is connected to an external resistance of 10 Ω. The current is 0.5 A. D. 24. 1. A battery of internal resistance 2 Ω is connected to an external resistance of 10 Ω. The current is 0.5 A. What is the emf of the battery? A. 1.0 V B. 5.0 V C. 6.0 V D. 24.0 V (Total 1 mark) IB Questionbank

More information

Protection of Hardware: Powering Systems (Power Converter, Normal Conducting, and Superconducting Magnets)

Protection of Hardware: Powering Systems (Power Converter, Normal Conducting, and Superconducting Magnets) Protection of Hardware: Powering Systems (Power Converter, Normal Conducting, and Superconducting Magnets) H. Pfeffer, B. Flora, and D. Wolff US Particle Accelerator School, Batavia, IL, USA Abstract Along

More information

SHMS Q2Q3Dipole Acceptance Test Plans Operations and Lessons Learned

SHMS Q2Q3Dipole Acceptance Test Plans Operations and Lessons Learned SHMS Q2Q3Dipole Acceptance Test Plans Operations and Lessons Learned Paul Brindza Q2Q3D ERR Oct. 12, 2016 9/29/2016 Q2Q3D ERR Review October 12, 2016 1 Outline Q2Q3D Testing Magnet assembly testing Acceptance

More information

A New Cryogenic Test Facility for Large and Heavy Superconducting Magnets

A New Cryogenic Test Facility for Large and Heavy Superconducting Magnets 2LPo2C-08 1 A New Cryogenic Test Facility for Large and Heavy Superconducting Magnets L. Serio, P. Schnizer, M. Arnaud, C. Bertone, E. Blanco, D. Calcoen, M. Charrondiere, E. J. Cho, G.-J. Coelingh, K.

More information

Philippe Lebrun & Laurent Tavian, CERN

Philippe Lebrun & Laurent Tavian, CERN 7-11 July 2014 ICEC25 /ICMC 2014 Conference University of Twente, The Netherlands Philippe Lebrun & Laurent Tavian, CERN Ph. Lebrun & L. Tavian, ICEC25 Page 1 Contents Introduction: the European Strategy

More information

Frequency Tuning and RF Systems for the ATLAS Energy Upgrade. Gary P. Zinkann

Frequency Tuning and RF Systems for the ATLAS Energy Upgrade. Gary P. Zinkann Frequency Tuning and RF Systems for the ATLAS Energy Upgrade Outline Overview of the ATLAS Energy Upgrade Description of cavity Tuning method used during cavity construction Description and test results

More information

Superconducting RF Cavity Performance Degradation after Quenching in Static Magnetic Field

Superconducting RF Cavity Performance Degradation after Quenching in Static Magnetic Field Superconducting RF Cavity Performance Degradation after Quenching in Static Magnetic Field T. Khabiboulline, D. Sergatskov, I. Terechkine* Fermi National Accelerator Laboratory (FNAL) *MS-316, P.O. Box

More information

6625A-QHR System COMPLETE QUANTUM HALL RESISTANCE SYSTEM 6625A-QHR FEATURES

6625A-QHR System COMPLETE QUANTUM HALL RESISTANCE SYSTEM 6625A-QHR FEATURES 6625A-QHR System COMPLETE QUANTUM HALL RESISTANCE SYSTEM Introducing the World s Most Advanced Turn-Key QHR System! GUILDLINE INSTRUMENTS 6625A-QHR SYSTEM has been developed to meet the needs of Standards

More information

2008 JINST 3 S Powering and protection. Chapter Overview. 6.2 Powering circuits

2008 JINST 3 S Powering and protection. Chapter Overview. 6.2 Powering circuits Chapter 6 Powering and protection 6.1 Overview A very large number of superconducting and normal conducting magnets will be installed in the LHC, and most magnets of a given type in the same sector will

More information

Cryogenic Operations at SLAC

Cryogenic Operations at SLAC Cryogenic Operations at SLAC J. G. Weisend II, A. Candia, W.W. Craddock, E. Thompson CryoOps 2006 5/30/2006 J. G. Weisend II 1 What Do We Do? Cryogenics at SLAC involve: Large scale He refrigerator operation

