A Simple Via Experiment

Size: px
Start display at page:

Download "A Simple Via Experiment"

Transcription

1 As presented at DesignCon 2009 Co-authored by: Michael Steinberger, Signal Integrity Software, Inc. Chong Ding, Cisco Systems, Inc. Divya Gopinath, Cisco Systems, Inc. Steve Scearce, Cisco Systems, Inc. Doug White, Cisco Systems, Inc. Signal Integrity Software, Inc (SiSoft) 6 Clock Tower Place, Suite 250 Maynard, MA

2

3 Abstract Vias play a critical role in the high frequency electrical behavior of packages and printed circuit boards. Although measured data and electromagnetic solvers can be used to study via electrical properties, a clearer description of the underlying physics would make engineering judgment concerning vias more effective. This paper introduces a simple experiment and corresponding textbook solution for radial TEM waves which demonstrates the physics of vias. Extensions of this experiment show how the underlying physical model can be used to explain the behavior of differential vias, ground vias, and via antipads. Author(s) Biography Dr. Michael Steinberger is currently responsible for leading the development of SiSoft's serial link analysis products. He has over 30 years experience in the design and analysis of very high speed electronic circuits. Prior to joining SiSoft, Dr. Steinberger worked at Cray Inc., where he designed very high density interconnects and increased the data rate and path lengths to the state of the art. Mike holds a B.S. from the California Institute of Technology and a Ph.D. from the University of Southern California, and has been awarded 13 U.S. patents. Chong Ding is currently a Signal Integrity engineer in the central engineering High Speed Design Team at Cisco System, Inc. Chong has worked at Cisco for 3 years. Primarily focus on Signal integrity and Power Integrity modeling. Chong received his BE from Liaoning Institute of Technology, Jinzhou, China and MSEE from Missouri University of Science and Technology, Rolla, MO. Divya Gopinath is currently interning with the High Speed Design group within Cisco Systems, Inc., and focuses on signal integrity issues. Divya holds a B.E. degree in Electronics and Tele-communications Engineering from Pune University, India and is currently a Masters student in Electrical and Computer Engineering at North Carolina State University, Raleigh. Stephen Scearce is currently the manager of the central engineering High Speed Design team at Cisco System Inc. Stephen worked for Cisco as a signal integrity and EMC design engineer for 6 years previous to managing the team. Prior to joining Cisco, Stephen worked for NASA Langley Research Center in the Electromagnetic research branch High Intensity Radiated Fields team. Stephen has 3 US patents and 2 pending patents. He received his BSET and MSEE from Old Dominion University, Norfolk VA. Doug White is currently a technical leader in the central engineering High Speed Design Team at Cisco Systems, Inc. Doug has worked at Cisco for 8 years. Prior to joining Cisco, Doug worked at IBM in Research Triangle Park in the Networking Hardware and Personal Systems Divisions as an Electromagnetic Compatibility Engineer and an Electromagnetic Modeling specialist. He received his BSEE from Clemson University, his MSEE from North Carolina State University, and is currently pursuing a PhD in EE from North Carolina State University. DesignCon Signal Integrity Software, Inc (SiSoft) Page 3

4

5 Introduction Vias play a critical role in the high frequency electrical behavior of packages and printed circuit boards, and therefore they have been the subject of intense study. Notable recent contributions to this body of work include some good progress toward a physical model [1], [2], and some observations about the role of the relative positions of entry and exit to the via [3]. Most of the work to date, however, has taken the approach of comparing measured results to 3D field solver results. There has, however, been very little comparison between measured data and closed form solutions for specific electromagnetic modes. This is perhaps understandable in that the electromagnetic modes of a via are not necessarily well understood; however, if that is the case, one might also wonder how one should validate the results from a 3D field solver. Even if a good match with measured data is obtained for some number of specific cases, there is very little information from which to determine the range of geometries over which the model is valid. This paper introduces a simple experiment for which the electromagnetic modes are well understood. The modes excited in this experiment are radial TEM waves between a pair of ground planes, and it is demonstrated that measured data agrees with the textbook solution for these modes. These modes are then used to help explain more complex phenomena such as differential vias, ground vias, and the role of via antipads. 1.0 Baseline Experiment 1.1 Test Structure Figure 1 shows a pair of circular ground planes separated by a dielectric. Holes have been drilled in the center of each ground plane while removing only a minimal amount of the dielectric. Coaxial transmission lines connect at right angles to the holes in the ground planes. The center conductor of the coaxial transmission lines connect continuously through the dielectric which the outer conductors are interrupted by the gound planes. DesignCon Signal Integrity Software, Inc (SiSoft) Page 5

6 Figure 1: Via test structure At least in the region between the two ground planes, this structure closely resembles a via, with the center conductor of the coaxial transmission line acting as the barrel of the via and the holes in the ground planes acting as the via antipads. Note that in this structure, there is nothing that looks like a ground via. The only element providing continuity of the ground path is the coupling between the ground planes. The experiment is to measure the insertion loss of this structure. Reflection coefficients can also be used to determine the impedance of the structure as a function of frequency. The baseline structure for this study uses thick FR4 dielectric, 4.5 outer diameter, and holes in the ground planes (to match 141 semirigid coax cables at input and output). This set of dimensions was chosen for ease of fabrication at minimal cost using readily available materials and processes. Note that the dimensions in the baseline structure are at least three times those used in typical printed circuit boards. The following table is a comparison of the relevant dimensions. Table 1: Comparison of relevant dimensions Experimental PC Board Typical Structure Via drill size Antipad diameter Dielectric thickness DesignCon Signal Integrity Software, Inc (SiSoft) Page 6

7 Thus, this sample is representative of the behavior to be expected in practice at three times the frequencies used in these measurements. This is an additional advantage for the dimensions chosen. The circular symmetry of the baseline structure was chosen because a textbook solution was already available, and because the reonant frequencies of the structure are relatively evenly spaced, making it easier to interpret the data. The methods of this paper can, however, also be applied to rectangular structures. Although the solutions are not necessarily available in a textbook, they actually easier to work with because they use exponentials rather than the Bessel functions required for circularly symmetric structures. Also, the resonant frequencies of a rectangular structure are typically not equally spaced, but rather tend to bunch up at higher frequencies. In practical PC boards, this can result in frequency bands or suck outs of perhaps several hundred Megahertz in which the loss is higher than expected. 1.2 Baseline Measurement The S parameters of the baseline structure were measured using a vector network analyzer (VNA). A separate reference line using the same length of coax transmission line was also measured, and its insertion loss and reflection coefficient were subtracted from the data for the baseline structure. Figure 2 shows the resulting magnitude of S21 and S12 in db s. Both directions of transmission were included to provide some indication of the degree to which the data is reproducible. Figure 2: Baseline via structure S21 While there is certainly considerable distortion evident in Figure 2, the overall insertion loss is not necessary as high as one might expect for a structure with no ground vias. This is at least partially explained by the fact that the parallel plate capacitance of the DesignCon Signal Integrity Software, Inc (SiSoft) Page 7

8 ground planes is approximately 230pF; however, that capacitance is distributed over distances which can be several wavelengths, as is evident from the resonances in the structure s response. 2.0 Physical Explanation 2.1 A Fundamental Theorem Some insight can be gained into the behavior of this structure by considering the currents that flow at the edges of the ground plane holes and the currents in the center conductor. We will study these currents using Maxwell s fourth equation which, in a very fundamental form, states that the integral of the magnetic field along a contour is proportional to the integral of the currents flowing through a surface bounded by that contour plus the time derivative of the electric flux through that surface. Consider a contour defined around the hole in one of the ground planes and interior to the metal which forms that ground plane, as illustrated in Figure 3. Figure 3: Magnetic contour inside ground plane metal layer Then, for all frequencies for which the ground plane metalization is more than a few skin depths thick, the magnetic field in the interior of the metal, and therefore along this contour, is essentially zero. Furthermore, if a surface bounded by this contour is defined in such a way that it covers the hole in the ground plane at exactly the middle of the metal thickness at the edge of the hole, then by symmetry, the electric fields at that surface will all be directed along the surface, and there will be no electric field flux penetrating the surface. Therefore, considering that the integral of the magnetic field around the contour is zero and the electric flux through the surface (and therefore its time derivative) is zero, then the integral of all currents flowing through the surface must be zero. DesignCon Signal Integrity Software, Inc (SiSoft) Page 8

9 This proves the theorem that for all frequencies for which the metal is many skin depths thick, the sum of all the currents flowing through a hole in a ground plane must be zero. What this theorem implies is that if there is high frequency current flowing along the center conductor of the experimental structure or the barrel of a via, and that conductor passes through a hole in a ground plane, then there must be an equal and opposite current flowing back along the edges of the the hole. This condition is illustrated in Figure 4 for a via barrel passing through holes in two ground planes. Figure 4: Currents related to a via barrel passing through holes in two ground planes 2.2 Radial TEM Waves The above theorem can be used to explain how the experimental structure generates radial TEM waves. If there is a current flowing along the center conductor and into the cavity formed by the ground planes, then there must be an equal and opposite current flowing back along the interior of the cavity, through the hole in the ground plane, and back along the shield of the coax cable feeding the structure. Since the entire structure is radially symmetric, this current must be radially symmetric as well. On the other side of the ground plane cavity, the current is flowing out along the center conductor and so there must be a radially symmetric current flowing through the hole in the opposite ground plane and into the cavity. The currents at the edges of the ground plane holes are therefore equal in magnitude, opposite in sign, and radially symmetric. These currents therefore generate a circularly symmetric magnetic field, and an electric field is required perpendicular to the ground planes in order for the currents to flow in the first place. This, then, is a radial TEM wave. Energy flows away from and back to the holes in the ground planes like ripples in a pond, and both the electric and magnetic fields are perpendicular to the direction of energy flow. Reference [4] gives the following equations for radial TEM waves propagating between the two ground planes. (eq 1) (eq 2) DesignCon Signal Integrity Software, Inc (SiSoft) Page 9

10 (eq 3) where E is the electric field in the vertical direction H is the magnetic field in the circumferential direction A is the amplitude of a radial TEM wave propagating inward B is the amplitude of a radial TEM wave propagating outward k is a propagation number r is the distance in the radial direction Jn are Bessel functions of the first kind Yn are Bessel function of the second kind The resulting impedance between the two conducting planes with separation d between the two planes is (eq 4) If there is only an outgoing wave, as would be the case for either an infinite plane pair or a matched impedance boundary condition surrounding the via, equations 1, 2 and 4 result in the ground impedance (eq 5) where r s is the radius of the hole (antipad) in the ground planes. If the planes have a finite outer radius R, then these equations can be solved by noting that the total current at the outer edge of the planes is zero. (eq 6) Substituting the value for H from equation 2 into equation 6 and solving for B in terms of A, (eq 7) Where the function psi is defined to observe that, at least in this lossless case, the magnitudes of A and B are the same, but that there is a phase difference between the two. This value for B can then be substituted back into equations 1 and 2, and those expressions can then be substituted into equation 4 to yield (eq 8) Finally, the insertion loss due to this ground impedance when measured for a through path in a system with characteristic impedance Z 0 is (eq 9) DesignCon Signal Integrity Software, Inc (SiSoft) Page 10

11 Figure 5 shows the insertion loss these equations predict for the baseline structure if one assumes that the dielectric is lossless, and compares that loss to the measured data. In Figure 5, the measured data is colored blue and the calculated data is colored red. Note in Figure 5 that although the theoretical calculation produces a series of resonances which are similar to those of the measured data, only the first resonant frequency (~1.6 GHz) is matched exactly. As the frequency increases, the resonant frequencies from the lossless calculation become smaller and smaller compared to those for the measured data. Furthermore, the insertion loss predicted by the lossless calculation is lower than that for the measured data, except near the resonant frequencies. Thus, the treatment so far appears to be on the right track, but there is more physics to be accounted for. Figure 5: Theoretical predictions for lossless dielectric compared to measured data Figure 5 also shows in black the insertion that would be obtained with an infinite ground plane or a matched absorbent boundary condition. The insertion loss for this case increases monotonically with frequency. Comparing the insertion loss curves, it s clear that the waves reflected from the edge of the cavity play in important role in the behavior of the structure. This point should be considered carefully when applying a field solver to a structure like this. In particular, applying a matched boundary condition to the edges of the structure will cause the solver to miss phenomena which are central to the behavior of the via. 2.3 Lossy Dielectrics It has been known for some time that losses in a dielectric will not only cause the dielectric constant to become a complex quantity, typically characterized by a loss tangent, but will cause the dielectric constant to decrease for increasing frequency. Djordjevic et al [5] describe the dielectric constant using the equation DesignCon Signal Integrity Software, Inc (SiSoft) Page 11

12 (eq 10) where omega sub one is a lower frequency, typically 10 khz, omega sub two is an upper frequency limit, typically 1 THz, sigma is the conductivity at DC, epsilon sub infinity is that dielectric constant at extremely high frequencies, and delta epsilon represents a relatively constant dielectric loss between omega sub one and omega sub two. For frequencies between these limits, the real and imaginary parts of the dielectric constant are (eq 11) and the dielectric loss tangent is (eq 12) (eq 13) for some omega sub zero located close to the middle for the frequency band of interest. For the types of dielectrics typically used in electronic systems, and for the degree to which the characteristics of these materials are typically controlled, we will assume that sigma equals zero (negligible DC leakage). Equation 10 therefore becomes (eq 14) The effects of dielectric losses were taken into account through the simple expedient of substituting the complex value from equation 14 back into equations 3 and 8, and calculating the Bessel functions for complex arguments by adapting algorithms from [6]. Figures 6 and 7 compare the magnitudes of S21 and S11 for the measured and calculations from equations 8, 9, and 14. For these calculations, different values for the loss tangent were tried until the resonant frequencies from the calculation agreed with the measured data. The dielectric loss tangent that resulted in the best match to the measured data was 0.040, which is much higher than that typically expected for FR4; however the materials for the experimental samples were obtained from a low cost, uncontrolled source. The correlation with measured data suggests that this is the correct value for this sample. Note in Figures 6 and 7 that the frequencies of the resonances are matched quite well to 20 GHz, and that the magnitude of the return loss agrees quite well to 10 GHz. As observed in section 2.1 above, this corresponds to 60 GHz and 30 GHz, respectively, for most PC boards. DesignCon Signal Integrity Software, Inc (SiSoft) Page 12

13 Figure 6: Comparison of measured to calculated S21 magnitude Figure 7: Comparison of measured to calculated S11 Note also that while dielectric losses account for most of the losses in the experimental sample, there are still some losses unaccounted for. These are most likely conduction DesignCon Signal Integrity Software, Inc (SiSoft) Page 13

14 losses in the ground planes. While it is beyond the scope of this paper to calculate the conductive losses in addition to the dielectric losses, it should be noted that while the voltage between the ground planes is proportional to the dielectric thickness, the voltage drop across the ground plane is independent of dielectric thickness. Therefore, conductive losses will become more important for thinner dielectric layers. 3.0 Differential Vias The baseline experiment was extended to investigate the coupling between vias. Rather than having a single transmission line on either side of the ground plane structure and a single center conductor passing through the dielectric layer, samples were prepared with two closely spaced transmission lines on either side of the ground plane layer and two center conductors passing through the dielectric layer. To get a first order estimate of the effect of via spacing, two different samples were prepared: one with a spacing of between center conductors in the dielectric layer and one with a spacing of Figure 8 shows the measured insertion loss and return loss for both transmission lines in both directions. Note that these results are, in general, very similar to those in Figures 6 and 7. Figure 8: Insertion loss and return loss for differential via with spacing Figure 9 shows the crosstalk coupling between transmission lines for both transmission lines and both directions. There are several interesting observations that can be made about the data in Figure 9. First of all, note that the crosstalk coupling is, in general, quite high. This level of crosstalk would not be acceptable in a system application. Note also that the crosstalk coupling generally resembles the return loss shown in Figure 8. In point of fact, the two are almost exactly the same for frequencies below about 5 GHz. This suggests that the crosstalk coupling mechanism is a common ground impedance DesignCon Signal Integrity Software, Inc (SiSoft) Page 14