More information

Testing of the Toroidal Field Model Coil (TFMC)

Testing of the Toroidal Field Model Coil (TFMC) 1 CT/P 14 Testing of the Toroidal Field Model Coil (TFMC) E. Salpietro on behalf of the ITER-TFMC Team EFDA-CSU, Garching,, Germany ettore.salpietro@tech.efda.org Abstract The paper shortly describes the

More information

S. Ghosh On behalf of Linac, IFR, Cryogenics, RF and beam transport group members. Inter University Accelerator Centre New Delhi India

S. Ghosh On behalf of Linac, IFR, Cryogenics, RF and beam transport group members. Inter University Accelerator Centre New Delhi India S. Ghosh On behalf of Linac, IFR, Cryogenics, RF and beam transport group members Inter University Accelerator Centre New Delhi 110067 India Highlights of presentation 1. Introduction to Linear accelerator

More information

MULTIPACTING IN THE CRAB CAVITY

MULTIPACTING IN THE CRAB CAVITY MULTIPACTING IN TH CRAB CAVITY Y. Morita, K. Hara, K. Hosoyama, A. Kabe, Y. Kojima, H. Nakai, KK, 1-1, Oho, Tsukuba, Ibaraki 3-81, JAPAN Md. M. Rahman, K. Nakanishi, Graduate University for Advanced Studies,

More information

2.3 PF System. WU Weiyue PF5 PF PF1

2.3 PF System. WU Weiyue PF5 PF PF1 2.3 PF System WU Weiyue 2.3.1 Introduction The poloidal field (PF) system consists of fourteen superconducting coils, including 6 pieces of central selenoid coils, 4 pieces of divertor coils and 4 pieces

More information

Development of a 40 T hybrid magnet at CHMFL

Development of a 40 T hybrid magnet at CHMFL Development of a 40 T hybrid magnet at CHMFL Yunfei Tan High Magnetic Field Laboratory, CAS (CHMFL) Jan.19, 2017 1 Where is CHMFL? Science Island Anhui Province P. R. China Hefei Beijing CHMFL 1000km Shanghai

More information

Study of Design of Superconducting Magnetic Energy Storage Coil for Power System Applications

Study of Design of Superconducting Magnetic Energy Storage Coil for Power System Applications Study of Design of Superconducting Magnetic Energy Storage Coil for Power System Applications Miss. P. L. Dushing Student, M.E (EPS) Government College of Engineering Aurangabad, INDIA Dr. A. G. Thosar

More information

XFEL Cryo System. Project X Collaboration Meeting, FNAL September 8-9, 2010 Bernd Petersen DESY MKS (XFEL WP10 & WP13) 1 st stage. Possible extension

XFEL Cryo System. Project X Collaboration Meeting, FNAL September 8-9, 2010 Bernd Petersen DESY MKS (XFEL WP10 & WP13) 1 st stage. Possible extension XFEL Cryo System Possible extension 1 st stage Project X Collaboration Meeting, FNAL September 8-9, 2010 (XFEL WP10 & WP13) Outline 2 XFEL accelerator structure TESLA technology Basic cryogenic parameters

More information

MODEL INFORMATION 6800B

MODEL INFORMATION 6800B Transportable & Affordable QHR Standard Accuracy to

More information

two pairs of dipole steering windings that t inside the quadrupole yoke an RF beam position monitor (BPM) consisting of a pill box RF cavity,

two pairs of dipole steering windings that t inside the quadrupole yoke an RF beam position monitor (BPM) consisting of a pill box RF cavity, Chapter 6 Quadrupole Package The quadrupole package is shown in Fig. 6.1. It consists of a superferric quadrupole doublet powered in series enclosed in a stainless steel vessel and cooled by 4 K LHe; two