15 introduced by the ground plane structure, and that the same ground impedance is also the primary mechanism in the return loss. Note also from Figure 9 that the magnitude of the crosstalk coupling is remarkably consistent between coupling paths, even at very high frequencies. This suggests that a differential via structure such as this may offer a very accurate way to measure via ground path impedance for more general ground plane shapes, in much the same way that a four point probe is used to measure resistance. Figure 9: Crosstalk coupling for differential via with spacing Neither Figure 8 nor Figure 9 show the relative phase between the various responses. While we could have plotted the phases directly as well, it is much more instructive to transform the S parameters to differential and common mode. Figure 10 shows the differential mode insertion loss and return loss, while Figure 11 shows the common mode insertion loss and return loss. DesignCon Signal Integrity Software, Inc (SiSoft) Page 15

16 Figure 10: Differential mode response of a differential via with spacing Figure 11: Common mode response of differential via with spacing Note that the differential mode response in Figure 10 is relatively well behaved while the common mode response is even more extreme than that for the single ended structure. DesignCon Signal Integrity Software, Inc (SiSoft) Page 16

17 This can be explained in terms of radial TEM waves in that for the differential mode, the radial TEM waves for the true and complement sides will nearly cancel each other out while for the common mode, the TEM waves add together in phase. To provide some sense for the effect of via spacing, Figure 12 compares the differential mode insertion loss for the sample with spacing to that for a sample with spacing. Figure 12: Differential insertion loss as a function of via spacing In Figure 12, the spacing is shown in blue and the spacing is shown in red. Note that the insertion loss variation is greater for the larger spacing, indicating greater coupling to the radial TEM modes. This is what one would expect, in that the closer spacing results in more complete cancellation of the TEM waves. It is possible to apply the methods of [1] and section 3.2 above to TEM modes which vary in the circumferential direction. The general behavior and resonant frequencies of the radial TEM mode which varies by one cycle in the circumferential direction agree quite well with the data in Figure 12. This also is consistent with the theory that the TEM waves from the true and complement sides cancel each other out almost, but not completely. 4.0 Ground Vias Even recent and well respected books have suggested that there needs to be a lot of ground vias to provide a low impedance ground return path, and that these vias need to be placed as close as possible to the signal vias. DesignCon Signal Integrity Software, Inc (SiSoft) Page 17

18 While this may be the case at frequencies for which the ground plane is less than a skin depth thick, it is not the case at higher frequencies, as demonstrated by the fundamental theorem above. Rather, at higher frequencies the ground return currents for each signal will find their way to the walls of the antipads associated with that signal, regardless of what is in between. A ground via may offer one path for that current, but the radial TEM waves offer another, much closer and more effective mechanism. This principle can be demonstrated by extending the baseline experiment to include ground vias by drilling holes in the baseline structure so that grounding posts can be inserted or removed. Figure 13 shows the insertion loss for three different cases: no ground vias (shown in blue), four ground vias at a radius from the center (shown in green), and an additional four ground vias at a radius from the center (shown in red). Figure 13: Insertion loss as a function of ground via spacing The results are not necessarily what one would at first expect. While it is true that the grounding posts eliminate the resonance at DC, that is because the grounding vias are necessarily a very small number of wavelengths from the signal via near DC. At higher frequencies, the grounding posts have much less effect. There is a transition frequency band in which the ground vias shift the ground plane resonant frequencies and suppress the coupling to the ground plane resonances somewhat, but above that transition band, they have very little effect at all. The grounding posts do have a greater effect when placed closer to the signal via; however, they have to be placed very close indeed to have any significant effect. These observations can also be explained using radial TEM waves. Since the electric field at the walls of a grounding post must be zero, what happens is that the grounding post reflects radial TEM waves in response to incident TEM waves in such a way as to DesignCon Signal Integrity Software, Inc (SiSoft) Page 18

19 satisfy this boundary condition. These reflected TEM waves return to the signal via, where they subtract from the TEM waves emanating from the signal via. - If the distance is small, then the amplitude and phase of the reflected wave will not have changed very much, and therefore the reflected wave will substantially reduce the voltage between the ground planes at the signal via. - If, however, the ground via is at a greater distance, then its amplitude will decayed and its phase shifted, and so will have much less effect on the signal via. - Finally, if the ground via is a quarter wavelength away from the signal via, then the reflected wave will be in phase with the wave emanating from the signal via, and will add constructively to it.. This principle can be readily demonstrated mathematically for the case of an infinite (i.e., very large) ground plane. If we define A s is the amplitude of the wave emanating from the signal via A g is the amplitude of the wave reflected from the ground via d is the dielectric thickness R is the distance from the signal via to the ground via r s is the antipad radius of the signal via r g is the radius of the ground via V s is the voltage at the signal via V g is the voltage at the ground via then the boundary condition at the ground via is (eq 15) Propagating the reflected wave back to the signal via, Substituting equation 16 back into equation 17, (eq 16) (eq 17) (eq 18) The case of a finite ground plane can be treated in much the same way except that since there are waves reflected from the edges of the plane as well as from the ground vias, the solution requires a matrix inversion, and so the solution does not illustrate the principle as clearly. Measurements were also made with ground vias inserted in the differential via samples with the expectation that this would make other crosstalk mechanisms observable; however, the TEM wave suppression provided by these ground vias was not sufficient to expose any other physical phenomena. DesignCon Signal Integrity Software, Inc (SiSoft) Page 19

20 5.0 Antipads Section 3.1 demonstrates that the total current at the edge of the antipad is equal and opposite to the current flowing on the via barrel. Since the magnetic fields are directly proportional to these currents, the magnetic field at the edge of the antipad due to the ground currents is exactly canceled out by the magnetic field from the via barrel. Furthermore, the magnetic field due to the via barrel currents is due to a TEM wave propagating in the z direction, and so in the radial direction, the magnetic field is calculated using the static field solution. The magnetic field due to the via barrel is therefore inversely proportional to the radius. These observations can be combined with the equation for the magnetic field due to the radial TEM waves (i.e., equations 2 and 7) to calculate the magnetic fields as a function of radius for the baseline structure. Figure 14 shows the radial distribution of the magnetic field in the baseline experimental structure for frequencies ranging from 1 GHz to 20 GHz. This data demonstrates that at frequencies for which the antipad diameter is small compared to a wavelength, the magnetic field is almost entirely contained within the boundary of the antipad. When the antipad diameter starts to become a significant fraction of a wavelength, however, there is substantial magnetic field energy injected between the ground planes. Figure 14: Radial distribution of magnetic field in baseline experimental structure One would also expect the electric fields from the via barrel to terminate somewhere near the perimeter of the antipad, so that when the antipad diameter is small compared to a wavelength, essentially all of the fields are contained within the antipad boundary, and the via behaves like a short length of coaxial transmission line whose outer conductor diameter is the antipad diameter and whose center conductor diameter is the via barrel diameter. At higher frequencies, the leakage of the magnetic field between the ground planes will cause the via impedance to increase due to increased inductance, and for it to become lossier due to energy injected into radial TEM waves. Thus, a good first order equivalent circuit for a single ended via is a coaxial transmission line with the radial TEM mode impedance in series with the ground. The radial TEM DesignCon Signal Integrity Software, Inc (SiSoft) Page 20