More information

Superconducting RF cavities activities for the MAX project

Superconducting RF cavities activities for the MAX project 1 Superconducting RF cavities activities for the MAX project OECD-NEA TCADS-2 Workshop Nantes, 22 May 2013 Marouan El Yakoubi, CNRS / IPNO 2 Contents 352 MHz spoke Cryomodule design 700 MHz test area 700

More information

The Low-Noise, Integrated Transformer Helium-4 Dipstick Insert

The Low-Noise, Integrated Transformer Helium-4 Dipstick Insert The Low-Noise, Integrated Transformer Helium-4 Dipstick Insert Sang Lin Chu Georgia Institute Of Technology 837 State Street N.W. Atlanta, GA 30332 gte813m@prism.gatech.edu, sanglinchu@hotmail.com December

More information

Superconducting Fault Current Limiter Modules for Power Transmission / Distribution

Superconducting Fault Current Limiter Modules for Power Transmission / Distribution superior performance. powerful technology. Superconducting Fault Current Limiter Modules for Power Transmission / Distribution Program Manager: Juan-Carlos H. Llambes, Ph.D. Superconductivity for Electric

More information

A few results [2,3] obtained with the individual cavities inside their horizontal cryostats are summarized in Table I and a typical Q o

A few results [2,3] obtained with the individual cavities inside their horizontal cryostats are summarized in Table I and a typical Q o Particle Accelerators, 1990, Vol. 29, pp. 47-52 Reprints available directly from the publisher Photocopying permitted by license only 1990 Gordon and Breach, Science Publishers, Inc. Printed in the United

More information

The Superconducting Strand for the CMS Solenoid Conductor

The Superconducting Strand for the CMS Solenoid Conductor The Superconducting Strand for the CMS Solenoid Conductor B. Curé, B. Blau, D. Campi, L. F. Goodrich, I. L. Horvath, F. Kircher, R. Liikamaa, J. Seppälä, R. P. Smith, J. Teuho, and L. Vieillard Abstract-

More information

Resistive and Inductive Fault Current Limiters: Kinetics of Quenching and Recovery

Resistive and Inductive Fault Current Limiters: Kinetics of Quenching and Recovery Resistive and Inductive Fault Current Limiters: Kinetics of Quenching and Recovery Inductive and Resistive HS Fault Current Limiters: Prototyping, esting, Comparing F. Mumford, Areva &D A. Usoskin, Bruker

More information

D W. (Total 1 mark)

D W. (Total 1 mark) 1. One electronvolt is equal to A. 1.6 10 19 C. B. 1.6 10 19 J. C. 1.6 10 19 V. D. 1.6 10 19 W. 2. A battery of internal resistance 2 Ω is connected to an external resistance of 10 Ω. The current is 0.5

More information

Superconducting RF System. Heung-Sik Kang

Superconducting RF System. Heung-Sik Kang Design of PLS-II Superconducting RF System Heung-Sik Kang On behalf of PLS-II RF group Pohang Accelerator Laboratory Content 1. Introduction 2. Physics design 3. Cryomodules 4. Cryogenic system 5. High

More information

ARotating Coil Array in Mono Bloc Printed Circuit Technology for Small Scale Harmonic Measurements

ARotating Coil Array in Mono Bloc Printed Circuit Technology for Small Scale Harmonic Measurements ARotating Coil Array in Mono Bloc Printed Circuit Technology for Small Scale Harmonic Measurements Olaf DUNKEL (Dep. TE MSC MM) On behalf of Rui DE OLIVEIRA (Dep. TE MPE EM) Lucette Gaborit, Ricardo Beltron

More information

To produce more powerful and high-efficiency particle accelerator, efforts have

To produce more powerful and high-efficiency particle accelerator, efforts have Measuring Unloaded Quality Factor of Superconducting RF Cryomodule Jian Cong Zeng Department of Physics and Astronomy, State University of New York at Geneseo, Geneseo, NY 14454 Elvin Harms, Jr. Accelerator

More information

SOME STUDIES ON HIGH FREQUENCY RESONANT INVERTER BASED INDUCTION HEATER AND THE CORRESPONDING CHOICE OF SECONDARY METALLIC OBJECTS