21 mode impedance can be calculated from equation 8 or, more generally, from [4], and the properties of the transmission line are Dielectric constant and loss tangent the same as the dielectric layer. Impedance defined by the antipad diameter, barrel diameter, and dielectric properties. For a circular antipad and barrel, this is the (eq 19) Length equal to the thickness of the dielectric layer. If the antipad radius is comparable to or less than the dielectric thickness, this approximation will underestimate the impedance because the electric fields in the middle of the dielectric layer bend a bit past the projection of the antipad, making the effective outer diameter of the transmission line larger and therefore the effective impedance higher. For high density printed circuit board designs, this is typically not a significant consideration, however, because the board has so many layers, and so the first order approximation is more than adequate. 6.0 Conclusions This paper introduces an experiment which demonstrates the role of radial TEM waves in the behavior of package and printed circuit board vias. Evaluation of closed form textbook equations gives good agreement with measured data. This paper then goes on to observe: For differential vias, the radial TEM waves tend to cancel each other out, especially at lower frequencies, resulting in lower via losses. Unless they are quite large and are placed quite close to the signal via, ground vias have only a small effect on signal propagation, except at frequencies for which the ground planes are less than a skin depth thick. A first order equivalent circuit for a via is a transmission line with the impedance due to the radial TEM waves placed in series with the ground path. DesignCon Signal Integrity Software, Inc (SiSoft) Page 21

22 References [1] Schuster, Kwark, Selli and Muthana, Developing a Physical Model for Vias, DesignCon2006. [2] Selli, Schuster, Kwark, Ritter and Drewniak, Developing a Physical Model for Vias - Part II: Coupled and Ground Return Vias, DesignCon2007. [3] Archambeau, Connor, Araujo, Hashemi, Mittra, Schuster and Reuhli, Full Wave Simulation and Validation of a Simple Via Structure, DesignCon2006. [4] Ramo, Whinnery and Van Duzer, Fields and Waves in Communications Electronics, Third Edition, Wiley, copyright 1994, pg [5] Djordjevic, Biljic, Likar-Smiljanic and Sarkar, Wideband Frequency-Domain Characterization of FR-4 and Time-Domain Causality, IEEE Transactions on Electromagnetic Compatibility, Vol. 43, No. 4, pg , November [6] Press, Teukolsky, Vetterling and Flannery, Numerical Recipes in C++, third edition, Cambridge Press, copyright 2005, pg For more information on this subject, please contact us at: Signal Integrity Software, Inc (SiSoft) 6 Clock Tower Place, Suite 250 Maynard, MA DesignCon Signal Integrity Software, Inc (SiSoft) Page 22

DesignCon A Tale of Long Tails. Dai Fen, Huawei Mike Harwood, HSZ Consulting, Ltd.

DesignCon A Tale of Long Tails. Dai Fen, Huawei Mike Harwood, HSZ Consulting, Ltd. DesignCon 2010 A Tale of Long Tails Dai Fen, Huawei daifen@huawei.com Mike Harwood, HSZ Consulting, Ltd. mike@hszconsulting.com Huang Chunxing, Huawei huangchunxing@huawei.com Mike Steinberger, SiSoft

More information

Application of Foldy-Lax Multiple Scattering Method To Via Analysis in Multi-layered Printed Circuit Board

Application of Foldy-Lax Multiple Scattering Method To Via Analysis in Multi-layered Printed Circuit Board DesignCon 2008 Application of Foldy-Lax Multiple Scattering Method To Via Analysis in Multi-layered Printed Circuit Board Xiaoxiong Gu, IBM T. J. Watson Research Center xgu@us.ibm.com Mark B. Ritter, IBM

More information

CHAPTER 2 MICROSTRIP REFLECTARRAY ANTENNA AND PERFORMANCE EVALUATION

CHAPTER 2 MICROSTRIP REFLECTARRAY ANTENNA AND PERFORMANCE EVALUATION 43 CHAPTER 2 MICROSTRIP REFLECTARRAY ANTENNA AND PERFORMANCE EVALUATION 2.1 INTRODUCTION This work begins with design of reflectarrays with conventional patches as unit cells for operation at Ku Band in

More information

Waveguides. Metal Waveguides. Dielectric Waveguides

Waveguides. Metal Waveguides. Dielectric Waveguides Waveguides Waveguides, like transmission lines, are structures used to guide electromagnetic waves from point to point. However, the fundamental characteristics of waveguide and transmission line waves

More information

A Simple Wideband Transmission Line Model

A Simple Wideband Transmission Line Model A Simple Wideband Transmission Line Model Prepared by F. M. Tesche Holcombe Dept. of Electrical and Computer Engineering College of Engineering & Science 337 Fluor Daniel Building Box 34915 Clemson, SC

More information

Internal Model of X2Y Chip Technology

Internal Model of X2Y Chip Technology Internal Model of X2Y Chip Technology Summary At high frequencies, traditional discrete components are significantly limited in performance by their parasitics, which are inherent in the design. For example,

More information

Microwave Engineering

Microwave Engineering Microwave Circuits 1 Microwave Engineering 1. Microwave: 300MHz ~ 300 GHz, 1 m ~ 1mm. a. Not only apply in this frequency range. The real issue is wavelength. Historically, as early as WWII, this is the

More information

Signal and Noise Measurement Techniques Using Magnetic Field Probes

Signal and Noise Measurement Techniques Using Magnetic Field Probes Signal and Noise Measurement Techniques Using Magnetic Field Probes Abstract: Magnetic loops have long been used by EMC personnel to sniff out sources of emissions in circuits and equipment. Additional

More information

Microwave and optical systems Introduction p. 1 Characteristics of waves p. 1 The electromagnetic spectrum p. 3 History and uses of microwaves and

Microwave and optical systems Introduction p. 1 Characteristics of waves p. 1 The electromagnetic spectrum p. 3 History and uses of microwaves and Microwave and optical systems Introduction p. 1 Characteristics of waves p. 1 The electromagnetic spectrum p. 3 History and uses of microwaves and optics p. 4 Communication systems p. 6 Radar systems p.

More information

S.E. =20log e. t P. t P

S.E. =20log e. t P. t P The effects of gaps introduced into a continuous EMI gasket When properly designed, a surface-mount EMI gasket can provide essentially the same shielding performance as continuous gasketing. THOMAS CLUPPER

More information

Analysis of a PCB-Chassis System Including Different Sizes of Multiple Planes Based on SPICE

Analysis of a PCB-Chassis System Including Different Sizes of Multiple Planes Based on SPICE Analysis of a PCB-Chassis System Including Different Sizes of Multiple Planes Based on SPICE Naoki Kobayashi (1), Todd Hubing (2) and Takashi Harada (1) (1) NEC, System Jisso Research Laboratories, Kanagawa,

More information

Examining The Concept Of Ground In Electromagnetic (EM) Simulation

Examining The Concept Of Ground In Electromagnetic (EM) Simulation Examining The Concept Of Ground In Electromagnetic (EM) Simulation While circuit simulators require a global ground, EM simulators don t concern themselves with ground at all. As a result, it is the designer

More information

A review of shielding performance By Albert R. Martin

A review of shielding performance By Albert R. Martin A review of shielding performance By Albert R. Martin INTRODUCTION What determines how effective a cable shield is going to be? And how does the decision to ground or not ground a shield impact its effectiveness?

More information

Pulse Transmission and Cable Properties ================================

Pulse Transmission and Cable Properties ================================ PHYS 4211 Fall 2005 Last edit: October 2, 2006 T.E. Coan Pulse Transmission and Cable Properties ================================ GOAL To understand how voltage and current pulses are transmitted along

More information

Correlation Between Measured and Simulated Parameters of a Proposed Transfer Standard

Correlation Between Measured and Simulated Parameters of a Proposed Transfer Standard Correlation Between Measured and Simulated Parameters of a Proposed Transfer Standard Jim Nadolny AMP Incorporated ABSTRACT Total radiated power of a device can be measured using a mode stirred chamber

More information

NH-67, TRICHY MAIN ROAD, PULIYUR, C.F , KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL

NH-67, TRICHY MAIN ROAD, PULIYUR, C.F , KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL NH-67, TRICHY MAIN ROAD, PULIYUR, C.F. 639 114, KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL Subject Name: Microwave Engineering Class / Sem: BE (ECE) / VII Subject

More information

The theory of partial inductance is a powerful tool

The theory of partial inductance is a powerful tool Know The Theory of Partial Inductance to Control Emissions by Glen Dash Ampyx LLC The theory of partial inductance is a powerful tool for understanding why digital circuits radiate and in designing strategies

More information

A Pin-Loaded Microstrip Patch Antenna with the Ability to Suppress Surface Wave Excitation

A Pin-Loaded Microstrip Patch Antenna with the Ability to Suppress Surface Wave Excitation Progress In Electromagnetics Research C, Vol. 62, 131 137, 2016 A Pin-Loaded Microstrip Patch Antenna with the Ability to Suppress Surface Wave Excitation Ayed R. AlAjmi and Mohammad A. Saed * Abstract

More information

Large E Field Generators in Semi-anechoic Chambers for Full Vehicle Immunity Testing

Large E Field Generators in Semi-anechoic Chambers for Full Vehicle Immunity Testing Large E Field Generators in Semi-anechoic Chambers for Full Vehicle Immunity Testing Vince Rodriguez ETS-Lindgren, Inc. Abstract Several standards recommend the use of transmission line systems (TLS) as

More information

Even / Odd Mode Analysis This is a method of circuit analysis that uses super-positioning to simplify symmetric circuits

Even / Odd Mode Analysis This is a method of circuit analysis that uses super-positioning to simplify symmetric circuits NOMNCLATUR ABCD Matrices: These are matrices that can represent the function of simple two-port networks. The use of ABCD matrices is manifested in their ability to be cascaded through simple matrix multiplication.

More information

A MODIFIED FRACTAL RECTANGULAR CURVE DIELECTRIC RESONATOR ANTENNA FOR WIMAX APPLICATION

A MODIFIED FRACTAL RECTANGULAR CURVE DIELECTRIC RESONATOR ANTENNA FOR WIMAX APPLICATION Progress In Electromagnetics Research C, Vol. 12, 37 51, 2010 A MODIFIED FRACTAL RECTANGULAR CURVE DIELECTRIC RESONATOR ANTENNA FOR WIMAX APPLICATION R. K. Gangwar and S. P. Singh Department of Electronics

More information

Some Planar Geometries for Small Antennas With Switched Oscillators for THz Mesoband Radiators

Some Planar Geometries for Small Antennas With Switched Oscillators for THz Mesoband Radiators Sensor and Simulation Notes Note 532 27 May 2008 Some Planar Geometries for Small Antennas With Switched Oscillators for THz Mesoband Radiators Carl E. Baum University of New Mexico Department of Electrical

More information

Projects in microwave theory 2009

Projects in microwave theory 2009 Electrical and information technology Projects in microwave theory 2009 Write a short report on the project that includes a short abstract, an introduction, a theory section, a section on the results and

More information

Keysight Technologies Techniques for Advanced Cable Testing

Keysight Technologies Techniques for Advanced Cable Testing Keysight Technologies Techniques for Advanced Cable Testing Using FieldFox handheld analyzers Application Note Transmission lines are used to guide the flow of energy from one point to another. Line types

More information

Chapter 12: Transmission Lines. EET-223: RF Communication Circuits Walter Lara

Chapter 12: Transmission Lines. EET-223: RF Communication Circuits Walter Lara Chapter 12: Transmission Lines EET-223: RF Communication Circuits Walter Lara Introduction A transmission line can be defined as the conductive connections between system elements that carry signal power.

More information

THE TWIN standards SAE J1752/3 [1] and IEC 61967

THE TWIN standards SAE J1752/3 [1] and IEC 61967 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 49, NO. 4, NOVEMBER 2007 785 Characterizing the Electric Field Coupling from IC Heatsink Structures to External Cables Using TEM Cell Measurements

More information

Transient calibration of electric field sensors

Transient calibration of electric field sensors Transient calibration of electric field sensors M D Judd University of Strathclyde Glasgow, UK Abstract An electric field sensor calibration system that operates in the time-domain is described and its

More information

The Impedance Variation with Feed Position of a Microstrip Line-Fed Patch Antenna

The Impedance Variation with Feed Position of a Microstrip Line-Fed Patch Antenna SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 11, No. 1, February 2014, 85-96 UDC: 621.396.677.5:621.3.011.21 DOI: 10.2298/SJEE131121008S The Impedance Variation with Feed Position of a Microstrip Line-Fed

More information

Validation & Analysis of Complex Serial Bus Link Models

Validation & Analysis of Complex Serial Bus Link Models Validation & Analysis of Complex Serial Bus Link Models Version 1.0 John Pickerd, Tektronix, Inc John.J.Pickerd@Tek.com 503-627-5122 Kan Tan, Tektronix, Inc Kan.Tan@Tektronix.com 503-627-2049 Abstract

More information

150Hz to 1MHz magnetic field coupling to a typical shielded cable above a ground plane configuration

150Hz to 1MHz magnetic field coupling to a typical shielded cable above a ground plane configuration 150Hz to 1MHz magnetic field coupling to a typical shielded cable above a ground plane configuration D. A. Weston Lowfreqcablecoupling.doc 7-9-2005 The data and information contained within this report

More information

SHIELDING EFFECTIVENESS

SHIELDING EFFECTIVENESS SHIELDING Electronic devices are commonly packaged in a conducting enclosure (shield) in order to (1) prevent the electronic devices inside the shield from radiating emissions efficiently and/or (2) prevent

More information

ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1. Chapter 8: Cable Modeling

ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1. Chapter 8: Cable Modeling ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1 Chapter 8: Cable Modeling Related to the topic in section 8.14, sometimes when an RF transmitter is connected to an unbalanced antenna fed against earth ground

More information

Lab 4: Transmission Line

Lab 4: Transmission Line 1 Introduction Lab 4: Transmission Line In this experiment we will study the properties of a wave propagating in a periodic medium. Usually this takes the form of an array of masses and springs of the

More information

Aperture Antennas. Reflectors, horns. High Gain Nearly real input impedance. Huygens Principle

Aperture Antennas. Reflectors, horns. High Gain Nearly real input impedance. Huygens Principle Antennas 97 Aperture Antennas Reflectors, horns. High Gain Nearly real input impedance Huygens Principle Each point of a wave front is a secondary source of spherical waves. 97 Antennas 98 Equivalence

More information

Antenna Theory and Design

Antenna Theory and Design Antenna Theory and Design Antenna Theory and Design Associate Professor: WANG Junjun 王珺珺 School of Electronic and Information Engineering, Beihang University F1025, New Main Building wangjunjun@buaa.edu.cn

More information

Verifying Simulation Results with Measurements. Scott Piper General Motors

Verifying Simulation Results with Measurements. Scott Piper General Motors Verifying Simulation Results with Measurements Scott Piper General Motors EM Simulation Software Can be easy to justify the purchase of software packages even costing tens of thousands of dollars Upper

More information

Analysis of a Co-axial Fed Printed Antenna for WLAN Applications

Analysis of a Co-axial Fed Printed Antenna for WLAN Applications Analysis of a Co-axial Fed Printed Antenna for WLAN Applications G.Aneela 1, K.Sairam Reddy 2 1,2 Dept. of Electronics & Communication Engineering ACE Engineering College, Ghatkesar, Hyderabad, India.