SOME STUDIES ON HIGH FREQUENCY RESONANT INVERTER BASED INDUCTION HEATER AND THE CORRESPONDING CHOICE OF SECONDARY METALLIC OBJECTS SOME STUDIES ON HIGH FREQUENCY RESONANT INVERTER BASED INDUCTION HEATER AND THE CORRESPONDING CHOICE OF SECONDARY METALLIC OBJECTS ATANU BANDYOPADHYAY Reg.No-2010DR0139, dt-09.11.2010 Synopsis of Thesis

More information

Use of inductive heating for superconducting magnet protection*

Use of inductive heating for superconducting magnet protection* PSFC/JA-11-26 Use of inductive heating for superconducting magnet protection* L. Bromberg, J. V. Minervini, J.H. Schultz, T. Antaya and L. Myatt** MIT Plasma Science and Fusion Center November 4, 2011

More information

HTS PARTIAL CORE TRANSFORMER- FAULT CURRENT LIMITER

HTS PARTIAL CORE TRANSFORMER- FAULT CURRENT LIMITER EEA CONFERENCE & EXHIBITION 2013, 19-21 JUNE, AUCKLAND HTS PARTIAL CORE TRANSFORMER- FAULT CURRENT LIMITER JIT KUMAR SHAM*, UNIVERSITY OF CANTERBURY, CHRISTCHURCH, NEW ZEALAND PROF. PAT BODGER, UNIVERSITY

More information

Magnetic measurement system for superconducting final focus quadrupoles for SuperKEKB

Magnetic measurement system for superconducting final focus quadrupoles for SuperKEKB Magnetic measurement system for superconducting final focus quadrupoles for SuperKEKB Y. Arimoto (KEK) IMMW 20 @ Diamond Light Source 2017/Jun/8 SuperKEKB Final focus magnet system Magnetic field measurement

More information

Update on REBCO accelerator magnet technology development at LBNL and research plan for fusion magnets

Update on REBCO accelerator magnet technology development at LBNL and research plan for fusion magnets Update on REBCO accelerator magnet technology development at LBNL and research plan for fusion magnets Xiaorong Wang Superconducting Magnet Program, LBNL CCA Workshop, Aspen CO, 9/12/2016 Acknowledgment

More information

Multipole Magnets with High Field Uniformity over Full Length for Super Separator Spectrometer

Multipole Magnets with High Field Uniformity over Full Length for Super Separator Spectrometer 1 Multipole Magnets with High Field Uniformity over Full Length for Super Separator Spectrometer S. Manikonda, R. Meinke, J. Nolen, V. Prince and G. Stelzer Abstract First few nested superconducting multipole

More information

REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES. S. Belomestnykh

REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES. S. Belomestnykh REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES S. Belomestnykh HPC workshop JLAB, 30 October 2002 Introduction Many aspects of the high-power coupler design, fabrication, preparation, conditioning, integration

More information

High Power Couplers for TTF - FEL

High Power Couplers for TTF - FEL High Power Couplers for TTF - FEL 1. Requirements for High Power Couplers on superconducting Cavities 2. Characteristics of pulsed couplers 3. Standing wave pattern in the coaxial coupler line 4. Advantages

More information

SLHiPP-2, Catania, Italy. A cryogenic system for the MYRRHA linac. Nicolas Chevalier, Tomas Junquera

SLHiPP-2, Catania, Italy. A cryogenic system for the MYRRHA linac. Nicolas Chevalier, Tomas Junquera SLHiPP-2, Catania, Italy A cryogenic system for the MYRRHA linac Nicolas Chevalier, Tomas Junquera 04.05.2012 Outline 1 ) Cryogenic system requirements : heat loads 2 ) Temperature optimization, possible

More information

A Superconducting Helical Undulator-Based FEL Prototype Cryomodule

A Superconducting Helical Undulator-Based FEL Prototype Cryomodule A Superconducting Helical Undulator-Based FEL Prototype Cryomodule E. Gluskin PI, APS/ANL P. Emma Co-PI, SLAC, Y. Ivanyushenkov Co-PI, APS/ANL Sep. 19, 2016 1. Introduction and Motivation Undulators serve