More information

The DC Isolated 1:1 Guanella Transmission Line Transformer

The DC Isolated 1:1 Guanella Transmission Line Transformer The DC Isolated 1:1 Guanella Transmission Line Transformer by Chris Trask / N7ZWY Sonoran Radio Research P.O. Box 25240 Tempe, AZ 85285-5240 Email: christrask@earthlink.net Expanded and Revised 14 August

More information

OPEN SOURCE CABLE MODELS FOR EMI SIMULATIONS

OPEN SOURCE CABLE MODELS FOR EMI SIMULATIONS OPEN SOURCE CABLE MODELS FOR EMI SIMULATIONS S. Greedy 1, C. Smartt 1, D. W. P. Thomas 1. 1 : George Green Institute for Electromagnetics Research, Department of Electrical and Electronic Engineering,

More information

EC Transmission Lines And Waveguides

EC Transmission Lines And Waveguides EC6503 - Transmission Lines And Waveguides UNIT I - TRANSMISSION LINE THEORY A line of cascaded T sections & Transmission lines - General Solution, Physical Significance of the Equations 1. Define Characteristic

More information

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 16 Angle Modulation (Contd.) We will continue our discussion on Angle

More information

EC6011-ELECTROMAGNETICINTERFERENCEANDCOMPATIBILITY

EC6011-ELECTROMAGNETICINTERFERENCEANDCOMPATIBILITY EC6011-ELECTROMAGNETICINTERFERENCEANDCOMPATIBILITY UNIT-3 Part A 1. What is an opto-isolator? [N/D-16] An optoisolator (also known as optical coupler,optocoupler and opto-isolator) is a semiconductor device

More information

Technology in Balance

Technology in Balance Technology in Balance A G1 G2 B Basic Structure Comparison Regular capacitors have two plates or electrodes surrounded by a dielectric material. There is capacitance between the two conductive plates within

More information

L-BAND COPLANAR SLOT LOOP ANTENNA FOR INET APPLICATIONS

L-BAND COPLANAR SLOT LOOP ANTENNA FOR INET APPLICATIONS L-BAND COPLANAR SLOT LOOP ANTENNA FOR INET APPLICATIONS Jeyasingh Nithianandam Electrical and Computer Engineering Department Morgan State University, 500 Perring Parkway, Baltimore, Maryland 5 ABSTRACT

More information

REFLECTIONS AND STANDING WAVE RATIO

REFLECTIONS AND STANDING WAVE RATIO Page 1 of 9 THE SMITH CHART.In the last section we looked at the properties of two particular lengths of resonant transmission lines: half and quarter wavelength lines. It is possible to compute the impedance

More information

University of Pennsylvania Moore School of Electrical Engineering ESE319 Electronic Circuits - Modeling and Measurement Techniques

University of Pennsylvania Moore School of Electrical Engineering ESE319 Electronic Circuits - Modeling and Measurement Techniques University of Pennsylvania Moore School of Electrical Engineering ESE319 Electronic Circuits - Modeling and Measurement Techniques 1. Introduction. Students are often frustrated in their attempts to execute

More information

EQUIVALENT THROAT TECHNOLOGY

EQUIVALENT THROAT TECHNOLOGY EQUIVALENT THROAT TECHNOLOGY Modern audio frequency reproduction systems use transducers to convert electrical energy to acoustical energy. Systems used for the reinforcement of speech and music are referred

More information

A HIGH-POWER LOW-LOSS MULTIPORT RADIAL WAVEGUIDE POWER DIVIDER

A HIGH-POWER LOW-LOSS MULTIPORT RADIAL WAVEGUIDE POWER DIVIDER Progress In Electromagnetics Research Letters, Vol. 31, 189 198, 2012 A HIGH-POWER LOW-LOSS MULTIPORT RADIAL WAVEGUIDE POWER DIVIDER X.-Q. Li *, Q.-X. Liu, and J.-Q. Zhang School of Physical Science and

More information

DesignCon Design of Gb/s Interconnect for High-bandwidth FPGAs. Sherri Azgomi, Altera Corporation

DesignCon Design of Gb/s Interconnect for High-bandwidth FPGAs. Sherri Azgomi, Altera Corporation DesignCon 2004 Design of 3.125 Gb/s Interconnect for High-bandwidth FPGAs Sherri Azgomi, Altera Corporation sazgomi@altera.com Lawrence Williams, Ph.D., Ansoft Corporation williams@ansoft.com CF-031505-1.0

More information

Analysis of Via Capacitance in Arbitrary Multilayer PCBs

Analysis of Via Capacitance in Arbitrary Multilayer PCBs 722 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 49, NO. 3, AUGUST 2007 value for a reverberation chamber with an electrically large stirrer. The method proposed in this paper suggests that

More information

THE DESIGN of microwave filters is based on

THE DESIGN of microwave filters is based on IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 4, APRIL 1998 343 A Unified Approach to the Design, Measurement, and Tuning of Coupled-Resonator Filters John B. Ness Abstract The concept

More information

VLSI is scaling faster than number of interface pins

VLSI is scaling faster than number of interface pins High Speed Digital Signals Why Study High Speed Digital Signals Speeds of processors and signaling Doubled with last few years Already at 1-3 GHz microprocessors Early stages of terahertz Higher speeds

More information

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS Progress In Electromagnetics Research Letters, Vol. 23, 147 155, 2011 A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS Z.-N. Song, Y. Ding, and K. Huang National Key Laboratory of Antennas

More information

An Investigation of the Effect of Chassis Connections on Radiated EMI from PCBs

An Investigation of the Effect of Chassis Connections on Radiated EMI from PCBs An Investigation of the Effect of Chassis Connections on Radiated EMI from PCBs N. Kobayashi and T. Harada Jisso and Production Technologies Research Laboratories NEC Corporation Sagamihara City, Japan

More information

Mutual Coupling between Two Patches using Ideal High Impedance Surface

Mutual Coupling between Two Patches using Ideal High Impedance Surface International Journal of Electronics and Communication Engineering. ISSN 0974-2166 Volume 4, Number 3 (2011), pp. 287-293 International Research Publication House http://www.irphouse.com Mutual Coupling

More information

There is a twenty db improvement in the reflection measurements when the port match errors are removed.

There is a twenty db improvement in the reflection measurements when the port match errors are removed. ABSTRACT Many improvements have occurred in microwave error correction techniques the past few years. The various error sources which degrade calibration accuracy is better understood. Standards have been

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information S1. Theory of TPQI in a lossy directional coupler Following Barnett, et al. [24], we start with the probability of detecting one photon in each output of a lossy, symmetric beam

More information

Lab Manual Experiment No. 2

Lab Manual Experiment No. 2 Lab Manual Experiment No. 2 Aim of Experiment: Observe the transient phenomenon of terminated coaxial transmission lines in order to study their time domain behavior. Requirement: You have to install a

More information

The Basics of Patch Antennas, Updated

The Basics of Patch Antennas, Updated The Basics of Patch Antennas, Updated By D. Orban and G.J.K. Moernaut, Orban Microwave Products www.orbanmicrowave.com Introduction This article introduces the basic concepts of patch antennas. We use

More information

Investigation of Cavity Resonances in an Automobile

Investigation of Cavity Resonances in an Automobile Investigation of Cavity Resonances in an Automobile Haixiao Weng, Daryl G. Beetner, Todd H. Hubing, and Xiaopeng Dong Electromagnetic Compatibility Laboratory University of Missouri-Rolla Rolla, MO 65409,

More information

"Natural" Antennas. Mr. Robert Marcus, PE, NCE Dr. Bruce C. Gabrielson, NCE. Security Engineering Services, Inc. PO Box 550 Chesapeake Beach, MD 20732

Natural Antennas. Mr. Robert Marcus, PE, NCE Dr. Bruce C. Gabrielson, NCE. Security Engineering Services, Inc. PO Box 550 Chesapeake Beach, MD 20732 Published and presented: AFCEA TEMPEST Training Course, Burke, VA, 1992 Introduction "Natural" Antennas Mr. Robert Marcus, PE, NCE Dr. Bruce C. Gabrielson, NCE Security Engineering Services, Inc. PO Box