More information

ESS RF Development at Uppsala University. Roger Ruber for the FREIA team Uppsala University

ESS RF Development at Uppsala University. Roger Ruber for the FREIA team Uppsala University ESS RF Development at Uppsala University Roger Ruber for the FREIA team Uppsala University ESS-UU Collaboration 2009 ESS and UU start discussion on 704 MHz RF development proposal for ESS dedicated test

More information

attocube systems Probe Stations for Extreme Environments CRYOGENIC PROBE STATION fundamentals principles of cryogenic probe stations

attocube systems Probe Stations for Extreme Environments CRYOGENIC PROBE STATION fundamentals principles of cryogenic probe stations PAGE 88 & 2008 2007 PRODUCT CATALOG CRYOGENIC PROBE STATION fundamentals...................... 90 principles of cryogenic probe stations attocps I.......................... 92 ultra stable cryogenic probe

More information

STATUS OF THE KOLKATA K500 SUPERCONDUCTING CYCLOTRON

STATUS OF THE KOLKATA K500 SUPERCONDUCTING CYCLOTRON STATUS OF THE KOLKATA K500 SUPERCONDUCTING CYCLOTRON Rakesh K. Bhandari (for VECC Staff) Variable Energy Cyclotron Centre, Department of Atomic Energy, Kolkata 700 064, India Abstract A superconducting

More information

Conceptual Design of Superferric Magnets for PS2

Conceptual Design of Superferric Magnets for PS2 High Energy High Intensity Hadron Beams EDMS Nr: 871183.v3 Conceptual Design of Superferric Magnets for PS2 L. Bottura, R. Maccaferri, C. Maglioni, V. Parma, G. de Rijk, L. Rossi, W. Scandale, L. Serio,

More information

RF power tests of LEP2 main couplers on a single cell superconducting cavity

RF power tests of LEP2 main couplers on a single cell superconducting cavity RF power tests of LEP2 main couplers on a single cell superconducting cavity H.P. Kindermann, M. Stirbet* CERN, CH-1211 Geneva 23, Switzerland Abstract To determine the power capability of the input couplers

More information

Vibration studies of a superconducting accelerating

Vibration studies of a superconducting accelerating Vibration studies of a superconducting accelerating module at room temperature and at 4.5 K Ramila Amirikas, Alessandro Bertolini, Wilhelm Bialowons Vibration studies on a Type III cryomodule at room temperature

More information

PROGRESS IN IFMIF HALF WAVE RESONATORS MANUFACTURING AND TEST PREPARATION

PROGRESS IN IFMIF HALF WAVE RESONATORS MANUFACTURING AND TEST PREPARATION PROGRESS IN IFMIF HALF WAVE RESONATORS MANUFACTURING AND TEST PREPARATION G. Devanz, N. Bazin, G. Disset, H. Dzitko, P. Hardy, H. Jenhani, J. Neyret, O. Piquet, J. Plouin, N. Selami, CEA-Saclay, France

More information

Magnet technology Insights & recent UHF results

Magnet technology Insights & recent UHF results Magnet technology Insights & recent UHF results Daniel Baumann, Rainer Kümmerle Bruker Biospin AG Switzerland 25. November 2016 Brussels Innovation with Integrity Innovation with Integrity 1 GHz Aeon at

More information

Micro-manipulated Cryogenic & Vacuum Probe Systems

Micro-manipulated Cryogenic & Vacuum Probe Systems Janis micro-manipulated probe stations are designed for non-destructive electrical testing using DC, RF, and fiber-optic probes. They are useful in a variety of fields including semiconductors, MEMS, superconductivity,

More information

KSTAR Construction and Commissioning

KSTAR Construction and Commissioning KSTAR Construction and Commissioning H. L. Yang, J. S. Bak, Y. S. Kim, Y. K. Oh, I. S. Whang, Y. S. Bae, Y. M. Park, K. W. Cho, Y. J. Kim, K. R. Park, W. C. Kim, M. K. Park, T. H. Ha and the KSTAR Team

More information

HIGH POWER COUPLER FOR THE TESLA TEST FACILITY

HIGH POWER COUPLER FOR THE TESLA TEST FACILITY Abstract HIGH POWER COUPLER FOR THE TESLA TEST FACILITY W.-D. Moeller * for the TESLA Collaboration, Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg, Germany The TeV Energy Superconducting Linear

More information

TESLA RF POWER COUPLERS DEVELOPMENT AT DESY.