More information

Improving CDM Measurements With Frequency Domain Specifications

Improving CDM Measurements With Frequency Domain Specifications Improving CDM Measurements With Frequency Domain Specifications Jon Barth (1), Leo G. Henry Ph.D (2), John Richner (1) (1) Barth Electronics, Inc, 1589 Foothill Drive, Boulder City, NV 89005 USA tel.:

More information

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur-603 203 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6503 TRANSMISSION LINES AND WAVEGUIDES YEAR / SEMESTER: III / V ACADEMIC YEAR:

More information

Advanced Transmission Lines. Transmission Line 1

Advanced Transmission Lines. Transmission Line 1 Advanced Transmission Lines Transmission Line 1 Transmission Line 2 1. Transmission Line Theory :series resistance per unit length in. :series inductance per unit length in. :shunt conductance per unit

More information

Chapter 3 Broadside Twin Elements 3.1 Introduction

Chapter 3 Broadside Twin Elements 3.1 Introduction Chapter 3 Broadside Twin Elements 3. Introduction The focus of this chapter is on the use of planar, electrically thick grounded substrates for printed antennas. A serious problem with these substrates

More information

Antennas and Propagation. Chapter 4: Antenna Types

Antennas and Propagation. Chapter 4: Antenna Types Antennas and Propagation : Antenna Types 4.4 Aperture Antennas High microwave frequencies Thin wires and dielectrics cause loss Coaxial lines: may have 10dB per meter Waveguides often used instead Aperture

More information

AFLAT METAL sheet is used in many antennas as a

AFLAT METAL sheet is used in many antennas as a IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 47, NO. 11, NOVEMBER 1999 2059 High-Impedance Electromagnetic Surfaces with a Forbidden Frequency Band Dan Sievenpiper, Member, IEEE, Lijun Zhang,

More information

An Efficient Hybrid Method for Calculating the EMC Coupling to a. Device on a Printed Circuit Board inside a Cavity. by a Wire Penetrating an Aperture

An Efficient Hybrid Method for Calculating the EMC Coupling to a. Device on a Printed Circuit Board inside a Cavity. by a Wire Penetrating an Aperture An Efficient Hybrid Method for Calculating the EMC Coupling to a Device on a Printed Circuit Board inside a Cavity by a Wire Penetrating an Aperture Chatrpol Lertsirimit David R. Jackson Donald R. Wilton

More information

FEKO-Based Method for Electromagnetic Simulation of Carcass Wires Embedded in Vehicle Tires

FEKO-Based Method for Electromagnetic Simulation of Carcass Wires Embedded in Vehicle Tires ACES JOURNAL, VOL. 26, NO. 3, MARCH 2011 217 FEKO-Based Method for Electromagnetic Simulation of Carcass Wires Embedded in Vehicle Tires Nguyen Quoc Dinh 1, Takashi Teranishi 1, Naobumi Michishita 1, Yoshihide

More information

University of Pennsylvania Department of Electrical and Systems Engineering ESE319

University of Pennsylvania Department of Electrical and Systems Engineering ESE319 University of Pennsylvania Department of Electrical and Systems Engineering ESE39 Laboratory Experiment Parasitic Capacitance and Oscilloscope Loading This lab is designed to familiarize you with some

More information

Critical Study of Open-ended Coaxial Sensor by Finite Element Method (FEM)

Critical Study of Open-ended Coaxial Sensor by Finite Element Method (FEM) International Journal of Applied Science and Engineering 3., 4: 343-36 Critical Study of Open-ended Coaxial Sensor by Finite Element Method (FEM) M. A. Jusoha*, Z. Abbasb, M. A. A. Rahmanb, C. E. Mengc,

More information

Projects in microwave theory 2017

Projects in microwave theory 2017 Electrical and information technology Projects in microwave theory 2017 Write a short report on the project that includes a short abstract, an introduction, a theory section, a section on the results and

More information

A Dual-Polarized MIMO Antenna with EBG for 5.8 GHz WLAN Application

A Dual-Polarized MIMO Antenna with EBG for 5.8 GHz WLAN Application Progress In Electromagnetics Research Letters, Vol. 51, 15 2, 215 A Dual-Polarized MIMO Antenna with EBG for 5.8 GHz WLAN Application Xiaoyan Zhang 1, 2, *, Xinxing Zhong 1,BinchengLi 3, and Yiqiang Yu

More information

arxiv:physics/ v1 [physics.optics] 28 Sep 2005

arxiv:physics/ v1 [physics.optics] 28 Sep 2005 Near-field enhancement and imaging in double cylindrical polariton-resonant structures: Enlarging perfect lens Pekka Alitalo, Stanislav Maslovski, and Sergei Tretyakov arxiv:physics/0509232v1 [physics.optics]

More information

DESIGN AND FABRICATION OF CAVITY RESONATORS

DESIGN AND FABRICATION OF CAVITY RESONATORS &2@?%3 DESIGN AND FABRICATION OF CAVITY RESONATORS CHAPTER 3 DESIGN AND FABRICATION OFCAVITY RESONATORS 3.1 Introduction In the cavity perturbation techniques, generally rectangular or cylindrical waveguide

More information

FDTD CHARACTERIZATION OF MEANDER LINE ANTENNAS FOR RF AND WIRELESS COMMUNICATIONS

FDTD CHARACTERIZATION OF MEANDER LINE ANTENNAS FOR RF AND WIRELESS COMMUNICATIONS Progress In Electromagnetics Research, PIER 4, 85 99, 999 FDTD CHARACTERIZATION OF MEANDER LINE ANTENNAS FOR RF AND WIRELESS COMMUNICATIONS C.-W. P. Huang, A. Z. Elsherbeni, J. J. Chen, and C. E. Smith

More information

Development and verification of printed circuit board toroidal transformer model

Development and verification of printed circuit board toroidal transformer model Development and verification of printed circuit board toroidal transformer model Jens Pejtersen, Jakob Døler Mønster and Arnold Knott DTU Electrical Engineering, Technical University of Denmark Ørsteds

More information

COUPLED SECTORIAL LOOP ANTENNA (CSLA) FOR ULTRA-WIDEBAND APPLICATIONS *

COUPLED SECTORIAL LOOP ANTENNA (CSLA) FOR ULTRA-WIDEBAND APPLICATIONS * COUPLED SECTORIAL LOOP ANTENNA (CSLA) FOR ULTRA-WIDEBAND APPLICATIONS * Nader Behdad, and Kamal Sarabandi Department of Electrical Engineering and Computer Science University of Michigan, Ann Arbor, MI,

More information

Antennas Prof. Girish Kumar Department of Electrical Engineering Indian Institute of Technology, Bombay. Module 2 Lecture - 10 Dipole Antennas-III

Antennas Prof. Girish Kumar Department of Electrical Engineering Indian Institute of Technology, Bombay. Module 2 Lecture - 10 Dipole Antennas-III Antennas Prof. Girish Kumar Department of Electrical Engineering Indian Institute of Technology, Bombay Module 2 Lecture - 10 Dipole Antennas-III Hello, and welcome to todays lecture on Dipole Antenna.

More information

Antenna Design: Simulation and Methods

Antenna Design: Simulation and Methods Antenna Design: Simulation and Methods Radiation Group Signals, Systems and Radiocommunications Department Universidad Politécnica de Madrid Álvaro Noval Sánchez de Toca e-mail: anoval@gr.ssr.upm.es Javier

More information

Monoconical RF Antenna

Monoconical RF Antenna Page 1 of 8 RF and Microwave Models : Monoconical RF Antenna Monoconical RF Antenna Introduction Conical antennas are useful for many applications due to their broadband characteristics and relative simplicity.

More information

Index Terms Microstrip patch antenna, Quarter wave inset feed, Coaxial cable feed, Gain, Bandwidth, Directivity, Radiation pattern.

Index Terms Microstrip patch antenna, Quarter wave inset feed, Coaxial cable feed, Gain, Bandwidth, Directivity, Radiation pattern. PERFORMANCE ANALYSIS OF RECTANGULAR PATCH ANTENNA USING QUARTER WAVE FEED LINE AND COAXIAL FEED LINE METHODS FOR C- BAND RADAR BASED APPLICATIONS Dr.H.C.Nagaraj 1, Dr.T.S.Rukmini 2, Mr.Prasanna Paga 3,

More information

RAJIV GANDHI COLLEGE OF ENGINEERING AND TECHNOLOGY Kirumampakkam,Puducherry DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

RAJIV GANDHI COLLEGE OF ENGINEERING AND TECHNOLOGY Kirumampakkam,Puducherry DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING RAJIV GANDHI COLLEGE OF ENGINEERING AND TECHNOLOGY Kirumampakkam,Puducherry-607402 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK FOR EC T55 - TRANSMISSION LINES AND WAVEGUIDES G.LAXMINARAYANAN,

More information

COMPACT MICROSTRIP BANDPASS FILTERS USING TRIPLE-MODE RESONATOR

COMPACT MICROSTRIP BANDPASS FILTERS USING TRIPLE-MODE RESONATOR Progress In Electromagnetics Research Letters, Vol. 35, 89 98, 2012 COMPACT MICROSTRIP BANDPASS FILTERS USING TRIPLE-MODE RESONATOR K. C. Lee *, H. T. Su, and M. K. Haldar School of Engineering, Computing

More information

Lecture 4. Maximum Transfer of Power. The Purpose of Matching. Lecture 4 RF Amplifier Design. Johan Wernehag Electrical and Information Technology

Lecture 4. Maximum Transfer of Power. The Purpose of Matching. Lecture 4 RF Amplifier Design. Johan Wernehag Electrical and Information Technology Johan Wernehag, EIT Lecture 4 RF Amplifier Design Johan Wernehag Electrical and Information Technology Design of Matching Networks Various Purposes of Matching Voltage-, Current- and Power Matching Design

More information

RF simulations with COMSOL

RF simulations with COMSOL RF simulations with COMSOL ICPS 217 Politecnico di Torino Aug. 1 th, 217 Gabriele Rosati gabriele.rosati@comsol.com 3 37.93.8 Copyright 217 COMSOL. Any of the images, text, and equations here may be copied

More information

Free EM Simulator Analyzes Spiral Inductor on Silicon

Free EM Simulator Analyzes Spiral Inductor on Silicon Free EM Simulator Analyzes Spiral Inductor on Silicon by James C. Rautio Sonnet Software, Inc. 1020 Seventh North Street, Suite 210 Liverpool, NY 13088 (315)453-3096 info@sonnetusa.com http://www.sonnetusa.com

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1 EM wave transport through a 150 bend. (a) Bend of our PEC-PMC waveguide. (b) Bend of the conventional PEC waveguide. Waves are incident from the lower left

More information

Conduit measured transfer impedance and shielding effectiveness (typically achieved in the RS103 and CS114 tests)

Conduit measured transfer impedance and shielding effectiveness (typically achieved in the RS103 and CS114 tests) Conduit measured transfer impedance and shielding effectiveness (typically achieved in the RS3 and CS4 tests) D. A. Weston K. McDougall conduitse.doc 5-2-27 The data and information contained within this

More information

Custom Interconnects Fuzz Button with Hardhat Test Socket/Interposer 1.00 mm pitch

Custom Interconnects Fuzz Button with Hardhat Test Socket/Interposer 1.00 mm pitch Custom Interconnects Fuzz Button with Hardhat Test Socket/Interposer 1.00 mm pitch Measurement and Model Results prepared by Gert Hohenwarter 12/14/2015 1 Table of Contents TABLE OF CONTENTS...2 OBJECTIVE...

More information

Finite Width Coplanar Waveguide for Microwave and Millimeter-Wave Integrated Circuits

Finite Width Coplanar Waveguide for Microwave and Millimeter-Wave Integrated Circuits Finite Width Coplanar Waveguide for Microwave and Millimeter-Wave Integrated Circuits George E. Ponchak 1, Steve Robertson 2, Fred Brauchler 2, Jack East 2, Linda P. B. Katehi 2 (1) NASA Lewis Research

More information

Brief Overview of EM Computational Modeling Techniques for Real-World Engineering Problems

Brief Overview of EM Computational Modeling Techniques for Real-World Engineering Problems Brief Overview of EM Computational Modeling Techniques for Real-World Engineering Problems Bruce Archambeault, Ph.D. IEEE Fellow, IBM Distinguished Engineer Emeritus Bruce@brucearch.com Archambeault EMI/EMC

More information

Differential Signal and Common Mode Signal in Time Domain

Differential Signal and Common Mode Signal in Time Domain Differential Signal and Common Mode Signal in Time Domain Most of multi-gbps IO technologies use differential signaling, and their typical signal path impedance is ohm differential. Two 5ohm cables, however,

More information

On the Design of CPW Fed Appollian Gasket Multiband Antenna

On the Design of CPW Fed Appollian Gasket Multiband Antenna On the Design of CPW Fed Appollian Gasket Multiband Antenna Raj Kumar and Anupam Tiwari Microwave and MM Wave Antenna Lab., Department of Electronics Engg. DIAT (Deemed University), Girinagar, Pune-411025,

More information

Agilent Time Domain Analysis Using a Network Analyzer

Agilent Time Domain Analysis Using a Network Analyzer Agilent Time Domain Analysis Using a Network Analyzer Application Note 1287-12 0.0 0.045 0.6 0.035 Cable S(1,1) 0.4 0.2 Cable S(1,1) 0.025 0.015 0.005 0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Frequency (GHz) 0.005

More information

University of KwaZulu-Natal

University of KwaZulu-Natal University of KwaZulu-Natal School of Engineering Electrical, Electronic & Computer Engineering Instructions to Candidates: UNIVERSITY EXAMINATIONS DECEMBER 2016 ENEL3EM: EM THEORY Time allowed: 2 hours

More information

Chapter 5 DESIGN AND IMPLEMENTATION OF SWASTIKA-SHAPED FREQUENCY RECONFIGURABLE ANTENNA ON FR4 SUBSTRATE

Chapter 5 DESIGN AND IMPLEMENTATION OF SWASTIKA-SHAPED FREQUENCY RECONFIGURABLE ANTENNA ON FR4 SUBSTRATE Chapter 5 DESIGN AND IMPLEMENTATION OF SWASTIKA-SHAPED FREQUENCY RECONFIGURABLE ANTENNA ON FR4 SUBSTRATE The same geometrical shape of the Swastika as developed in previous chapter has been implemented

More information

The shunt capacitor is the critical element

The shunt capacitor is the critical element Accurate Feedthrough Capacitor Measurements at High Frequencies Critical for Component Evaluation and High Current Design A shielded measurement chamber allows accurate assessment and modeling of low pass

More information

The below identified patent application is available for licensing. Requests for information should be addressed to:

The below identified patent application is available for licensing. Requests for information should be addressed to: DEPARTMENT OF THE NAVY OFFICE OF COUNSEL NAVAL UNDERSEA WARFARE CENTER DIVISION 1176 HOWELL STREET NEWPORT Rl 02841-1708 IN REPLY REFER TO Attorney Docket No. 300104 25 May 2017 The below identified patent

More information

AM BASIC ELECTRONICS TRANSMISSION LINES JANUARY 2012 DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT HUACHUCA ARIZONA

AM BASIC ELECTRONICS TRANSMISSION LINES JANUARY 2012 DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT HUACHUCA ARIZONA AM 5-306 BASIC ELECTRONICS TRANSMISSION LINES JANUARY 2012 DISTRIBUTION RESTRICTION: Approved for Pubic Release. Distribution is unlimited. DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT HUACHUCA

More information