TESLA RF POWER COUPLERS DEVELOPMENT AT DESY. TESLA RF POWER COUPLERS DEVELOPMENT AT DESY. Dwersteg B., Kostin D., Lalayan M., Martens C., Möller W.-D., DESY, D-22603 Hamburg, Germany. Abstract Different RF power couplers for the TESLA Test Facility

More information

2 Single-mode Diode Laser and Optical Fiber

2 Single-mode Diode Laser and Optical Fiber A Novel Technique for Minimum Quench Energy Measurements in Superconductors Using a Single-Mode Diode Laser F. Trillaud (a), F. Ayela (b), A. Devred (a),(c), M. Fratini (d), D. Lebœuf (a) and P. Tixador

More information

Recent Development of SFCL in the USA

Recent Development of SFCL in the USA superior performance. powerful technology. Recent Development of SFCL in the USA Juan-Carlos H. Llambes, Ph.D. SFCL Program Manager / Senior High Voltage Engineer 23 rd International Superconductivity

More information

28/11/2016 Juan Carlos Perez TE-MSC-MDT Jose Ferradas TE-MSC-MDT

28/11/2016 Juan Carlos Perez TE-MSC-MDT Jose Ferradas TE-MSC-MDT TE-MSC-MDT 28/11/2016 Juan Carlos Perez Jose Ferradas TE-MSC-MDT TE-MSC-MDT Outline Description and status of the project Project TE3536 at Laboratory 927 Magnet Design and Technology (MDT) Main results

More information

Conceptual Design of the LHC Interaction Region Upgrade Phase-I

Conceptual Design of the LHC Interaction Region Upgrade Phase-I EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics Large Hadron Collider Project LHC Project Report 1163 Conceptual Design of the LHC Interaction Region Upgrade Phase-I

More information

Construction and Persistent-Mode Operation of MgB 2 Coils in the Range K for a 0.5-T/240-mm Cold Bore MRI Magnet

Construction and Persistent-Mode Operation of MgB 2 Coils in the Range K for a 0.5-T/240-mm Cold Bore MRI Magnet 1 Construction and Persistent-Mode Operation of MgB 2 Coils in the Range 10-15 K for a 0.5-T/240-mm Cold Bore MRI Magnet Jiayin Ling, John P. Voccio, Seungyong Hahn, Youngjae Kim, Jungbin Song, Juan Bascuñán,

More information

Group F : Sl. No. - 1) 33/0.403 KV, 100 KVA Station Transformer GUARANTEED & OTHER TECHNICAL PARTICULARS. Table : A

Group F : Sl. No. - 1) 33/0.403 KV, 100 KVA Station Transformer GUARANTEED & OTHER TECHNICAL PARTICULARS. Table : A Group F : No. - 1) 33/0.403 KV, 100 KVA Station Transformer GUARANTEED & OTHER TECHNICAL PARTICULARS Table : A No. Description 1. Make & Manufacturer 2. Place of Manufacturer 3. Voltage Ratio 4. Rating

More information

LARGE SCALE TESTING OF SRF CAVITIES AND MODULES

LARGE SCALE TESTING OF SRF CAVITIES AND MODULES LARGE SCALE TESTING OF SRF CAVITIES AND MODULES Jacek Swierblewski IFJ PAN Krakow IKC for the XFEL Introduction IFJ PAN 2 Institute of Nuclear Physics (IFJ) located in Kraków, Poland was founded in 1955

More information

RF STATUS OF SUPERCONDUCTING MODULE DEVELOPMENT SUITABLE FOR CW OPERATION: ELBE CRYOSTATS

RF STATUS OF SUPERCONDUCTING MODULE DEVELOPMENT SUITABLE FOR CW OPERATION: ELBE CRYOSTATS RF STATUS OF SUPERCONDUCTING MODULE DEVELOPMENT SUITABLE FOR CW OPERATION: ELBE CRYOSTATS J. Teichert, A. Büchner, H. Büttig, F. Gabriel, P. Michel, K. Möller, U. Lehnert, Ch. Schneider, J. Stephan, A.

More information

1. If the flux associated with a coil varies at the rate of 1 weber/min,the induced emf is

1. If the flux associated with a coil varies at the rate of 1 weber/min,the induced emf is 1. f the flux associated with a coil varies at the rate of 1 weber/min,the induced emf is 1 1. 1V 2. V 60 3. 60V 4. Zero 2. Lenz s law is the consequence of the law of conservation of 1. Charge 2. Mass

More information

Packaging of Cryogenic Components

Packaging of Cryogenic Components Packaging of Cryogenic Components William J. Schneider Senior Mechanical Engineer Emeritus November 19-23 2007 1 Packaging of Cryogenic Components Day one Introduction and Overview 2 What is important?

More information

LBNL MICE Project Status

LBNL MICE Project Status LBNL MICE Project Status Steve Gourlay MICE Project Board June 28, 2011 6/28/2011 1 LBNL Responsibilities Spectrometer Solenoid #1 RFCC Modules Spectrometer Solenoid #2 6/28/2011 2 Spectrometer Solenoids

More information

STATUS OF THE SUPERCONDUCTING CYCLOTRON PROJECT AT VECC

STATUS OF THE SUPERCONDUCTING CYCLOTRON PROJECT AT VECC STATUS OF THE SUPERCONDUCTING CYCLOTRON PROJECT AT VECC Bikash Sinha and R. K. Bhandari Variable Energy Cyclotron Centre, Department of Atomic Energy, Kolkata 700 064, India Abstract A superconducting

More information

Status of the KSTAR Superconducting Magnet System Development

Status of the KSTAR Superconducting Magnet System Development Status of the KSTAR Superconducting Magnet System Development K. Kim, H. K. Park, K. R. Park, B. S. Lim, S. I. Lee, Y. Chu, W. H. Chung, Y. K. Oh, S. H. Baek, S. J. Lee, H. Yonekawa, J. S. Kim, C. S. Kim,

More information

LHC: CONSTRUCTION AND COMMISSIONING STATUS

LHC: CONSTRUCTION AND COMMISSIONING STATUS LHC: CONSTRUCTION AND COMMISSIONING STATUS L. Evans, CERN, Geneva, Switzerland. Abstract The installation of the Large Hadron Collider at CERN is now approaching completion. All magnets are installed with

More information

Motivation: ERL based e linac for LHeC

Motivation: ERL based e linac for LHeC Erk Jensen, for the LHeC team and the RF group ERL 2013, BINP, Novosibirsk, 09 Sep 2013 09 Sep 2013 1 Motivation: ERL based e linac for LHeC ( O. Brünings presentation) NB.: This is a 09 Sep 2013 2 Some

More information

Engineering Challenges and Solutions for MeRHIC. Andrew Burrill for the MeRHIC Team

Engineering Challenges and Solutions for MeRHIC. Andrew Burrill for the MeRHIC Team Engineering Challenges and Solutions for MeRHIC Andrew Burrill for the MeRHIC Team Key Components Photoinjector Design Photocathodes & Drive Laser Linac Cavities 703.75 MHz 5 cell cavities 3 rd Harmonic

More information

Development of a charged-particle accumulator using an RF confinement method FA

Development of a charged-particle accumulator using an RF confinement method FA Development of a charged-particle accumulator using an RF confinement method FA4869-08-1-4075 Ryugo S. Hayano, University of Tokyo 1 Impact of the LHC accident This project, development of a charged-particle

More information